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Several approaches have been proposed in literature to de­
fend the wormhole attacks. The first set of approaches provides
solutions based on distance-bounding and time-bounding. Hu
et. al. [1] proposed to add information to a packet to restrict
the packet's maximum allowed transmission distance to avoid
tunneling, which they called packet leashes. In the work by
Eriksson et. al. [2], a timing based countermeasure to the
wormhole attacks called TrueLink is proposed. By using a
combination of timing and authentication, TrueLink enables a
node to verify the adjacency of its neighbor to avoid tunneling.

The second set of approaches is based on geometric in­
consistency. In the work by Wang and Bhargava [3], Multi­
Dimensional Scaling is applied to reconstruct the lay-out of
the network. During the wormhole attack, the fake connection
created by the malicious nodes will bend the reconstructed
surface to pull closer the nodes that are actually far away and
the location of the wormhole is determined by detecting such
anomalies. Other methods based on geometric inconsistency
include the work by Hu and Evans [4]

The third set of approaches is based on local monitoring
and statistical analysis. Song et. al. [5] proposed a statistical
analysis approach to detect wormholes in wireless ad hoc
networks that are based on multipath routing. The rationale of
the approach is that certain statistics of the routes discovered
by routing protocols change dramatically under wormhole
attacks such as the relative frequency of each link appeared
in the obtained routes etc. In our previous work [6], we
presented a detection scheme using the change of path round
trip delay as an indication of in-band wormhole attacks. The
detection scheme utilized two sequential change detection
algorithms: the non-parametric cumulative sum (NP-CUSUM)
and repeated sequential probability ratio test (R-SPRT). In this
paper, we further provide theoretical analysis and performance
comparison of the two algorithms using metrics that take into
account the algorithms' repeated nature. Our work can provide
useful insights on the choice of change detection algorithms
for designing practical wormhole detection schemes.

II. WORMHOLE DETECTION SCHEME

Our wormhole detection scheme is based on the observation
that during an in-band wormhole attack, the transmission
delay along a path that goes through a wormhole tunnel will
deviate from its normal value. This relatively abrupt change in
transmission delay occurs at unknown time points and should
be detected as soon as possible. Therefore, the problem of
detecting an in-band wormhole attack can be formulated and
solved as a quickest (sequential) change detection problem:
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ABSTRACT

I. INTRODUCTION

Collaborative attacks in wireless ad hoc networks bring
serious challenges to the normal collaboration among different
nodes and the correct functioning of the entire network. This
paper addresses the problem of detecting one specific type of
collaborative attacks, namely the wormhole attack, which is
easy to launch by the adversary, but is difficult to detect and
brings great damage to the network.

During a wormhole attack, the malicious nodes perform
a tunneling procedure to form a wormhole where one node
receives packets and covertly tunnels them to another colluding
node, and then the colluding node replays these packets as
if it receives them from its physical neighbors. Based on
different covert communication mechanisms used for tunnel­
ing, wormhole attacks can be classified as in-band wormholes
and out-band wormholes. The in-band wormhole connects the
purported neighbors via multi-hop tunnels over the existing
wireless medium while the out-band wormhole attack uses an
external communication medium such as a wired link or a
long-range wireless transmission channel. Wormhole attacks
can affect shortest path routing calculations and allow the
attacking nodes to attract and route traffic from other parts of
the network to go through them. Effectively, wormhole attacks
create two artificial traffic choke points that are under the
control of the attacker. These choke points can be utilized at
an opportune future time to analyze network traffic or degrade
network performance.
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This paper compares the performance of parametric and
non-parametric sequential change detection algorithms for
detecting in-band wormholes in wireless ad hoc networks.
The algorithms considered are the non-parametric cumulative
sum (NP-CUSUM) and the repeated sequential probability
ratio test (R-SPRT). Theoretical performance of the two is
compared using metrics that take into account the algorithms'
repeated nature, and the advantage of the parametric method
is illustrated. On the other hand, connections between the
parametric and non-parametric methods are made in the pro­
posed worst case adversary model, where the non-parametric
method is shown to be more robust to attack strategy changes.
Experimental evaluation ofwormhole detection schemes based
on the two algorithms is presented. This work has implications
for both the theoretical understanding and practical design of
wormhole detection schemes based on parametric and non­
parametric change detection algorithms.
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{
I, if gn 2:: h,
0, if gn < h,

min{n : d(n) == I}.T

d(n)

