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Abstract—ℓ1 minimization can be used to recover sufficiently
sparse unknown signals from compressed linear measurements.
In fact, exact thresholds on the sparsity (the size of the support
set), under which with high probability a sparse signal can
be recovered from i.i.d. Gaussian measurements, have been
computed and are referred to as “weak thresholds” [4]. It was
also known that there is a tradeoff between the sparsity and the
ℓ1 minimization recovery stability. In this paper, we give aclosed-
form characterization for this tradeoff which we call the scaling
law for compressive sensing recovery stability. In a nutshell, we
are able to show that as the sparsity backs off̟ (0 < ̟ < 1)
from the weak threshold of ℓ1 recovery, the parameter for the
recovery stability will scale as 1√

1−̟

. Our result is based on

a careful analysis through the Grassmann angle framework for
the Gaussian measurement matrix. We will further discuss how
this scaling law helps in analyzing the iterative reweighted ℓ1
minimization algorithms. If the nonzero elements over the signal
support follow an amplitude probability density function ( pdf)
f(·) whoset-th derivative f t(0) 6= 0 for some integer t ≥ 0,
then a certain iterative reweighted ℓ1 minimization algorithm
can be analytically shown to lift the phase transition thresholds
(weak thresholds) of the plainℓ1 minimization algorithm.

I. I NTRODUCTION

Compressive sensing addresses the problem of recovering
sparse signals from under-determined systems of linear equa-
tions [18]. In particular, ifx is ann× 1 real-numbered vector
that is known to have at mostk nonzero elements wherek < n,
andA is anm×n measurement matrix withk < m < n, then
for appropriate values ofk, m andn, it is possible to efficiently
recoverx from y = Ax [1], [2], [3], [5]. The most well
recognized powerful recovery algorithm isℓ1 minimization
which can be formulated as follows:

min
Az=Ax

‖z‖1 (1)

The first result that established the fundamental phase tran-
sitions of signal recovery usingℓ1 minimization is due to
Donoho and Tanner [2], [4], where it was shown that if the
measurement matrix is i.i.d. Gaussian, for a given ratio of
δ = m

n , ℓ1 minimization can successfully recoverevery k-
sparse signal, provided thatµ = k

n is smaller that a certain
threshold. This statement is true asymptotically asn → ∞ and
with high probability. This threshold guarantees the recovery
of all sufficiently sparse signals and is therefore referred to
as a “strong” threshold. It therefore does not depend on the

actual distribution of the nonzero entries of the sparse signal
and thus is a universal result.

Another notion introduced and computed in [2], [4] is that
of a weak thresholdµW (δ) under which signal recovery is
guaranteed foralmost all support sets andalmost all sign
patterns of the sparse signal, with high probability asn → ∞.
The weak threshold is the one that can be observed in
simulations ofℓ1 minimization and allows for signal recovery
beyond the strong threshold. It is also universal in the sense
that it applies to any amplitude that the nonzero signal entries
take.

When the sparsity of the signalx is larger than the
weak thresholdµW (δ)n, a common stability result for the
ℓ1 minimization is that, for a setK ⊆ {1, 2, ..., n} with
cardinality |K| small enough forA to satisfy the restrict
isometry condition [3] or the null space robustness property
[13] [14], the decoding error is bounded by,

‖x− x̂‖1 ≤ D‖xK‖1, (2)

wherex̂ is any minimizer toℓ1 minimization,D is a constant,
K is the complement of the setK andxK is the part ofx
over the setK.

To date, known bounds on|K|/n, for the restricted isometry
condition to hold with overwhelming probability, are small
compared with the weak thresholdµW (δ) [3]. [9] [14] used
the Grassmann angle approach to characterize sharp bounds
on the stability ofℓ1 minimization and showed that, for an
arbitrarily small ǫ0, as long as|K|/n = (1 − ǫ0)µW (δ)n,
with overwhelming probability asn → ∞, (2) holds for some
constantD (D of course depends on|K|/n). However, no
closed-form formula forD were given.

In this paper, we give aclosed-formcharacterization for this
tradeoff which we call the scaling law for compressive sensing
recovery stability. Namely, we will give a closed-form bound
for D as a function of|K|/n. It is the first result of such
kind. This result is obtained from close analysis through the
Grassmann angle framework for the Gaussian measurement
matrix. We will further discuss how this scaling law helps in
analyzing the iterative reweightedℓ1 minimization algorithm.

