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Abstract—This paper considers minimum sum mean-squared fixed channel estimation error variance$ are provided by
error (sum-MSE) linear transceiver designs in multiuser dwn- g predetermined estimation mechanism. In this paper, we
link systems with imperfect channel state information. Speifi-  54qress the problem of jointly designing a training seqaenc
cally, we derive the optimal energy allocations for trallnlrg.and for MMSE CSI estimati d desiani i i .
data phases for such a system. Under MMSE estimation of 'O MMS estimalion and designing linéar transceivers
uncorrelated Rayleigh block fading channels with equal aveage for minimum sum-MSE communication. We consider the
powers, we prove the separability of the energy allocation optimum allocation of limited available energy between the
and transceiver design optimization problems. A closed-fon  training and data communication phases for each quasi-stat
optimum energy allocation is derived and applied to existig -5 mmunication block.
tran;ceiver designs. Analysis and .simula.tion results derrm;trat.e In Sectior[]), we describe the channel model under consid-
the improvements that can be realized with the proposed degn. ) ' g a

eration and review the design of training sequences for MMSE
channel estimation. We then present the linear precoding
|. INTRODUCTION system model and provide an overview of the design of

Transceiver designs that minimize the sum of mean squaigthimum sum-MSE linear precoders with imperfect CSI and
errors (sum-MSE) under a sum power constraint in the Mijxed transmit power. In SectionJIl, we formulate the joint
tiuser downlink with full channel state information (CSID adesign prob|em for energy a"ocation and precoder design'
the base station are well research@l [?7], [?], [?]. In these \we present a closed-form solution for the optimum training
papers, an Uplink'down"nk dua.“ty is used to transform a-no energy, and app'y the result to existing precoder desigm.tec
convex downlink problem into an equivalent convex virtughiques. Performance and behaviour of the proposed approach
uplink problem. Recent studie€][ [?], [?] have extended are jllustrated in Sectiof IV, and we draw conclusions in
these original papers to the case of imperfect CSI, derivirgctior[V. AppendikA derives the MMSE channel estimation
an MSE duality in the presence of channel estimation errqsgor variance and the calculations of our main proof are
and providing robust transceiver designs. presented in Appendix]B.

In order to design precoders, the base station must obtairNotation We use the following conventions: italics rep-
estimates of the channel coefficients. If channel recipyociesent scalars, lower case boldface type is used for vectors
holds (i.e. the uplink and downlink channels are statififica 5pg upper case boldface represents matrices, (e.§..X,
identical), these estimates can be provided by trainindé trespectively). Entries in vectors and matrices are denaged
uplink (e.g., using uplink sounding, as in the WIMAX stan{x) ‘and[X], .. The superscript§ and’ denote the transpose
dard [?]). However, in frequency division duplex systems (anfnd Hermitian operatord[-] represents the statistical expec-
in some broadband time division duplex systefg, [channel tation operator whildy is the N x N identity matrix. ||x||,
reciprocity does not apply. In this case, channel estimatignd ||x||, denote the 1-norm (sum of entries) and Euclidean
must be performed in the downlink and communicated back tym. diag(x) represents the diagonal matrix formed using
the base station using an uplink feedback mechanism. In thig entries in vectok, anddiag[Xy,...,Xy] is the block
paper, we consider imperfect CSl estimation at the mobi[gq-agona| concatenation of matricds,, . .., X. The vec(X)
receivers, but assume that the imperfect estimates are egﬁgrator stacks the columns of the mat& in a single
available at the base station (via an error-free and det/-fyector.cA/(m, R) denotes the complex multivariate Gaussian

feedback m(_achanis%)_ ) S probability distribution with meann and covariance matrix
The algorithms designed ir], [?], [?] for minimization g

of the sum-MSE under a sum-power constraint presume that
Il. SYSTEM MODEL AND BACKGROUND