gn == (gn-1 + Xn - c)+,

and the decision rule and stopping time are

(
f1(Xn))+

gn = gn-l + In fo(x
n

) ' (2)

where go 0 and (x)+ stands for max(x,O). An
intuitive explanation behind Equation (2) is that, since
E 1[ln(f1(xn )/fo(xn ))] > 0 and Eo[ln(f1(xn )/fo(xn))] < 0,
where Eo[·] and E 1 [·] denote the expectations correspond to
the distribution functions fo and f1' gn in Equation (2) will
remain close to 0 under H 0 and start drifting upward until
it crosses the threshold h under HI. Equation (2) provides
a basis for the following non-parametric cumulative sum
algorithm we developed in our wormhole detection scheme.

1) Non-parametric Cumulative Sum (NP-CUSUM): In a

mobile ad hoc network where network topology changes
very quickly, it is usually very difficult, if not impossible, to
model or estimate the distributions fo and f1 of the delay
measurements. Therefore, we need a non-parametric approach
to solve the hypothesis testing problem (1).

Since the distribution functions fo and f1 are unknown, we
replace the term In(f1 (xn )/ fo(xn )) in Equation (2) by some
nonparametric score function s(xn ), i.e., we let gn == (gn-1 +
S (xn ) ) +. The nonparametric score function must satisfy the
conditions E 1[s(xn )] > 0 and Eo[s(xn )] < 0 to ensure that
gn remains close to 0 in normal conditions and drifts upward
in abnormal conditions. Observing that the in-band wormhole
attack leads to an abrupt change in the mean value of the
transmission delay, we can choose s(xn ) == X n - C , where c
is a constant which satisfies Eo[x] < c < E 1[x], i.e., we use
the statistic

algorithm [10] in the sense that it minimizes the worst mean
detection delay, i.e., the detection delay under the realization
of distribution fo that makes the detection most difficult,
while maintaining the mean time between false alarms above
a certain threshold given that the observations are independent
and identically distributed (i.i.d.).

By denoting max1::;k::;n Sn,k as gn, and assuming that the
observations are i.i.d., we can write gn in a recursive form

(1)X1, ,xn l"..lfo,

X1, ,Xkl"..lfo,

Xk+1, ... ,Xn 1"..1 fl.

T

Ho

for 1 ::; k ::; n, Hk

2) Repeated Sequential Probability Ratio Test (R-SPRT): In
the situation where a large volume of sample data is available
and estimating the distribution functions fo and f1 is not
difficult, we propose to use the R-SPRT algorithm. The R­
SPRT can utilize the information of the distribution functions

This is a well known sequential change detection algorithm, and is expected to improve the detection performance.
namely, cumulative sum (CUSUM) algorithm, first proposed Recall that CUSUM is also a change detection algorithm
by Page [9]. A sequential change detection algorithm usually that can utilize the model information, the difference between
involves optimizing the tradeoff between two performance R-SPRT and CUSUM include the following: the CUSUM
metrics. The first metric is the delay for detection, which algorithm minimizes the worst mean delay for detection but
relates to the ability of the algorithm to set an alarm when does not guarantee that the mean delay for detection will be
a change actually occurs, the other metric is the mean time minimized. R-SPRT is more flexible with its two adjustable
between false alarms, which reflects the frequency of false thresholds. By setting the lower threshold to 0, R-SPRT is
alarms. CUSUM is known to be the optimal change detection equivalent to CUSUM and thus delivers the same performance
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The likelihood ratio between the hypotheses Ho and Hk is

S I
fO(X1, ... ,Xk-1)f1(Xk, ... ,Xn)

n k == n .
, fo(xo, ... ,xn )

The maximum likelihood principle leads to the following
decision rule and stopping time:

d(n) {I, if max1::;k::;n Sn,k 2:: h,
0, if max1::;k::;n Sn,k < h,

min{n : d(n) == I}.

to detect a change as rapidly as possible after its occurrence,
while maintaining the false alarm rate at a given level.

Our detection scheme utilizes a dynamic hierarchy model
proposed by Sterne et. al. [7]: clustering techniques are applied
to organize the entire network into several groups. Each group
contains two levels of nodes, the leaf nodes and the cluster
head node. The data acquisition occurs at the leaf nodes and
the inference drawn from the data is transmitted to the cluster
head. The cluster head correlates the individual inferences it
receives to make the final decision. To avoid having a single
head node that is a potential single point of failure, one or
more numbers of nodes can be designated as backup head
nodes. Our detection scheme considers the one-group case,
but it can also be extended to multi-group case. The scheme
contains the following three steps.