Using this scaling law results for the stability and the
Grassmann angle framework for the weightedℓ1 minimization,
we prove that a certainiterative reweightedℓ1 algorithm
indeed has better weak recovery guarantees for particular
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classes of sparse signals, including sparse Gaussian signals.
We previously introduced these algorithms in [16], and had
proven that for a very restricted class of sparse signals they
outperform standardℓ1 minimization. In this paper, we are able
to extend this result to a much wider and more reasonable
class of sparse signals. The key to our result is the fact
that for these signals,ℓ1 minimization has anapproximate
support recoveryproperty [17] which can be exploited by a
reweightedℓ1 algorithm, to obtain a provably superior weak
threshold. More specifically, if the nonzero elements over the
signal support follow a probability density function (pdf)f(·)
whose t-th derivativef t(0) 6= 0 for some t ≥ 0, then a
certain iterative reweightedℓ1 minimization algorithm can be
analytically shown to lift the phase transition thresholds(weak
thresholds) of the plainℓ1 minimization algorithm through
using the scaling law for the sparse recovery stability. This
extends our earlier results of weak threshold improvementsfor
sparse vectors with nonzero elements following the Gaussian
distribution, whose pdf is itself nonzero at the origin (namely
its 0-th derivative is nonzero) [17].

It is worth noting that different variations of reweighted
ℓ1 algorithms have been recently introduced in the literature
and, have shown experimental improvement over ordinaryℓ1
minimization [15], [7]. In [7] approximately sparse signals
have been considered, where perfect recovery is never pos-
sible. However, it has been shown that the recovery noise
can be reduced using an iterative scheme. In [15], a similar
algorithm is suggested and is empirically shown to outper-
form ℓ1 minimization for exactly sparse signals with non-
flat distributions. Unfortunately, [15] provides no theoretical
performance guarantee.

This paper is organized as follows. In Section II and III,
we introduce the basic concepts and system model. In Section
IV, we introduce and derive the main result of this paper: the
scaling law for the compressive sensing recovery stability. In
the following sections, we will use the scaling law to give new
analysis results about the iterative reweightedℓ1 minimization
algorithms.

II. BASIC DEFINITIONS

A sparse signal with exactlyk nonzero entries is calledk-
sparse. For a vectorx, ‖x‖1 denotes theℓ1 norm. The support
(set) ofx, denoted bysupp(x), is the index set of its nonzero
coordinates. For a vectorx that is not exactlyk-sparse, we
define thek-support ofx to be the index set of the largestk
entries ofx in amplitude, and denote it bysuppk(x). For a
subsetK of the entries ofx, xK means the vector formed by
those entries ofx indexed inK. Finally, max |x| andmin |x|
mean the absolute value of the maximum and minimum entry
of x in magnitude, respectively.

III. S IGNAL MODEL AND PROBLEM DESCRIPTION

We consider sparse random signals with i.i.d. nonzero en-
tries. In other words we assume that the unknown sparse signal
is ann×1 vectorx with exactlyk nonzero entries, where each

nonzero entry is independently sampled from a well defined
distribution. The measurement matrixA is a m × n matrix
with i.i.d. Gaussian entries with a ratio of dimensionsδ = m

n .
Compressed sensing theory guarantees that ifµ = k

n is smaller
than a certain threshold, then everyk-sparse signal can be
recovered usingℓ1 minimization. The relationship betweenδ
and the maximum threshold ofµ for which such a guarantee
exists is called thestrong sparsity threshold, and is denoted
by µS(δ). A more practical performance guarantee is the so-
called weak sparsity threshold, denoted byµW (δ), and has
the following interpretation. For a fixed value ofδ = m

n and
i.i.d. Gaussian matrixA of size m × n, a randomk-sparse
vectorx of sizen×1 with a randomly chosen support set and
a random sign pattern can be recovered fromAx using ℓ1
minimization with high probability, if kn < µW (δ). Similar
recovery thresholds can be obtained by imposing more or
less restrictions. For example, strong and weak thresholdsfor
nonnegative signals have been evaluated in [6].

We assume that the support size ofx, namelyk, is slightly
larger than the weak threshold ofℓ1 minimization. In other
words,k = (1 + ǫ0)µW (δ) for someǫ0 > 0. This means that
if we useℓ1 minimization, a randomly chosenµW (δ)n-sparse
signal will be recovered perfectly with very high probability,
whereas a randomly selectedk-sparse signal will not. We
would like to show that for a strictly positiveǫ0, the iterative
reweightedℓ1 algorithm of Section V can indeed recover a
randomly selectedk-sparse signal with high probability, which
means that it has an improved weak threshold.

IV. T HE SCALING LAW FOR THE COMPRESSIVESENSING

STABILITY

In this section, we will derive the scaling of theℓ1 recovery
stability as a function of the signal sparsity. More specifically,
we are interested in characterizing a closed-form relationship
betweenC and the sparsity|K| in the following theorem.

