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Abstract—Future communication scenarios for NASA space-
craft may involve multiple communication links and relay nodes,
so that there is essentially a network in which there may be
multiple paths from a sender to a destination. The availability
of individual links may be uncertain. In this paper, scenarios
are considered in which the goal is to maximize a payoff that
assigns weight based on the worth of data and the probability of
successful transmission. Ideally, the choice of what information
to send over the various links will provide protection of high
value data when many links are unavailable, yet result in
communication of significant additional data when most links
are available. Here the focus is on the simple network of
multiple parallel links, where the links have known capacities
and outage probabilities. Given a set of simple inter-link codes,
linear programming can be used to find the optimal timesharing
strategy among these codes. Some observations are made about
the problem of determining all potentially useful codes, and
techniques to assist in such determination are presented.

I. INTRODUCTION

When communicating through a noisy one-way commu-
nications link, it is well known that it is often practical
to achieve a high level of reliability by protecting the
communicated data with error-correcting codes, provided the
attempted data rate is not too high. However, suppose that
with some appreciable probability the communications link
may fail for the entire duration of the communication attempt.
Clearly, error-correcting codes are of no use in protecting
against this type of link failure. But suppose there are more
than one of these unreliable links. Then the communicated
data can be protected somewhat with error-correcting codes
applied between the multiple links. A trivial example of what
we mean by this is if there are three links and identical data
is sent on all links, thus protecting against failure of any two
links (but not all three links).

More generally, we may want to send multiple messages
with different worths (or priorities) from one point to another
in a general network that contains unreliable links. Ideally,
we would want to achieve the maximum available throughput
at all times, in a way that: (1) protects higher value data,
and (2) does not require prior knowledge of the network
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state. Usually this ideal goal will not be achievable, but we
can consider tradeoffs. Roughly speaking, we would like to
provide protection of higher value data when a large fraction
of the links in a network are unavailable, and to achieve
transmission of significant additional data when most links
are working properly.

In this paper we restrict our attention to one simple type
of network: a single source node and the single destination
node connected by parallel unreliable links. We postulate
that it is reasonable to model (or at least approximate) some
communications scenarios as communications through this
type of network. We develop and analyze a model whose
main feature is communication through parallel unreliable
links that do not change state (between working and non-
working) for the duration of the communication attempt.
Some additional key features of our model are:

« a given link fails with some known probability, other-
wise the link provides reliable communications with a
known capacity;

o link failures are independent;

« the sender does not know the status of the links;

« there are some number of messages to be sent, and the
messages have known worths (i.e., priorities or values)
and sizes;

« the worth of a partial message is proportional to its size
(i.e., partial credit is given for partial messages); and

« the payoff of a given link usage strategy is the expected
total value of the messages successfully decoded.

The following (not entirely realistic) example scenario falls
under our model (see Fig. 1). Consider a rover on Mars that,
in a given period of time, can communicate to Earth in three
ways: a direct-to-Earth link and two different relays through
spacecraft orbiting Mars. It is assumed that these links have
independent and non-negligible outage probabilities. It is also
assumed that the resources (e.g., time and power) needed
to utilize these links are small, so that the rover should
always attempt to send information through all three routes.
Then, given a list of messages and the values of their being
received during this time period, we would like to find the
best combinations of messages to send on each of the three
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links. Note that the separate links do not have to be used
simultaneously to fit our model. In fact, it is possible to
use our model to represent a single link used at different
times, provided the outage probabilities can still be modeled
as being independent.

We will present the model as though a given link capacity
indicates the maximum amount of data that can be transmit-
ted through the link (if it is up) during the communication
attempt, and message sizes are also amounts of data on the
same scale. Thus in a sense the communication attempt is an
one-shot action. However, it would be equally valid to regard
both capacities and message sizes as representing data rates
in bits per unit time. From this viewpoint the model would
pertain to communication for an indefinite period of time,
during which it is not possible to inform the sender which
links are working.

Communication strategies for our model involve time-
sharing among relatively simple inter-link codes. Given a
collection of candidate inter-link codes, the optimal timeshar-
ing proportions among them can be determined using linear
programming. However, it appears to be difficult to determine
the set of all “useful” inter-link codes for a given number of
messages and links. We discuss this problem and describe an
algorithm that can assist in determining all potentially useful
inter-link codes that use a subset of the links and use these
links equally, for a given number of messages and links.

