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Abstract—This paper considers minimum sum mean-squared
error (sum-MSE) linear transceiver designs in multiuser down-
link systems with imperfect channel state information. Specifi-
cally, we derive the optimal energy allocations for training and
data phases for such a system. Under MMSE estimation of
uncorrelated Rayleigh block fading channels with equal average
powers, we prove the separability of the energy allocation
and transceiver design optimization problems. A closed-form
optimum energy allocation is derived and applied to existing
transceiver designs. Analysis and simulation results demonstrate
the improvements that can be realized with the proposed design.

I. I NTRODUCTION

Transceiver designs that minimize the sum of mean squared
errors (sum-MSE) under a sum power constraint in the mul-
tiuser downlink with full channel state information (CSI) at
the base station are well researched [?], [?], [?], [?]. In these
papers, an uplink-downlink duality is used to transform a non-
convex downlink problem into an equivalent convex virtual
uplink problem. Recent studies [?], [?], [?] have extended
these original papers to the case of imperfect CSI, deriving
an MSE duality in the presence of channel estimation errors
and providing robust transceiver designs.

In order to design precoders, the base station must obtain
estimates of the channel coefficients. If channel reciprocity
holds (i.e. the uplink and downlink channels are statistically
identical), these estimates can be provided by training in the
uplink (e.g., using uplink sounding, as in the WiMAX stan-
dard [?]). However, in frequency division duplex systems (and
in some broadband time division duplex systems [?]), channel
reciprocity does not apply. In this case, channel estimation
must be performed in the downlink and communicated back to
the base station using an uplink feedback mechanism. In this
paper, we consider imperfect CSI estimation at the mobile
receivers, but assume that the imperfect estimates are also
available at the base station (via an error-free and delay-free
feedback mechanism)1.

The algorithms designed in [?], [?], [?] for minimization
of the sum-MSE under a sum-power constraint presume that

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

1In this regard, this work complements [?], where we consider perfect
receiver CSI estimates and a feedback mechanism incorporating prediction,
error, and delay.

fixed channel estimation error variancesσ2
k are provided by

a predetermined estimation mechanism. In this paper, we
address the problem of jointly designing a training sequence
for MMSE CSI estimation and designing linear transceivers
for minimum sum-MSE communication. We consider the
optimum allocation of limited available energy between the
training and data communication phases for each quasi-static
communication block.

In Section II, we describe the channel model under consid-
eration and review the design of training sequences for MMSE
channel estimation. We then present the linear precoding
system model and provide an overview of the design of
minimum sum-MSE linear precoders with imperfect CSI and
fixed transmit power. In Section III, we formulate the joint
design problem for energy allocation and precoder design.
We present a closed-form solution for the optimum training
energy, and apply the result to existing precoder design tech-
niques. Performance and behaviour of the proposed approach
are illustrated in Section IV, and we draw conclusions in
Section V. Appendix A derives the MMSE channel estimation
error variance and the calculations of our main proof are
presented in Appendix B.

Notation: We use the following conventions: italics rep-
resent scalars, lower case boldface type is used for vectors,
and upper case boldface represents matrices, (e.g.,x,x,X,
respectively). Entries in vectors and matrices are denotedas
[x]i and[X]i,j . The superscriptsT andH denote the transpose
and Hermitian operators.E[·] represents the statistical expec-
tation operator whileIN is theN ×N identity matrix.‖x‖1
and ‖x‖2 denote the 1-norm (sum of entries) and Euclidean
norm. diag(x) represents the diagonal matrix formed using
the entries in vectorx, and diag [X1, . . . ,Xk] is the block
diagonal concatenation of matricesX1, . . . ,Xk. The vec(X)
operator stacks the columns of the matrixX in a single
vector.CN (m,R) denotes the complex multivariate Gaussian
probability distribution with meanm and covariance matrix
R.