A. Data Collection
Each node in the network collects three-hop transmission

delay data by periodically sending out ping packets to all the
nodes that are three hops away. Three-hop paths are considered
because it is sufficient to analyze delays of the two normal
nodes that communicate directly with the two end nodes of
a wormhole tunnel [8]. Thus the hop count between the two
normal nodes appears to be three during a wormhole attack.

B. Data Analysis
Each node determines from the collected delay information

whether the three-hop path goes through a wormhole tunnel.
We assume that the observed delay data have a joint prob­

ability density function (PDF) fo (Xl, ... , Xm -1) until an un­
known time point m, m E {I, 2, ...}, and after this time point
m, the observations have another distribution f1 (xm , ... , xn ).

In other words, fo is the PDF of the normal delay data, while
f1 is the PDF of the delay data under the wormhole attack
(abnormal delay data). Since m is unknown, each node needs
to do the following hypothesis testing:
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III. PERFORMANCE ANALYSIS OF NP-CUSUM AND

R-SPRT
When we evaluate the performance of a change detection

algorithm, we are interested in two performance metrics,
namely the delay for detection, whose mean is denoted by
E[Tv], and the mean time between false alarms, E[TpA]'

A. Performance Analysis of NP-CUSUM

Recall that the decision rule and stopping time of NP­
CUSUM are shown in Equations (4) and (5). Following a
procedure similar to the one in [12], we can prove that under
very general conditions, the following inequality holds for the
mean time between false alarms of the NP-CUSUM algorithm

E[TpA] 2: Clec2h, (6)

where Cl and C2 are some constants depending on the param­
eter c and the normal distribution 10. Generally it is difficult
to compute the values of Cl and C2, but since it is usually
not difficult to collect sample data for the normal situation,
Equation (6) can be evaluated by experiments. It is known that
E[TpA] increases with the increase of c. Another observation
from Equation (6) is that the mean time between false alarms
increases exponentially fast with the threshold h.

For the delay for detection of the NP-CUSUM algorithm,
following a similar procedure as in [12], we get the following
asymptotic relation as h ----* 00,

E[Tv] 1
-h- ----> E1[x] - C· (7)

By Equation (6), E[TpA] goes to infinity as h ----* 00, therefore,
this asymptotic view is meaningful in practice, as a large mean
time between false alarms is always desirable. So Equation (7)
actually provides a criterion to select the thresholds hand c
in NP-CUSUM. For example, if we want to detect the attack
within certain pre-specified time interval T, the hand c should
be selected according to

1 T
E1[x]- C < h =} h < T(E1[x] - c). (8)

Equations (6) and (7) also exhibit a trade-off between the two
performance metrics. A longer mean time between false alarms
requires larger value of hand c, while a smaller delay for
detection requires smaller hand c.

only tell that among the three links 1-2, 2-3, 3-4 some are
wormhole tunnels; if the cluster head is told that the paths
1-2-3-4 and 1-2-3-5 are abnormal as in (b), it can tell that
the wormhole tunnel exists in the two links 1-2 and 2-3 ; if
the cluster head is told by node 1 and 6 that paths 1-2-3-4
and 6-2-3-5 are abnormal, it can determine that the link 2-3
is abnormal and nodes 2 and 3 are the wormhole attackers.

S -1 Il(Xl,X2, ... ,Xn )
n- n-------

Io(xl, X2, ... , xn ) .

If the observed sequence {xi}f=1 are i.i.d. variables, Sn can
be written as

as CUSUM. By setting the lower threshold to other values
under different scenarios, R-SPRT can potentially outperform
the CUSUM algorithm.

We first define a single use of the sequential probability
ratio test (SPRT) with the decision rule d and the stopping
time T as :

{

I, if Sn 2: B,
d(n) 0, if Sn :::; A,

defer decision, if A < Sn < B,
T == min{n : (d(n) == 1) U (d(n) == O)},

where A, B are two thresholds and Sn is the SPRT statistic
defined by:

II (xn )
Sn = Sn-l + In fo(x

n
)'

It has been shown by Wald [11] that SPRT is the optimal
detection test that minimizes the average number of required
observations to reach a decision among all sequential and non­
sequential tests where the false alarm rate and missed detection
rate do not exceed some predefined values. However, the single
SPRT algorithm is better suited for on-demand monitoring
of the network, e.g., when a higher layer monitoring agent
requests a node to collect data and conduct the SPRT because
some area of the network is behaving suspiciously, and once
the node reaches a decision, no matter if the decision is a '1'
or a '0', it stops monitoring. In contrast, our scenario requires
continuous monitoring in order to detect the wormhole attack.
Therefore, a repeated SPRT is required.