In most communications scenarios previously studied, one
is either interested in achieving arbitrarily small loss or error
rates (in theoretical studies), or merely very small loss or
error rates (in practical systems). The communication model
described here is conceptually different in that it need not
deal with small loss rates. Under our model we must accept
that losses will occur and we measure performance in terms
of the messages successfully communicated. This model
may be appropriate for, say, a spacecraft that is capable
of gathering much more information than it can transmit to

Possible application: a rover on Mars attempts to communicate to Earth by three independent paths.

Earth.

When generalized to general networks, our model can be
thought of as a network coding problem. Most previously
considered network coding problems fall into one of two cat-
egories: either they seek to maximize (a constant) throughput
in a fixed network, or they seek robust communication at a
constant rate in an unreliable network. Our model differs
from both of these in that the throughput will depend on the
network state even though a fixed coding scheme is used.

Indeed, even though we only need codes for correct-
ing erasures and are primarily concerned with short block
lengths, our particular model appears to make investigation
of useful codes challenging. Not only are we interested in
recovery of partial information when the whole codeword
cannot be recovered, but the different codeword positions
correspond to different links, and thus can have different
erasure probabilities.

A. Related Work

One somewhat related investigation of note is the Priority
Encoding Transmission (PET) scheme of Albanese et al. [1].
Also of note is the extension of Silva and Kschischang [2]
which shows how PET can be used in a network coding
system. Like our model, the PET model includes a number
of messages to be transmitted, and each message has an
associated priority. Transmitted packets may be lost, but a
given message can be recovered if a sufficient fraction of
packets arrive successfully, where the fraction depends on
the message’s priority. One key difference between our model
and the PET model is that under the PET model, there can be
a large number of packets that may be received or lost inde-
pendently, while under our model all packets sent on a given
link are either lost or successfully received together, and there
are a small number of different links. Our model includes
outage probabilities, while under PET the only concern is
the fraction of packets successfully received. Under PET



all information is protected with (possibly trivial) maximum
distance separable (MDS) codes. Under our model MDS
codes may be used, but the natural way to use them would be
to put different symbols on different links. When used this
way the blocks lengths would never need to be larger than the
number of links. Furthermore, we are concerned with partial
decoding of codes, and this turns out to imply that non-MDS
codes can be useful.

If the link capacities are all equal, then under our model
one could regard the union of the parallel links as a single
channel with an unknown state. One symbol for this channel
would be a vector consisting of one symbol for each link.
(This idea could also be extended to accommodate differing
link capacities.) This channel now fits the assumptions of a
compound channel [3], but since all links might be down, the
usual compound channel capacity (the maximum guaranteed
throughput) would be zero. Aside from that, the compound
channel model does not consider probabilities for the channel
states or differing data worths.

Again regarding our model as a single channel with an
unknown state, we observe that it is related to the broadcast
channel model [4], where each channel state corresponds to
a separate “receiver”. The broadcast channel problem is to
find the jointly achievable rate region. The broadcast channel
model is closely related to the unequal error protection model
(see, e.g., [5]), which includes the concept of differing data
worths. As a broadcast channel, with N parallel links our
model would have 2V — 1 receivers (disregarding the state
where all links are down). Thus even for small NV it appears
to be unwieldy to apply general broadcast channel results to
our model.

B. Preliminaries

Let N be the number of parallel links. For i € {1,..., N},
link 4 has capacity ¢; and outage probability p; (equivalently,
success probability p; = 1 — p;). Let M be the number of
messages. For j € {1,..., M}, message j has size s; and
worth per unit size 7;. The units of the link capacities and
message sizes are arbitrary (but are the same for all links and
messages).

Informally, for each link i, the sender sends a stream of
data that is a function of the M messages and that is not
longer than the link capacity ¢;. The function can depend on
all of the model parameters above. The receiver successfully
receives the data on some subset of the links (and this subset
is known to the receiver). The receiver then reconstructs
the original messages to the extent possible from the data
received. Let R; be a random variable indicating how many
size units of message j are recovered. The payoff from a com-
munication attempt is the sum E;‘il R;m;. The payoff from
a communication strategy is the expected value of this quan-
tity.