II. SYSTEM MODEL AND BACKGROUND

A. Channel Model

In the linear precoding system illustrated in Fig. 1, a base
station withM antennas transmits toK decentralized mobile
users withNk antennas each over flat wireless channels. The
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Fig. 1. Data processing for userk in downlink and virtual uplink.

channel between the transmitter and userk is represented by
theNk×M matrixHH

k , and the overallN×M channel matrix
is HH , with H = [H1, . . . ,HK ], and whereN =

∑

k Nk is
the total number of receive antennas in the system. We assume
that all channel coefficients are i.i.d. and drawn from a zero-
mean complex Gaussian distribution with varianceσ2

H ; that is,
vec(H) ∼ CN (0, σ2

HIMN ). We consider a quasi-static (block
fading) channel model, where the channel coefficients are
assumed to be fixed for a coherence interval ofn consecutive
symbol periods. The firstnT transmissions in each block are
training symbols which the mobile receivers use to estimate
the downlink channel,ĤH

k ; these imperfect CSI estimates
are assumed to be available at the base station via an error-
free and delay-free feedback mechanism. We consider the
stochastic error model (as used in [?], [?], [?]) where the
true channel is modelled as a sum of the estimated channel
and an independent additive error term,Hk = Ĥk +Ek with
vec(Ek) ∼ CN (0, σ2

kIMNk
), andE = [E1, . . . ,EK ].

B. MMSE Channel Estimation and Training

Training sequence and estimator design can be simplified
under the assumption of uncorrelated channel coefficients by
considering training for vector channels from theM transmit
antennas to each individual receive antenna. To simplify no-
tation in this section, we consider training for a single vector
channelhH . Channel estimation is performed by transmitting
a set ofnT training signal vectors,XT = [xT,1, . . . ,xT,nT

],
from the M transmit antennas without precoding.nT ≥ M
training symbol vectors must be sent to guarantee resolvability
of the individual channel coefficients. The received signal
vector isyT = hHXT +z, wherez ∼ CN (0, σ2

nInT
), and the

MMSE channel estimatêhH
MMSE = yTA0 is found using the

linear MMSE estimatorA0 =
(

XH
T XT +

σ2

n

σ2

H

InT

)−1

XH
T .

Under the sum energy constraint,tr
[

XH
T XT

]

≤ ET , where
ET is the energy allocated to training, and the assumption
of independent channel coefficients, a sufficient conditionfor
optimality of the training matrix isXTX

H
T = ET

M IM [?];

that is, we are free to select any training matrix with or-
thogonal rows. When using the MMSE estimator, there is no
benefit using any more thannT = M training symbols. For
algorithmic simplicity, we choose the set of training vectors

XT =
√

ET

M IM . One may also chooseXT as the scaled size-

M DFT matrix, [XT ]m,n =
√
ET

M e−j2πmn/M , which has the
additional benefit of balancing training power equally over
each transmit antenna in each training symbol.

In Appendix A, we show that the estimation errors of each
channel coefficient are equal under the assumption of i.i.d.
channels with varianceσ2

H , taking the value

σ2
e =

(

σ−2
H +

1

σ2
n

ET

M

)−1

. (1)

As we illustrate in Section II-D, the assumption of equal
estimation error variance is critical in maintaining convexity
of the virtual uplink sum-MSE minimization problem.

C. Linearly Precoded Data Communication Model

Following training, we assume that all of the remaining
nD = n − M symbol periods in each block will be used
to broadcast data symbols. Under the block fading assump-
tion, the channelH does not change during thesenD data
transmissions; thus, we can design a single precoder/decoder
pair to be used for all transmissions in the block. It follows
that the remaining available energy to be used for data
(ED = Emax − ET ) should be divided equally over the
nD data transmissions, resulting in a maximum per-symbol
transmit powerPD = (Emax − ET )/nD.

During each data transmission, userk receivesLk data sym-
bolsxk = [xk1, . . . , xkLk

]T from the base station, and the vec-
tor x =

[

xT
1 , . . . ,x

T
K

]T
comprises independent symbols with

unit average energy (E
[

xxH
]

= IL, whereL =
∑K

k=1 Lk).
Userk’s data streams are precoded by theM × Lk transmit
filter Uk = [uk1, . . . ,ukLk

], where ukj is the precoding
beamformer for streamj of user k with ‖ukj‖2 = 1, and
the precoders are combined in theM × L global transmitter
precoder matrixU = [U1, . . . ,UK ]. Power is allocated to
user k’s data streams in the vectorpk = [pk1, . . . , pkLk