This work has been submitted to the IEEE for possible putidina
Copyright may be transferred without notice, after whicis teersion may A. Channel Model
“ol'o”ge,r be accessible. _ In the linear precoding system illustrated in Fig. 1, a base

In this regard, this work complement®][ where we consider perfect . . . . .
receiver CSI estimates and a feedback mechanism incoiqppratediction, station with M/ antennas transmits t& decentralized mobile
error, and delay. users withN;, antennas each over flat wireless channels. The
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Downlink that is, we are free to select any training matrix with or-
" thogonal rows. When using the MMSE estimator, there is no
benefit using any more thamy = M training symbols. For
algorithmic simplicity, we choose the set of training vesto

Xr = ,/E—MTIM. One may also choos¥ as the scaled size-

Virtual Uplin M DFT matrix, [Xr],, ,, = Yi=e 2™/ which has the
x additional benefit of balancing training power equally over
each transmit antenna in each training symbol.

In Appendix[A, we show that the estimation errors of each
channel coefficient are equal under the assumption of i.i.d.
channels with variance?, taking the value
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Fig. 1. Data processing for usérin downlink and virtual uplink. As we illustrate in Sectiom I[-D, the assumption of equal

estimation error variance is critical in maintaining coxie

of the virtual uplink sum-MSE minimization problem.
channel between the transmitter and ukés represented by
the Vi, x M matrix HY, and the overalN x M channel matrix _ o o
is HY, with H = [H,,...,Hg], and whereN = S Ny is Following training, we assume that all of the remaining
the total number of receive antennas in the system. We assuitme = 7 — M symbol periods in each block will be used
that all channel coefficients are i.i.d. and drawn from a zertp broadcast data symbols. Under the block fading assump-
mean complex Gaussian distribution with varianég that is, tion, the channeH does not change during thesg, data
vec(H) ~ CN(0, quIMN)- We consider a quasi-static (b|ocktransm|53|0ns; thus, we can design a single precoder/decod
fading) channel model, where the channel coefficients 4pair to be used for all transmissions in the block. It follows
assumed to be fixed for a coherence intervah afonsecutive that the remaining available energy to be used for data
symbol periods. The first transmissions in each block arelEp = Emax — Er) should be divided equally over the
training symbols which the mobile receivers use to estimateo data transmissions, resulting in a maximum per-symbol
the downlink channelHZ; these imperfect CSI estimatestransmit powerPp = (Ewax — Er)/np.
are assumed to be available at the base station via an erroPuring each data transmission, useleceives’, data sym-
free and delay-free feedback mechanism. We consider #iSxx = [@k1,. -, wxr,]” from the base station, and the vec-
stochastic error model (as used if],[[?], [?]) where the torx = [x7,...,x%]" comprises independent symbols with
true channel is modelled as a sum of the estimated chanorit average energyf([xx”| = I, whereL = SR Ly).
and an independent additive error tefl, = Hy, + E;, with  Userk’s data streams are precoded by thex L, transmit

C. Linearly Precoded Data Communication Model

vec(Ey) ~ CN (0,021, ), andE = [Eq,...,Ex]. fiter Uy = [ug1,...,urr,], Whereuy, is the precoding
beamformer for streami of userk with |jug;|l2 = 1, and
B. MMSE Channel Estimation and Training the precoders are combined in thé x L global transmitter

Training sequence and estimator design can be simpli]‘i%‘ecm,jer matrxJ = [Ul’ - Ux]. Power is aIIocatetho
ser k’s data streams in the vect@, = [pr1,...,DkL,]

under the assumption of uncorrelated channel coefficients 4P, — di i define the downlink locati
considering training for vector channels from the transmit 2" i K _Plaf [(Ii),’“]’ weT © meT © (t)r"; mP pgw;r aBoca :;)n
antennas to each individual receive antenna. To simplify ng1a!'x ast” = diag [p1,..,Pf] with tr[P] < Pp. Base