In R-SPRT, the single SPRT algorithm is restarted with
So == 0 whenever d(n) == O. This setup enables the nodes to
detect the abnormal behavior for both short term and long term
wormhole attacks. Note if the observations are i.i.d. and the
lower threshold of the R-SPRT algorithm is set to 0 (A == 0),
the statistic can be written as Sn == (Sn-l +In ~~i~:j)+, which
is equivalent to the CUSUM algorithm.
C. Wormhole Localization

After data analysis, the cluster head receives the decision
made by each leaf node along with the path information.
It correlates these information and determines whether a
wormhole attack is underway and locates the attacking nodes.

Given the observations of three-hop path delay data, locating
a wormhole requires at least two anomalous observations with
a common intersecting link but disjoint end nodes. We use
Fig. 1 to illustrate this claim. Assuming that nodes 2 and 3

(a) (b) B. Performance Analysis ofR-SPRT

We now proceed to evaluate E[TpA] and E[Tv] for the R-
if 'A' B SPRT algorithm. We denote the probability of false alarms and

(c) the probability of missed detection of a single SPRT as Q and
Fig. 1: Wormhole Localization {3, and assume that the average number of samples the single

are the wormhole attackers, if the cluster head is informed by SPRT needs to make a decision is E1 [N] under HI and Eo[N]
node 1 that the path 1-2-3-4 is abnormal as (a) shows, it can under Ho. In the R-SPRT algorithm, each time the SPRT stops
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and makes a decision can be modeled as a Bernoulli random
variable with parameters a under Ho and 1 - {3 under HI.
Therefore the waiting time until the first success (a decision
of '1') is a geometric random variable, i.e.,

curves for different A are very similar, so we just use A == 0
in further experiments.
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IV. WORST CASE ADVERSARY MODEL
In this section, we derive a worst case adversary model and

show that NP-CUSUM is more robust to the changes of the
attack model.

Fig. 3: R-SPRT performance. B ranges from 1 to 25

The parametric method R-SPRT has additional information
of the distributions 10 and 11 and thus is expected to perform
better than the non-parametric method NP-CUSUM. This
conjecture is confirmed in Figure 4, where R-SPRT achieves
increasingly larger value of mean time between false alarms
than NP-CUSUM for larger detection delay values. A longer
mean time between false alarm implies fewer false alarm and
thus better performance.

Fig. 4: Comparison of NP-CUSUM and R-SPRT

The better performance of R-SPRT comes at the cost of
higher computational complexity, because estimating the dis­
tributions 10 and 11 requires proper sample data and training
using these data. Sample data for the abnormal distribution
11 usually depend on several factors under the control of
the attackers, such as the tunnel length and the location of
the tunnel end points, thus posing difficulties for the R-SPRT
method. In constrast, NP-CUSUM only requires an estimation
of the mean value of a normal three-hop path delay, which is
relatively easier to obtain.

***
*

*
*

*

E[TD]
~ ·Ar+B

(9)~
e

E [In flex)] ,
1 fo(x)

E[TFA]
Ar+B

(10)~

Eo [In fl(x)] '
fo(x)

60 * c=21

§ 55 ~~~~
~ c=35
3: 50 c=40

;f c=50
c45

140
Q)

.535 '~.. ,.
~ ~/
~ 3Ot,Y

21('" *

E[T ] == E 1 [N] E[T ] == Eo[N]
D 1 - (3 , FA a·

Following Wald's identity [11]

EI[N] = A,8 + B(l - ,8) Eo[N] = A(l - a) + B,8
E 1 [ln j~~~j] Eo [In j~~~l] ,

where A ~ In I~Q and B ~ In 1:{3 are the two thresholds,
we obtain

where r == ~~~1. In Wald's identity, A is assumed to be
smaller than o. If A is equal to 0, we have that the R-SPRT
algorithm is equivalent to the CUSUM algorithm, and E[TD]
and E[TFA] of the R-SPRT when A == 0 satisfy

B E[TD] 1
E[TFA] > e and~ -t flex) as B -t 00.