]
T

andPk = diag [pk]; we define the downlink power allocation
matrix asP = diag

[

pT
1 , . . . ,p

T
K

]

with tr [P] ≤ PD. Based
on this model, userk receives a length-Nk vector yDL

k =
HH

k U
√
Px+nk, where the superscriptDL indicates the down-

link, and nk ∼ CN (0, σ2
nINk

). To estimate itsLk symbols
xk, userk applies theLk×Nk receive filterVH

k , yielding the
estimated symbolŝxDL

k = VH
k HH

k U
√
Px+VH

k nk.
In order to design the sum-MSE minimizing precoder for the

downlink, we use the virtual uplink, also illustrated in Fig. 1,
where each matrix is replaced by its conjugate transpose.
We emphasize that the virtual uplink is only a mathematical
construct to be used for precoder design, and that its use
does not require reciprocity of the true uplink and downlink
channels. We imagine that transmissions from mobile user
k in the virtual uplink propagate via theflipped channel
Hk to the base station. The transmit and receive filters for



user k becomeVk and UH
k respectively, with normalized

precoding beamformers; i.e.,‖vkj‖2 = 1, and the uplink
precoder matrices are gathered as a block diagonal matrix
V = diag [V1, . . . ,VK ]. Power is allocated to userk’s data
streams asqk = [qk1, . . . , qkLk

]
T , with Qk = diag [qk],

Q = diag
[

qT
1 , . . . ,q

T
K

]

, andtr [Q] ≤ PD. The received sym-
bol vector at the base station and the estimated symbol vector
for userk areyUL = HV

√
Qx+n =

∑K
i=1 HiVi

√
Qixi+n

and x̂UL
k = UH

k yUL, respectively, withn ∼ CN (0, σ2
nIM ).

D. Robust Convex Minimum Sum-MSE Precoder Design

The MSE matrix for userk in the virtual uplink can be
written as

εUL
k = EE,x,n

[

(

x̂UL
k − xk

) (

x̂UL
k − xk

)H
]

= EE

[

UH
k

(

HVQVHHH + σ2
nI
)

Uk

−UH
k HkVk

√

Qk −
√

QkV
H
k HH

k Uk + ILk

]

= UH
k R̃Uk −UH

k ĤkV̄k − V̄H
k ĤH

k Uk + ILk
,

(2)

where V̄k = Vk

√
Qk, R̃ = ĤVQVHĤH + σ2

effIM .
Here, we have defined the effective noise powerσ2

eff =

σ2
n +

∑K
k=1 σ

2
ktr
[

VkQkV
H
k

]

, under the general model with
different estimation error variancesσ2

k for each userk. We
have also assumed the independence of data symbols, noise,
and estimation errors. The optimum robust virtual uplink
receiver for userk is found using the MMSE (Wiener) filter
ŨH

k = V̄H
k ĤH

k R̃−1. The resulting (minimum) sum-MSE is

SMSEUL =

K
∑

k=1

Lk − tr

[

R̃−1

K
∑

k=1

ĤkV̄kV̄
H
k ĤH

k

]

= L−M + σ2
efftr

[

R̃−1
]

(3)

which follows from tr [AB] = tr [BA], linearity of the trace
operator, and the definition of̃R. Since the beamforming
vectorsvkj have unit norm, it follows thattr

[

VjQjV
H
j

]

=
∑Lj

l=1 qjl = ‖qj‖1 is the sum of powers allocated to userj’s
data streams. Under a sum-power constraint with a maximum
transmit power ofPD, the non-convex virtual uplink sum-MSE
minimization problem can be formally defined as

(V∗,Q∗) = argmin
V,Q

(

σ2
n +

K
∑

k=1

σ2
k‖qk‖1

)

tr
[

R̃−1
]

s.t. qkl ≥ 0 k = 1, . . . ,K; l = 1, . . . , Lk,

tr [Q] ≤ PD.