It is implicit in this model that the message sizes are
large and thus the messages can be split into pieces closely
approximating any given fraction. It is possible to more
formally describe the space of communication strategies

using codes on discrete alphabets and allowing limiting cases
as the size unit becomes large; however, here we stick with
our informal description.

C. Structure of the Paper

In Section II, we propose a linear programming formu-
lation to maximize the payoff when we are given a set
of candidate codes to timeshare among. In Section III, we
consider the problem of finding a good candidate code set;
specifically we present a search method for candidate codes
with unit size messages and unit capacity links. Finally,
Section IV concludes the paper.

II. OPTIMIZATION WITH LINEAR PROGRAMMING

The assumptions of our model allow us to partition the
messages into pieces and combine the pieces with inter-
link codes. Essentially this amounts to timesharing among
different codes. Given a list of candidate codes, we can
determine how to optimally timeshare among them using
linear programming.

Thus “simple” candidate codes form the building blocks
of a communications strategy. For convenience in presenting
examples, we introduce an informal concise notation for
describing candidate codes. We describe this notation with
examples. Consider the case of three links and two messages
(N =3 and M = 2). We label the messages A and B. One
possible code consists of sending a portion of message A on
all three links; we represent this code by (4, A, A). Similarly,
a code could consist of sending a portion of message B
on links 1 and 3; we represent this code by (B,—,B).
Another possible code consists of sending the same portion
of message A on link 1, an equal-sized portion of message B
on link 2, and the bitwise exclusive-or of these same portions
on link 3; we represent this code by (A, B, A+ B), where the
notation A + B symbolizes addition in a finite field. A code
can also use two different portions of the same message, as
in (A1, Az, A1 + A). Codes such as (A, A, B) that can be
obtained by timesharing simpler codes (here by equal parts
of (A,A,-) and (—,—, B)) do not need to be considered
as candidate codes. Although this code notation is useful for
some of our purposes, we remark that in general it is not
adequate to describe all possible codes.

We assume that the message sizes and message worths
are all given. We also assume that the link capacities and
outage probabilities are given. Suppose our list of codes
contains n. codes. Our objective is to find a column vector
z = [21,...,2,,.]7 that describes how much we use each
code.

The codes are described with an N x n. matrix K
that tells how much the codes use the links, an M X n.
matrix L that tells the message content of the codes, and
an n. element column vector v that gives the expected
payoffs from the codes.

More specifically, in K = [k; x| the entry x; , is the usage
of link ¢ by one unit of code k. In L = [¢; ;] the entry £;
is the amount of message j sent with one unit of code k.



And in v = [vy,...,v,.]7 the entry vy is the payoff (in
expected received value) from one unit of code k; note that
vk is a function of the message worths and the link outage
probabilities as well as of the properties of code k.

Observe that each code is described by an entry in v and
a column in each of K and L. As an example, consider
the codes (A4,B,A + B) and (A;, A2, A1 + A3) for the
case of two messages and three links. We can describe
(A, B, A+ B) by the columns (1,1,1) and (1,1) in K and
L respectively. Note that the unit size is arbitrary here; we
still describe the same code if we scale both columns by
an arbitrary factor (and the entry in v would need to be
scaled by the same factor). The code (A;, Az, A; + As)
can be described by (1,1,1) and (2,0).

With link capacity list ¢ = (ci,...,cn)T and message

size list s = (sy, ..., sn)T, the optimal code usage vector z
can be determined via the following linear program:
find z to maximize v’z
subject to Kz <c 0
Lz <s
z > 0.

As a concrete example, consider the case of 2 messages
and 3 parallel links, with the following list of 17 codes:

{(A’_v_)v (_’A’_)v (_»_’A)’ (AvA’ _)’ (A»_»A)’
(A7 Av_)v (A7 AvA)v (A17A27 A +A2)7 (B7_7_)7
(_7B7 _)7 (_7_7B)7 (B7B7 _)7 (B7_7B)7 (B’B7 _)7
(B,B,B), (B1,B2,B1 + B2), (A,B,A+ B)}

Note that we have assumed the links are indexed so that
p1 < --- < pn (decreasing reliability) and that the messages
are indexed in order of decreasing value (per unit size),
m > --- > wp. With these assumptions it is easily verified
that we do not need to consider any other permutations of
symbols in the codes (A;, A2, A1 + A2), (B, B, B1 + Bs),
and (A, B, A + B); for example the code (A,B,A + B) is
always at least as good as (B, A+ B, A).