E 1 [In fo(x)]

C. Comparison ofNP-CUSUM and R-SPRT

We now compare the trade-off between E[TFA] and E[TD]
for the two algorithms. In this section, we compare both
algorithms for detection of an 8-hop wormhole. The data are
generated from a network containing 50 nodes in a 1000 x 1000
square field using the ns-2 simulator. We vary all the available
parameters of the two algorithms in order to obtain a fair
comparison.

Figure 2 illustrates the performance of NP-CUSUM with
different c and h. Each curve corresponds to a specific value
of c and is obtained by changing h from 15 to 125. Under
these settings, we conclude that the best performance of NP­
CUSUM is obtained when c == 30. Therefore, this value of c
is adopted as an optimal threshold in further experiments.

A. Worst Case Adversary Model

201 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 In the worst case adversary model, we assume the attackers
Delay for Detection have some control of the distribution 11 and 11 is chosen to

Fig. 2: NP-CUSUM performance. h ranges from 15 to 125 maximize the performance of the adversary. Before deriving

Figure 3 represents the performance of R-SPRT with dif- the model, we describe the following theorem from [12].
ferent values of A and B. Each curve with a specific value Theorem I: Let A be a change detection algorithm de-
A is obtained by changing B from 1 to 25. It shows that the pending on a large parameter h, and Ph be a sequence of
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(Sn-l + AI Xn + A2 - 1)+,

{
I, if Sn 2: B,
0, ifSn<B,

min{n: d(n) == I},

T

T

S~

d(n)

d(n)

which can be rewritten in the following forms:

, A2 - 1 +
(Sn-1 + X n + -:x;-) ,

{

.' B1, ifSn2:~,

. ' B0, if Sn < ~,

min{n : d(n) == I}.

Comparing them to Equation (3), (4) and (5), we have that
the NP-CUSUM is equivalent to the R-SPRT with A == °if
C == -(A2 -l)/Al and h == BIAI in the worst case adversary
model.

Recall that in Figure 4, R-SPRT with A=O performs much
better than NP-CUSUM, but in the worst case adversary
model, it can only perform the same as NP-CUSUM. For
the NP-CUSUM algorithm, the performance metric E[TFA]
depends on fo, and E[TD] depends on E 1 [x], so its perfor­
mance will not change in the worst case adversary model.
This suggests that NP-CUSUM is more robust to the changes
of attack model.

(
fl(X))+

Sn = Sn-1 + In lo(x) ·

In the worst case adversary model, we have
In(fl (x) / fo (x)) == Alxn + A2 - 1, therefore the statistic,
decision rule and stopping time for R-SPRT with A ==0 can be
represented as

Proof· When the threshold A of R-SPRT is set to 0, the
statistic ofR-SPRT can be written as

v. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of the complete
three-step detection scheme using the receiver operating char­
acteristic (ROC) curve. ROC curve is represented by the true
positive rate (TPR) vs. the false positive rate (FPR). Recall that
we use the mean detection for delay E[TD] and the average
time between false alarms E[TFA] to measure the performance
of the change detection algorithms. The relation between the
TPR and FPR of our detection scheme and E [TD] and E [TFA]
of the change detection algorithms is shown as follows:

Proposition III: For a particular one-hop link, we assume
that there are n independent three-hop paths intersecting at it.
By independent three-hop paths, we mean the paths that have
disjoint end nodes. Suppose the change detection algorithm
used by each node to make decisions on individual paths has
performance E[TD] and E[TFA], then if this one-hop link is a
wormhole tunnel, the true positive rate ofour detection scheme
on detecting this link is

TPR == 1 - P~ - np~-I(l - Po)

where Po == 1 - 1IE[TD]. If this one-hop link is normal, the
false positive rate of our detection scheme on detecting this

274

iEO[x] . J10(x)eA1Xdx, (12)

J10(x)eA1Xdx. (13)

. J fl(X)
min fl(X) In~() dx.

fl(x)EA n JO x

Applying the Lagrange method, we derive fi that maximizes
the performance of the adversary:

f;(x) == fo(x)e)Q x eA
2-

1 ,

where K(fl' fo) is the Kullback information E 1 [ln j~i~lJ.

Given a detection algorithm, the limit of lInth I is deter­
mined. Therefore in order to maximize the detection delay, the
attackers need to minimize the following objective function:

min K(fl(X), fo(x)).
flex)

Assuming the actual length of the abnormal paths that go
through the wormhole tunnel is n hops, we have E 1 [x] ==

~Eo[x], as the abnormal path appears to be 3-hop. The choice
of n depends on the risk preference of the attackers. With
larger n, the attackers can attract more traffic and degrade
network performance more, but on the other side, they are
at higher risk of being detected. Therefore, for a given n,
fl must belong to the following class of feasible probability
density functions:

An = {g :Jg(x)dx = 1 andJxg(x)dx = iEo[x]}.