(4)

When the channel estimation error variances are equal (σ2
k =

σ2
e ), the effective noise becomesσ2

eff = σ2
n + σ2

e

∑

k ‖qk‖1.
Since the minimum sum-MSE is a non-increasing function of
∑

k ‖qk‖1, we can assume that all available power allocated
to data transmission will be used [?]. Thus, the effective
noise can be further simplified asσ2

eff = σ2
n + σ2

ePD for
the optimum precoder, which is no longer a function of the
uplink power allocationsqkl. The optimization problem (4)
thus becomes convex (the minimization oftr

[

R̃−1
]

under

a sum power constraint), and can thus be solved using the
algorithm from [?] designed for the perfect CSI case by
substituting the effective noiseσ2

eff for the noise termσ2
n in

the original design.

III. JOINT OPTIMIZATION OF ENERGY AND PRECODER

DESIGN

The previous section describes the design of a robust min-
imum sum-MSE precoder for a fixed data power allocation,
PD. In this section, we extend this result by jointly optimizing
the available training and data energy with the precoder design.
As explained in Section II-C, the optimum strategy for sharing
the available data energyED overnD transmitted symbols is
with equal energy in each transmission. Using this strategy,
and substituting the estimation error variance from (1) into
the effective noise variance, we define the joint optimization
problem

(V∗,Q∗, E∗
T ) = argmin

V,Q,ET

σ2
efftr

[

R̃−1
]

s.t. qkl ≥ 0 k = 1, . . . ,K; l = 1, . . . , Lk,

tr [Q] = PD, PD =
Emax − ET

nD
,

σ2
eff = σ2

n +
PD

(

σ−2
H + 1

σ2
n

ET

M

) .

(5)

Theorem 1:The optimum training energyE∗
T is

E∗
T =















Emax

√
M−

σ2
n

σ2

H

M
√
nD

√
nD+

√
M

Emax >
σ2

n

σ2

H

√
MnD

0 otherwise.

(6)

Proof: See Appendix B.
Corollary 1: The optimization of training/data energy allo-

cation and the optimum precoder design in problem (5) are
separable problems. This result can be seen directly in (6),as
the optimum value ofET is neither a function ofV nor Q.

Corollary 2: The sum-MSE minimizing precoder can be
designed using existing algorithms by setting the sum power
constrainttr [Q] ≤ PD = (Emax − ET ) /nD and the noise
power term to the effective noise powerσ2

eff = σ2
n + σ2

ePD.
Corollary 3: No information can be communicated using

the proposed algorithm in the case whereEmax ≤ σ2

n

σ2

H

√
MnD.

If the total available energy fails to exceed this threshold,
there is zero energy allocated to training; as a result, the
estimated channel iŝH = 0 and the resulting symbol estimates
are x̂DL = 0 as well. It is difficult to provide an intuitive
understanding of this result, as we do not have a closed-form
expression for the minimum sum-MSE as a function ofET ;
however, we have observed in simulations that whenEmax

falls below the threshold, the resulting minimum sum-MSE is
an increasing function ofET . It follows that the “best” (i.e.,
sum-MSE minimizing) strategy is to avoid training.

We can reinterpret this threshold result in the context of
average received SNR. If we define the average transmitted
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Fig. 2. Optimum training powerP ∗

T
for varying block lengthn

power asPavg
.
= Emax/n, we can rewrite the constraint as

SNRrx
.
=

Pavgσ
2
H

σ2
n

≤
√
MnD

nD +M
. (7)

It follows that asn → ∞, a strictly positive optimum training
power allocation is always feasible. Furthermore, the largest
average received SNR value that the threshold can take on is
SNRrx = −3dB, corresponding to the maximum value of the
RHS of (7) whennD = M .

IV. N UMERICAL EXAMPLES

We now present both analytical and simulation results to
illustrate the behaviour and performance of the proposed
algorithm. In these results, the flat Rayleigh fading channels
are modelled withσ2

H = 1. We scale the total energyEmax

proportionally to the block-lengthn to reflect a realistic
average power constraint,Pavg = Emax/n = α; in these
simulations, we illustrate the case ofα = 1. As such, we
define the average transmit SNR asPavg/σ

2
n, and find different

SNR values by varying the noise powerσ2
n. These preliminary

results illustrate performance in a system withK = 2 users,
M = 4 base station antennas, andN1 = N2 = L1 = L2 = 2
receive antennas and data streams per user.