For this list of codes we have the following constants K,
L, and v:

1001101%1001101%1
K= 0101011?0101011?1
00101113001011131
L_(11111111000000001)
=\L00000000111111111
( [vi,v9] = [7a,7B] D1
[v2,v10] = [7a,7B| P2
[vz,v1i1] = [7a,7B| B3
[va,v12] = [ma,7B] (1 + P2 — P152)
[vs,v13] = [wa,7B|(P1 + P3 — P1D3)
[ve,v1a] = [ma,7B] (P2 + D3 — P2p3)
v:< [vr,m15] = [ma,7B](P1 + P2+ D3 — P1D2 — P13 — P2p3
+P1P2D3)
[vs,vie] = [ma,7B](0.5p1(1 — 52)(1 — P3)
+0.5p2(1 — p1)(1 — p3)
+P1D2 + P1P3 + DP2P3 — 2P1D2P3)
viz = wap1(l—p2)(1 —ps) + mpp2(1 — p1)(1 — Ps3)

For example, v4 = mwa(p1 + P2 — P1P2) because when
one unit of the fourth code is used, one unit of message A
can be decoded (with worth m4) whenever at least one of
the first two links are up (which happens with probability
P1 + P2 — P1P2)-

We solved the linear programming problem for a number
of randomly generated scenarios (random message sizes and
worths, and random link capacities and probabilities). We
found that for each of the 17 codes, there were scenarios in
which the code was needed in the optimal solution. The list
of 17 codes can be verified to include all needed codes that
use a subset of the links equally. For this relatively simple
case, we think it is likely that no codes that use links non-
uniformly are needed, i.e., we think the solutions obtained
with these 17 codes would still be optimal if the candidate
code list could be enlarged to include all possible codes.

The linear programming method clearly has limitations for
our problem. For one thing, making the list of candidate
codes looks to be a very complicated problem in general.
In addition, the number of candidate codes grows at least
exponentially with the number of links, since there are
already 2V — 1 possibilities just for repetition codes for
the first message. However, the linear programming method
appears to be viable for small numbers of links, which is a
case that may be of interest for some applications.

III. UNIT S1ZE AND UNIT CAPACITY PROBLEM

In this section, we consider a special case of the problem
with unit message sizes and unit link capacities. The moti-
vation for this is try to characterize, or at least be able to
generate, complete sets of candidate codes for the general
case. Here we consider only codes that use all links equally
(not just a subset). We include codes that are formed by
timesharing codes that use disjoint sets of links. We continue
to allow arbitrary link outage probabilities and message
worths.

Given a list of codes, we can generate a number of random
outage probabilities and message worths, and in each case
check which code in the list is best. In this way we can
accumulate a smaller list of codes that can be best in some
scenario, and we can attempt to characterize the properties
of these codes. Generating the original list of codes is
formidable challenge, since even for small number of links
there are an enormous number of possible codes. We could
restrict our attention to linear codes, but the number of such
codes is still huge. To make the problem somewhat tractable,
we can instead consider possible code properties instead of
explicit codes. By code properties we mean a description
of which messages can be decoded when any given erasure
pattern occurs. To do this, we take advantage of a connection
between entropy and matroids.

For our purposes, we need only the following characteri-
zation of matroids, which is Corollary 1.3.4 in [6]:

Corollary 1: Let E be a set. A function r : 2F — Z+u{0}
is the rank function of a matroid on E if and only if r satisfies

{ + (74 +7B) (P1P2 + P1P3 + P2p3 — 2p1p2p3) the following conditions:



(R If X C E, then 0 < r(X) < |X].
RYIFX CY CE, then r(X) <r(Y).
(R3) If X and Y are subsets of F, then r(X UY) +
r(XNnY) <r(X)+rY).
Now, we consider the connection between matroids and
codes in the following subsection.