. . DL __
tation in this section, we consider training for a singletoec onHt[h;\s/ﬁmodeI, ushek rehcelves a |e_n9Ltmfa_V€Ct0rr3]’kd =
channelh’. Channel estimation is performed by transmitting * x+ny, where the superscript” indicates the down-

a set ofny training signal vectorsXy = [X7.1,- - s XT.np ), nk, and ny, - CN(0,071n, ). To-estilmate }'}SL’“ symbols
from the M transmit antennas without precodings > M X1, userk applies thelL; x Ny receive filterV;?, yielding the

i DL __ HyrH H
training symbol vectors must be sent to guarantee resdil\yabieslt'matjed sy(r;wbqlxk h = Vi Eggﬁx .+.V’€ - der for th
of the individual channel coefficients. The received signal norder to design the sum- minimizing precoder for the

vector isyr = h¥ Xy +z, wherez ~ CA(0, 02L,,, ), and the downlink, we use the virtual uplink, also illustrated in Hify

MMSE channel estimatél{}’[MSE — yr Ay is found using the where each_ matrix is replaced py |t§ conjugate transppse.
-1 We emphasize that the virtual uplink is only a mathematical

2
linear MMSE estimatorA, = (XJHXTJF Z—glw) X7 construct to be used for precoder design, and that its use
Under the sum energy constraint, [XQHXT] < Er, where does not require reciprocity of the true uplink and downlink
Er is the energy allocated to training, and the assumptighannels. We imagine that transmissions from mobile user
of independent channel coefficients, a sufficient condifmn % in the virtual uplink propagate via thélipped channel
optimality of the training matrix isXyX? = %IM [?]; Hj to the base station. The transmit and receive filters for



user k becomeV,, and U respectively, with normalized a sum power constraint), and can thus be solved using the
precoding beamformers; i.ellvy;ll2 = 1, and the uplink algorithm from [?] designed for the perfect CSI case by
precoder matrices are gathered as a block diagonal masudbstituting the effective noise?; for the noise ternmv? in

V = diag[V;,..., Vk]|. Power is allocated to usdrs data the original design.

streams asqyy = [qr1,.--,qke,] . With Qr = diag[qyl,

Q = diag [q1T7 . _’qf(]’ andtr [Q] < Pp. The received sym- I1l. JOINT OPTIMIZATION OF ENERGY AND PRECODER

bol vector at the base station and the estimated symbolvecto DESIGN

for userk arey’? = HVy/Qx+n = [* | H;V;/Qixi+n  The previous section describes the design of a robust min-
andx* = Uly"", respectively, withn ~ CN'(0,07Ir).  imum sum-MSE precoder for a fixed data power allocation,

Pp. In this section, we extend this result by jointly optimigin
the available training and data energy with the precoddgdes
As explained in Section I[HC, the optimum strategy for shgri
the available data energyp overnp transmitted symbols is
9l —Epyn {(kaL —xy) (%% - xk)H} with equal energy in each transmission. Using this strategy
and substituting the estimation error variance frém (1p int
the effective noise variance, we define the joint optimaati

D. Robust Convex Minimum Sum-MSE Precoder Design

The MSE matrix for userk in the virtual uplink can be
written as

—Eg [UkH (HVQVHHH + aiI) U,

)
problem
—UHViv/Qr — VQi VI H Uy + ILk}
~ A = _ ~ V*, *7E* _ : 2 1 |:1:~{—1j|

— UJRU,, — UYH,V, - VIH]U, +1,,, (V%.Q" Ez) oy e
where Vi, = Vi/Qi, R = HVQVIHY 1 o%1,. st qu=0 k=1,... . K; I=1,..., Ly,
Here, we have defined the effective noise powé = B _ Enax — Er (5)
o2 + Zszl optr [VrQrV{ |, under the general model with Q)= Pp, Pp= np ’
different estimation error variances: for each userk. We 2 9 Pp
have also assumed the independence of data symbols, noise, Teft = Tn (0—2 I L&) '
and estimation errors. The optimum robust virtual uplink H o M

receiver for uset is found using the MMSE (Wiener) filter  Theorem 1:The optimum training energg; is
UH = VEHER~L. The resulting (minimum) sum-MSE is .
EmaxVM—22M\/np
TH

K K o2
- ‘T X7 X7 3 Emax ) Vv M
SMSEyy = » Ly —tr [Rl > HyV, V! Hf] Ep = Vrp+VM = o VD (6)
k=1 k=1 (3)
otherwise.