Figure 2 illustrates how the optimum power allocated to
training,P ∗

T , grows with average SNR and with block length
n. We observe that asn grows, the optimum power allocated
to training becomes significantly larger than the equal power
allocation PT = 1; however,P ∗

T converges fairly rapidly
with increasing SNR. We also observe the threshold behaviour
described in Corollary 3.

Figures 3 and 4 illustrate the sum-MSE and average BER
performance of the proposed algorithm. Results in each of
these plots are generated using 5000 channel realizations
per average SNR value, and data symbols are generated
as uncoded QPSK. Here, we compare performance of the
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proposed algorithm to the case where equal power is allocated
to both training and data symbols (i.e.PT = PD = 1). We
observe notable performance improvements for large block
lengths (n ≫ M ), with approximately3 dB of SNR gain
for n = 1000.

V. CONCLUSIONS

In this paper, we have considered the problem of allocat-
ing energy to training and data symbols for systems using
minimum sum-MSE linear precoding in the multiuser MIMO
downlink. We have derived the optimum closed-form energy
allocation for the case of MMSE channel estimation when
all users have statistically identical channels. Furthermore,
we have proven separability of the energy allocation and



precoder designs; thus, existing algorithms for minimum sum-
MSE precoding can be applied following energy optimization.
Preliminary simulation results demonstrate that significant
improvements in performance can be made for both realistic
channel coherence intervals and transmit SNR levels.

APPENDIX A
MMSE CHANNEL ESTIMATION ERROR

The minimum MSE matrix for the estimation ofh can be
written as

εMMSE,est = Eh,n

[

(

ĥMMSE − h
)(

ĥMMSE − h
)H
]

= σ2
H

[

AH
0

(

XH
T XT +

σ2
n

σ2
H

I

)

A0 −
(

AH
0 XH

T +XTA0

)

+ I

]

= σ2
H

(

I−XH
T

(

XH
T XT +

σ2
n

σ2
H

InT

)−1

XT

)

= σ2
H

(

I+
σ2
H

σ2
N

XTX
H
T

)−1

=

(

σ−2
H +

1

σ2
n

ET

M

)−1

I,

(8)

where we have assumed thath and z are indepen-
dent. The fourth equality follows from application of
the matrix inversion lemma,(A+BCD)

−1
= A−1 −

A−1B
(

C−1 +DA−1B
)−1

DA−1. Since the estimation er-
ror ĥMMSE − h is a linear combination of random vectors
from a multivariate Gaussian distribution with uncorrelated
components, it follows that the estimation errors are also
independent Gaussian random variables.

APPENDIX B
OPTIMUM TRAINING AND DATA ENERGY ALLOCATION

Here, we derive a closed-form expression for the optimum
training energyE∗

T that minimizes the sum-MSE precoder
design under a sum-energy constraint,ET + ED ≤ Emax.
Due to space limitations, we are only able to show the most
common case of long blocks (withn ≫ M , and consequently
nD > M ); however, the identical result applies fornD ≤ M .

We perform the optimization in terms of the training power
PT = ET /M . Using the virtual uplink MSE from (3) as
the objective function, and the energy constraintsET ≥ 0
andET ≤ Emax, we derive the Karush-Kuhn-Tucker (KKT)
conditions

∂SMSEUL

∂PT
+ λmaxM − λ+ = 0 (9)

PTM ≥ 0, PTM ≤ Emax (10)

λ+ ≥ 0, λmax ≥ 0 (11)

λ+PTM = 0, λmax (PTM − Emax) = 0. (12)

We consider only the solutions where the constraints are not
binding, as allowing either constraint to hold with equality
prevents us from reaching a global minimum for the opti-
mization problem. WhenPTM = 0, no training symbols

are sent, and the resulting channel estimate isĤH = 0. If
PTM = Emax, zero energy remains for data transmission. In
either of these cases, the resulting data symbol estimates are
x̂UL
k = 0, and no information can be communicated. Since

neither constraint is binding, complementary slackness (12)
requires thatλmax = λ+ = 0; thus, any minimizer can
be found by considering the unconstrained minimization of
SMSEUL and checking feasibility of the resulting solutions.
We begin by rewriting the effective noise power,

σ2
eff = σ2

n +
σ2
n

nD

(

Emax − PTM

ρ+ PT

)