A. Codes and Matroids

Suppose we have a code C' for M messages and N links,
say C = (X1,...,Xn) where each X; is a function of W =
(Wh,...,Wy) and the W;’s are messages of equal size. We
assume sizes are normalized so that the message sizes are all
1.

Suppose now that the messages, Wi,..., W), are each
random variables, independent and uniformly distributed
on their possible values. Then X;,..., Xy are also ran-
dom variables since they are functions of W. Let U; =
{Wl, e ,WM}, Us = {Xl, ces ,XN}, and U = U;UU,. We
consider the joint entropies of subsets of U. For convenience,
we normalize the entropies so that any message W; has unit
entropy, i.e., HW;) = 1.

Now define f : 2V — [0,00) by f(S) = H(S), where
2V is the power set of U and H(S) is the joint entropy of
the members of S (with H(@) = 0). As is well known, the
nonnegativity of conditional mutual information implies that
this function is submodular, meaning f(S; U S2) + f(S1 N
S3) < f(S1) + f(S2). Clearly f is also monotone, meaning
f(S1) < f(S2) whenever S; C S,. These properties, along
with f(@) = 0, mean f is by definition a polymatroid
Sunction [71-{9]. The fact that entropy is a polymatroid
function is well known; see e.g., [8], [9].

For simplicity, it seems reasonable to consider only codes
for which f defined in this way is integer-valued. In any
case, if a code produces an f that takes on noninteger but
rational values, we can choose a new normalization of the
message entropies to make the corresponding f take on only
integer values, then the messages can be subdivided so that
they have unit entropy again. The resulting code would be a
code on a larger number of messages but would be essentially
equivalent to the original code.

To further simplify, we will restrict ourselves to codes
for which all X; also have unit entropy (implying that the
encoded symbols are “messages” of unit length). However,
we think it is likely that there are codes that are “useful” and
do not satisfy this condition.

With this further simplification the function f must be the
rank function of a matroid (see [6], [8]), as it is integer-valued
and satisfies f(.5) < |S|.

Thus any code that satisfies our conditions has a cor-
responding matroid. However, the converse probably does
not hold: it is likely that there are matroids that cannot
be produced from a code as above. This is because it is
known that there are matroids that are non-entropic, meaning
there does not exist an ensemble of random variables with
joint entropies corresponding to the matroids’s rank function.
In fact it is known that there are matroids that are not

asymptotically entropic, which, loosely speaking, means they
cannot be approximated closely by entropic polymatroids.
See [8] for a more precise definition of asymptotically
entropic matroids and an example of a matroid that is not
asymptotically entropic (the Vamos matroid).

Our interest in matroid rank functions for codes stems
from two observations. First, the matroid rank function
contains complete information about the performance of the
code. Second, it appears to be much easier to systematically
generate all matroid rank functions for a given number of
messages and links than it is to generate all codes (or code
properties).

We consider obtaining information about the performance
of the code from the matroid rank function. First note that
we require f(.S) = |S| when S C Uj, since the messages are
independent. We also require f({X;}) = 1. The properties of
matroid rank functions imply that if S C U and W; € Uy,
then either f(SU{W,}) = f(S) or f(SU{W;}) = f(S)+1.
The latter implies W; is independent of S, and so cannot be
determined from S. The former implies W; is completely
determined from S and so W; can be recovered when the
links corresponding to .S are up.

We remark that our hypothesis that the messages are
random and independent is only a tool for analysis; we
do not require the messages to be random in an actual
communications system. Clearly, if we want to be able to
decode some W; from a subset S of the code symbols, it
must be necessary for this to be possible when the messages
are random and independent. And if it is possible in that case,
then clearly W; must be deterministically obtainable from S
no matter what the messages are.

As we mentioned earlier, some matroid rank functions may
not correspond to any realizable code. However, if a code
produces performance better or equal to that corresponding
to any matroid rank function, we can still conclude the code
must be optimal.

B. Automated Process: Generating Matroids and Calculating
Performance Metrics

When we have M messages and N links, we consider a
matroid with (M + N) elements. By enumerating candidates
for rank functions, we can count all possible matroids. Recall
that the maximum rank is M and any singleton element has
rank 1.