=L— M+ o2tr [R*l}

) ) ) Proof: See AppendikB.
which follows fromtr [AB] = tr [BA], linearity of the trace  cqrollary 1: The optimization of training/data energy allo-
operator, and the Qefmmon_ aR. Since the beamfgrmlng cation and the optimum precoder design in probl&in (5) are
vegtorSij have unit norm, it follows thatr [V;Q; V] = separable problems. This result can be seen directlyl inags),
2121 4t = |lgll1 is the sum of powers allocated to Usés  the optimum value of2; is neither a function oV nor Q.
data streams. Under a sum-power constraint with a maximumCorollary 2: The sum-MSE minimizing precoder can be
transmit power of°p, the non-convex virtual uplink sum-MSE designed using existing algorithms by setting the sum power

minimization problem can be formally defined as constrainttr [Q] < Pp = (Emax — Er) /np and the noise
K power term to the effective noise powet; = o2 + o2 Pp.
(V*,Q*) =argmin (oi +> 02|qk||1> tr [R*l} Corollary 3: No information can be communicated using
v.Q k=1 (4) the proposed algorithm in the case whékg,. < Z/Mnp.
st. gu=>0 k=1,...,K; I=1,..., L, If the total available energy fails to exceed this threshold
tr[Q] < Pp. there is zero energy allocated to training; as a result, the

) ) ) estimated channel H = 0 and the resulting symbol estimates
When the channel estimation error variances are eafa( are xPL = 0 as well. It is difficult to provide an intuitive
9 . . ) 2 . L
a.), the effective noise becom.@ﬂg =0, + 0.2 larlli- understanding of this result, as we do not have a closed-form
Since the minimum sum-MSE is a non-increasing function %fxpression for the minimum sum-MSE as a functionff:
2 |lak[l1, we can assume that all available power allocatgghyever, we have observed in simulations that whg,.
to data transmission will be use®][ Thus, the effective ¢y pelow the threshold, the resulting minimum sum-MSE is

i implifi — 52 2 ; . X .
noise can be further simplified asy = op + 9ePp fOr  an increasing function off. It follows that the “best” (i.e.,
the optimum precoder, which is no longer a function of thg,.MSE minimizing) strategy is to avoid training.

uplink power allocationsy,. The o.pt|n_1|zat|on~prloblenﬂ4) We can reinterpret this threshold result in the context of
thus becomes convex (the minimization Uf[Rf } under average received SNR. If we define the average transmitted
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Fig. 2. Optimum training powePy. for varying block lengthn Fig. 3. Sum-MSE performance for equal and optimal energycations
power asP.,, = Emax/n, We can rewrite the constraint as
. Pavgcr}zq vVMnp
SNR,x = 5 < . @)
or np +M
. oy B . . -1 -
It follows that asn — oo, a strictly positive optimum training 10
power allocation is always feasible. Furthermore, thedat:
average received SNR value that the threshold can take &
SNR,, = —3dB, corresponding to the maximum value oft &
RHS of [7) whemnp = M. g
IV. NUMERICAL EXAMPLES
. . . Equal
We now present both analytical and simulation results - © —Optimal,n=10
illustrate the behaviour and performance of the propc 107 = _82;:22::238
algorithm. In these results, the flat Rayleigh fading chém —<— Optimal,n=400
are modelled withv?, = 1. We scale the total energi,,.. — ¢ ~Optimaln=1000] ‘ , »
proportionally to the block-lengthn to reflect a realistic 0 2 4 6 g 0,2 14 16 18 20