In summary, we have the following objective function for
the attackers,

where Al and A2 are the Lagrange multipliers satisfying the
following equations:

Jxlo(x)eA1Xdx

The following proposition establishes the connection be­
tween the NP-CUSUM algorithm and the R-SPRT algorithm
in the worst case adversary model.

Proposition II: In the worst case adversary model, NP­
CUSUM is equivalent to R-SPRT ifthe threshold A ofR-SPRT
is set to 0 and the parameters c and h for NP-CUSUM satisfy
the following conditions:

A2 -1 B
c == - -- and h == -

Al AI'

where Al and A2 are Lagrange multipliers satisfying Equation
(12) and (13).

978-1-4244-2734-5/09/$25.00 ©2009 IEEE

normalized detection delay defined by Ph == (7-;:)+, where
m is the change time and T is the stopping time. Define
f3h == sUPk Po (dk == 1), where Po (.) denotes the probability
corresponding to the observation sequence when there is no
change occurrence. IfPh converges as h ~ 00 for any m 2: 1
almost surely to a determined limit ~(A, fl' fo), we have

'Y(A, h, 10) :::: K(h, 10)-1 x lim IIn
h
,6hl , (11)

h-+oo

B. NP-CUSUM and R-SPRT in the Worst Case Adversary
Model
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VI. CONCLUSION
In this work, we performed both theoretical and experimen-

tal comparisons of two sequential change detection algorithms,
namely the NP-CUSUM and R-SPRT algorithms, on detection
of in-band wormhole attacks in a wireless ad hoc network.
We illustrate that the parametric method R-SPRT has better
performance than the non-parametric method at the cost of
higher complexity, and we also show that the non-parametric
method NP-CUSUM is more robust to attack strategy changes.

The higher complexity of R-SPRT comes from its paramet­
ric nature, which needs proper training to obtain the model for
the distributions fo and fl. When an exact model is not avail­
able, the performance of R-SPRT can be seriously degraded.
In contrast, NP-CUSUM is a non-parametric method, which
does not require exact models of the normal or adversary
distributions and is easier to apply.

In our current wormhole detection scheme where the leaf
nodes periodically send their decisions along with path infor­
mation to the cluster head, reducing communication overhead
is an issue to explore. It will be helpful to see how to combine
polling and sampling techniques into the detection scheme to
reduce data redundancy and communication overhead.
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Fig. 6: Performance of R-SPRT based Detector Using Im-
proper Training Data
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Fig. 5: R-SPRT based detector vs. NP-CUSUM based detector

It is worth mentioning that the selection of the training
set for the R-SPRT based detector is very important. If the
trained distributions do not match those of the testing data, the
performance of the detector can be seriously deteriorated. In
Figure 6, we trained the R-SPRT based detector on a network
containing an 8-hop wormhole and used it to detect a 4-hop
wormhole in the same network. The best TPR obtained by
adjusting the two thresholds is 0.23, which is much smaller
than the TPR values achieved in Fig. 5. Therefore when we
use the R-SPRT based detector, extra attention must be paid to
the choice of the training data. When a good training data set
does not exist, the NP-CUSUM based detector is a reasonable
alternative for the R-SPRT based detector.
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FPR == 1 - P~ - np~-l(l - PI)

where PI == l-l/E[TpA].
Proof· The change detection algorithm has performance

E[TD] and E[TpA], that is to say, the probability of not
raising a true alarm for an abnormal path is Po == (E[TD] ­
1)/E[TD], and the probability ofnot raising a false alarm for
a normal path is PI == (E[TpA] - 1)/E[TpA].

If the one-hop link is a wormhole tunnel, our detection
scheme will raise an alarm if and only if there are more
than one alarm raised by the change detection algorithms over
the n independent paths, which is an event with probability
1 - Po - np~-l(l - po). By a similar analysis we can obtain
the formula for FPR.

The performance of the NP-CUSUM based detector and the
R-SPRT based detector in detection of an 8-hop wormhole is
compared in Figure 5.

978-1-4244-2734-5/09/$25.00 ©2009 IEEE 275

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 5, 2009 at 14:13 from IEEE Xplore.  Restrictions apply. 