, (13)

with ρ = σ2
n/σ

2
H . Define the derivative

Dσ
.
=

∂σ2
eff

∂PT
=

−σ2
n (Emax + ρM)

(ρ+ PT )
2

. (14)

We then separate the data powerPD from the uplink power
allocation by rewritingQ = PDQ̃, with associated sum power
constrainttr

[

Q̃
]

≤ 1. It follows that

R̃ =

(

Emax − PTM

nD

)

HVQ̃VHHH + σ2
eff . (15)

Define the derivative of the trace function

Dtr
.
=

∂tr
[

R̃−1
]

∂PT
= −tr

[

R̃−1 ∂R̃

∂PT
R̃−1

]

= tr

[

R̃−2

(

M

nD
HVQ̃VHHH −DσI

)]

= −tr
[

R̃−2
]

(

Dσ +
Mσ2

eff

nDPD

)

+
M

nDPD
tr
[

R̃−1
]

.

(16)

The candidate values ofPT for unconstrained global opti-
mality satisfy

∂SMSEUL

∂PT
= Dσtr

[

R̃−1
]

+ σ2
effDtr = 0

=
(

tr
[

R̃−1
]

− σ2
efftr

[

R̃−2
])

(

Dσ +
Mσ2

eff

nDPD

)

.

(17)

The first term in (17) can be rewritten as
PDtr

[

R̃−1HVQ̃VHHHR̃−1
]

, which only has a trivial

zero PT = Emax/M (corresponding toPD = 0) since
the argument of the trace function is positive definite for
non-zero power allocationsQ. Any globally optimumP ∗

T

must therefore satisfy

Dσ +
Mσ2

eff

nDPD
= 0. (18)

Substituting the definitions of (13) and (14) gives rise to the
following quadratic equation inPT ,

P 2
T (nD −M)+ 2PT (Emax + ρnD) =

E2
max

M
− ρ2nD. (19)

The two roots of this quadratic equation are

PT =
1

nD −M
(−Emax − ρnD ± γ) , (20)



with

γ
.
=

√

nD

(

ρ2M + 2ρEmax +
E2

max

M

)

= Emax

√

nD

M
+ ρ
√

nDM

(21)

Clearly, fornD > M , the negative root (−γ) results in an
infeasible solutionPT < 0. We can see that the positive root
gives rise to

P ∗
T =

Emax

(√

nD

M − 1
)

− ρnD

(

1−
√

M
nD

)

nD −M

=
Emax

(√
nD−

√
M

√
M

)

− ρnD

(√
nD−

√
M

√
nD

)

(√
nD −

√
M
)(√

nD +
√
M
)

=

Emax√
M

− ρ
√
nD

√
nD +

√
M

.

(22)

This solution always satisfiesP ∗
TM < Emax, and is only

infeasible (withP ∗
T < 0) if Emax < ρ

√
nDM .

Finally, we prove that this stationary pointP ∗
T is indeed

a global minimum. We observe that the second derivative of
SMSEUL can be written as

tr
[

R̃−1HVQVHHHR̃−1
] ∂

∂PT

(

Dσ +
Mσ2

eff

nDPD

)

+

(

Dσ +
Mσ2

eff

nDPD

)

∂

∂PT

(

tr
[

R̃−1HVQVHHHR̃−1
])

,

(23)

but the second term vanishes atP ∗
T due to (18). We previously

showed that the trace term is strictly positive; thus, to prove
that P ∗

T is a global minimizer, we must only show that the
remaining term in the second derivative is positive atP ∗

T :

∂

∂PT

(

Dσ +
Mσ2

eff

nDPD

)

=
∂Dσ

∂PT
+

MDσ

nDPD
+

M2σ2
eff

n2
DP 2

D

=
∂Dσ

∂PT
+

M

nDPD

(

Dσ +
Mσ2

eff

nDPD

)

.

(24)

At the pointPT = P ∗
T , the second term vanishes due to (18).

The remaining term

∂Dσ

∂PT

∣

∣

∣

∣

PT=P∗

T

=
2σ2

n (Emax + ρM)

(ρ+ P ∗
T )

3
, (25)

is positive; thus, the training powerP ∗
T is the global minimizer.
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