average power constrainf,y, = Enmax/n = «; in these
simulations, we illustrate the case of = 1. As such, we
define the average transmit SNR}a;sg/crﬁ, and find different
SNR values by varying the noise powef. These preliminary

results illustrate performance in a system wih= 2 users, : .
M — 4 base station antennas, ang — Ny = Ly = Ly — 2 proposed algorithm to the case where equal power is alldcate

receive antennas and data streams per user. tob both tra|T|rE)g|1 and fdata symb_ols (-8 = :on: Il). Webl K
Figure[2 illustrates how the optimum power allocated t’f Serve nolable performance improvements for large bloc

Fig. 4. Average BER performance for equal and optimal enatpcations

training, Py, grows with average SNR and with block lengt engths ¢ > M), with approximately3 dB of SNR gain

n. We observe that as grows, the optimum power allocated or n = 1000.

to training becomes significantly larger than the equal powe

allocation Pr = 1; however, P} converges fairly rapidly

with increasing SNR. We also observe the threshold behaviouIn this paper, we have considered the problem of allocat-

described in Corollarf]3. ing energy to training and data symbols for systems using
Figuresd 3 andl4 illustrate the sum-MSE and average BERNnimum sum-MSE linear precoding in the multiuser MIMO

performance of the proposed algorithm. Results in each @dwnlink. We have derived the optimum closed-form energy

these plots are generated using 5000 channel realizatiatiscation for the case of MMSE channel estimation when

per average SNR value, and data symbols are generad#idusers have statistically identical channels. Furtleen

as uncoded QPSK. Here, we compare performance of thhe have proven separability of the energy allocation and

V. CONCLUSIONS



precoder designs; thus, existing algorithms for minimum-su are sent, and the resulting channel estimat#ifé = 0. If
MSE precoding can be applied following energy optimizatiolPr M = FE,,., Zero energy remains for data transmission. In
Preliminary simulation results demonstrate that significaeither of these cases, the resulting data symbol estimages a
improvements in performance can be made for both realis&§'~ = 0, and no information can be communicated. Since
channel coherence intervals and transmit SNR levels. neither constraint is binding, complementary slacknég (1
requires that\,.x = Ay = 0; thus, any minimizer can
be found by considering the unconstrained minimization of

SMSEy, and checking feasibility of the resulting solutions.
The minimum MSE matrix for the estimation &f can be we begin by rewriting the effective noise power,

APPENDIXA
MMSE CHANNEL ESTIMATION ERROR

written as > /g M
. . H a'zﬁ._a'?l_i_&( max — 4 T )7 (13)
EMMSE,est = Eh n (hMMSE — h) (hMMSE — h) np p+ Pr
52 with p = 02 /0%, Define the derivative
=o% {Agl (x;f X + —;1) Ao — (AFXT +XrAg) + I] ) )
9H D= aacﬁ' _ —0p (Emax + pM) (14)

- OPr (p+ Pr)’

2 —1
o2 <I —XH (X;IXT + ;’—glm) XT>

H We then separate the data powes from the uplink power
o2 . -1 allocation by rewritingQ = PpQ, with associated sum power
=0} (I + U_gXTXT) constrainttr [Q] < 1. It follows that
N
5, 1 Ep\7 . [ Buax — PrM .
— <UH2 + U—QWT) I, R= (%) HVQVTH" + 52 (15)
(8)

Define the derivative of the trace function

where we have assumed thdt and z are indepen- - }

dent. The fourth equality follows from application of D= ot [R } ; [f{_l OR ~_1]
S A . on

the matrix inversion lemma(A + BCD)’1 = Al — T oPy OPr
AT'B(C7!+ DA‘lB)71 DA ! Since the estimation er- . M ) (16)
ror hamvsg — h is a linear combination of random vectors = tr [R2 (@HVQVHHH - DUI)]

from a multivariate Gaussian distribution with uncorrett Mo Y
components, it follows that the estimation errors are also — —ty {fr?} (Da 4 Ucﬁ'> 4 tr [R*l} .
independent Gaussian random variables. npPp npPp