To efficiently generate all rank functions with given pa-
rameters, we use a backtracking algorithm [10]. Whenever
we assign a possible value (1,2,..., M) to an unassigned
variable (rank function), we check the validity of that as-
signment by checking the conditions in Corollary 1.

Once we have a full list of all possible matroids, we can
calculate the payoff for each matroid (each case) with an
automated process. Recall that if f(S) = f(S U {W;}),
then W; is decodable from the set of code positions (or
links) corresponding to S C U,. When we have N links, we
need to check 2V — 1 combinations of links (excluding the
empty set). For each combination, we check if the message



W; is decodable with that combination or not. For each
combination, we have a corresponding probability that is
weighted by the worth of the message and then added to
the payoff.

C. Systematic Codes

If the performance of a given code is never better than
the performance of another code, then the former code can
be eliminated from consideration. As an example, consider
the codes (A,B,A + B,A+ C) and (4,B,A + B,C).
In (A,B,A + B,A + C), message C appears only once
(link 4), and that is in combination with message A. Thus it
is necessary but not sufficient for link 4 to be up to recover
message C, and it can be verified that A + C' is never useful
for recovering any other message. Therefore we cannot do
any worse by replacing A+C with C. More generally, by this
reasoning we can eliminate from consideration any code for
which a message is only involved in one code position, and
the message is combined with one or more other messages
there.

One might conjecture that this idea could be generalized
further and we need only consider systematic codes, which
for our purposes are codes in which any message involved in
the code is sent directly (not combined with other messages)
on some link. (For example, (A, A, A) and (A, B, A + B)
are systematic codes under this definition.) However, perhaps
surprisingly, this conjecture appears to be false: for 5 links
and 3 messages, our preliminary results indicate that there
are combinations of outage probabilities and link failure
probabilities for which some permutations of the codes
(A,B,A+B, A+C,B+aC)or (A,C, A+B, A+C, B+aC)
produce a higher payoff than any other code that does not
divide up messages. (Here the codes are in a non-binary
field and « is not 1. The two codes are different because
we are assuming the worths are in decreasing order start-
ing from A.) These potential counterexamples were arrived
at by enumerating what we think is all codes that could
conceivably be optimal, then generating random scenarios
(worths and outage probabilities) and checking which code
gives the best payoff. This will be considered in more depth
in Section III-D.

When generating codes (or, more accurately, matroids
representing codes) using the automated process described
in Section III-B, we can automatically determine if a given
code is systematic with the following criterion:

(C1) For all message indices j such that f(Us) = f(Us U
{W;}) (meaning that the message W; is included in
the code), there exists at least one link 7 such that
FUXL W) =1.

Note that this condition presumes that we have already

required that f({X;}) = 1. If a code satisfies condition (C1),

then the code is systematic.

D. Random Trial Results

We have run the described matroid search for 3 messages
with 4 and 5 links. For the 4 links case, the search was

completed. For this case we then randomly generated link
outage probabilities and message worths, and in each case
we determined which matroid achieved the best payoff. In a
large number of trials, we did not encounter any case where
the best matroid did not correspond to a non-systematic code.
Furthermore, for every matroid that produced a maximum
payoff, we could identify a corresponding code in a prior list
of codes that we had suspected contained all codes that could
be best.

For the 5 links case, we do not have a full list of matroids
yet. However we performed the same random trial search
with a manually constructed list of codes in which we
attempted to include every code that seemed like it had a
chance of being best in some case. It was in these trials that
we found that the previously mentioned non-systematic codes
could give the best payoff.

IV. CONCLUSIONS

We have presented a model for a communication sce-
nario involving transmitting messages with different worths
through an unreliable network. Our results concern a simple
network that allows unicast communication over multiple
parallel links.

We suggested a linear programming formulation that al-
lows us to determine what combinations of messages to use
across the multiple channels among a precomputed library
of simple combinations of messages. We also described an
algorithm for assisting in finding viable combinations of
messages to populate this precomputed library.

To the best of our knowledge, the problem formulation we
opened up in this paper is new. Even for the simple network
considered, further development of our approach to the prob-
lem could be productive. Future research could also consider
more complicated networks such as multicast networks, for
which one could take advantage of network coding.
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