The candidate values d?r for unconstrained global opti-

APPENDIXB mality satisfy

OPTIMUM TRAINING AND DATA ENERGY ALLOCATION

Here, we derive a closed-form expression for the optimum aSMﬂ = D, tr [R*l} + 02Dy =0
training energyE}. that minimizes the sum-MSE precoder dPr (17)
design under a sum-energy constraifty + Ep < FEyax. _ (tr [Rfl} ~ o2tr [RQD <D n MU§H> .
Due to space limitations, we are only able to show the most ¢ 7 npPp

common case of long blocks (with>> M, and consequently The  first  term  in [7) can be rewritten as
np > M); however, the identical result applies fop < M. Pptr [R-THVQVHHYR 1|, which only has a trivial
We perform the optimization in terms of the training power ' . .
Pr = Ep/M. Using the virtual uplink MSE from[{3) as zhero Pr = Emax/M (correspondmg_ toPp . 0) since
the objective function, and the energy constraifits > 0 the argument of the trace function is positive definite for

and Ep < E.x, We derive the Karush-Kuhn-Tucker (KKT)non-zero power a_IIocannQ. Any globally optimum Pr,
must therefore satisfy

conditions
OSMSEy Moy
kit ] ) - = D, + —= =0. 18
e + AmaxM — AL =0 (9) o (18)
PrM >0, PrM < Egax (10) Substituting the definitions of (13) and {14) gives rise te th
Ay >0, Amax > 0 (11) following quadratic equation idr,
Ao PrM =0, Amax (PrM — Emay) = 0. 12 E?2
o (Pr ) (12) P?(np — M) +2Pr (Epay + pnp) = ]zj —p*np. (19)

We consider only the solutions where the constraints are not
binding, as allowing either constraint to hold with equalit The two roots of this quadratic equation are

prevents us from reaching a global minimum for the opti- 1

mization problem. WhenPyM = 0, no training symbols Pr= np — M (=Emax — pnp £7), (20)



with

. E2
Y =14/"D (pQJ\/[ + 2pEmaX + ]r\r;x)

= Emax\/ nﬁD +P\/ nDM

Clearly, fornp > M, the negative root-{~) results in an
infeasible solutionPr < 0. We can see that the positive root
gives rise to
Emax( ”ﬁ—l)—pnp (1— M)

np

(21)

P; =
T np — M
nmp—Vv M mp—VvV M
B (BT - iy (45220

= (22)
(./—nD - \/M) (‘/_’IID + \/M)
i
Jnp +vVM '
This solution always satisfie®; M < Epnax, and is only
infeasible (withP}. < 0) if Enax < pv/npM.
Finally, we prove that this stationary poidt;. is indeed

a global minimum. We observe that the second derivative of
SMSEy, can be written as

- . 0 Mo?
t 71HV VHHH -1 _¥ Da eff
' |:R Q R :| BPT ( + nDPD
]\/[O'SH 0 5 —1 HytHD —1
+ (Dg+m) ﬁ(tr[R HVQVYH"R D
(23)

but the second term vanishesit due to [(18). We previously

showed that the trace term is strictly positive; thus, tovpro

that P; is a global minimizer, we must only show that the
remaining term in the second derivative is positivelst

0 < Magﬁ-) 0D, n MD, M?%s2%
7 8PT TLDPD R%PL%

8PT nDPD
oD Mo?Z,
=0 —— (D, + ).
OPr +TLDPD < +nDPD)
(24)

At the pointPr = P, the second term vanishes due[tol (18).
The remaining term

aD, 202 (Bmax + pM)
OPr | p,—p; (p+ Py)’

(25)

3

is positive; thus, the training powét;: is the global minimizer.
|
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