Theorem 1. Let A be a generalm× n measurement matrix,
x be ann-element vector andy = Ax. DenoteK as a subset
of {1, 2, . . . , n} such that its cardinality|K| = k and further
denoteK = {1, 2, . . . , n} \K. Let w denote ann× 1 vector.
Let C > 1 be a fixed number.

Given a specific setK and suppose that the part ofx on
K, namelyxK is fixed.∀xK , any solutionx̂ produced by the
ℓ1 minimization satisfies

‖xK‖1 − ‖x̂K‖1 ≤ 2

C − 1
‖xK‖1

and

‖(x− x̂)K‖1 ≤ 2C

C − 1
‖xK‖1,

if and only if ∀w ∈ Rn such thatAw = 0, we have

‖xK +wK‖1 + ‖wK

C
‖1 ≥ ‖xK‖1. (3)

In fact, if (3) is satisfied, we will have the stability result

‖(x− x̂)K‖1 ≤ 2C

C − 1
‖xK‖1.



In [9], it was established that when the matrixA is sampled
from an i.i.d. Gaussian ensemble,C = 1, considering a single
index setK, there exists a constant ratio0 < µW < 1 such that
if |K|

n ≤ µW , then with overwhelming probability asn → ∞,
the condition (3) holds for allw ∈ Rn satisfyingAw = 0.
Now if we take a single index setK with cardinality |K|

n =
(1−̟)µW , we would like to derive a characterization ofC,
as a function of|K|

n = (1 − ̟)µW , such that the condition
(3) holds for allw ∈ Rn satisfyingAw = 0. The main result
of this paper is stated in the following theorem.

Theorem 2. Assume them × n measurement matrixA is
sampled from an i.i.d. Gaussian ensemble, letK be a single
index set with |K|

n = (1 − ̟)µW , whereµW is the weak
threshold for ideally sparse signals and̟ is any real number
between0 and 1. We also letx be ann-dimensional signal
vector withxK being an arbitrary but fixed signal component.
Then with overwhelming probability, the condition (3) holds
for all w ∈ Rn satisfyingAw = 0, with respect to the
parameterC = 1√

1−̟
.

Proof: When the measurement matrixA is sampled from
an i.i.d. Gaussian ensemble, it is known that the probability
that the condition (3) holds for allw ∈ Rn satisfyingAw =
0 is the Grassmann angle, namely the probability that an
(n−m)-dimensional uniformly distributed subspace intersects
a polyhedral cone trivially (intersecting only at the apex of
the cone). The complementary probability that the condition
(3) does not hold for allw ∈ Rn satisfying Aw = 0 is
thecomplementary Grassmann angle. In our problem, without
loss of generality, we scalexK (extended to ann-dimensional
vector supported onK) to a point in the relative interior of a
(k − 1)-dimensional faceF of the weightedℓ1 ball,

SP= {y ∈ Rn | ‖yK‖1 + ‖yK

C
‖1 ≤ 1}. (4)

The polyhedral cone we are interested in for the complemen-
tary Grassmann angle is the cone SP− xK , namely the cone
obtained by settingxK as the apex, and observing SP from
this apex.

Building on the works by Santalö [11] and McMullen
[12] in high dimensional integral geometry and convex poly-
topes, the complementary Grassmann angle for the(k − 1)-
dimensional faceF can be explicitly expressed as the sum of
products of internal angles and external angles [10]:

P = 2×
∑

s≥0

∑

G∈ℑm+1+2s(SP)

β(F,G)γ(G,SP), (5)

wheres is any nonnegative integer,G is any (m + 1 + 2s)-
dimensional face of the SP (ℑm+1+2s(SP) is the set of all such
faces),β(·, ·) stands for the internal angle andγ(·, ·) stands
for the external angle.

The internal angles and external angles are basically defined
as follows [10][12]:

• An internal angleβ(F1, F2) is the fraction of the hyper-
sphereS covered by the cone obtained by observing the

faceF2 from the faceF1. 1 The internal angleβ(F1, F2)
is defined to be zero whenF1 * F2 and is defined to be
one if F1 = F2.

• An external angleγ(F3, F4) is the fraction of the hy-
persphereS covered by the cone of outward normals to
the hyperplanes supporting the faceF4 at the faceF3.
The external angleγ(F3, F4) is defined to be zero when
F3 * F4 and is defined to be one ifF3 = F4.

WhenC = 1, we denote the probabilityP in (5) asP1. By
definition, the weak thresholdµW is the supremum of|K|

n ≤
µW such that the probabilityP1 in (5) goes to0 asn → ∞.
We need to show for|K|

n = (1−̟)µW andC = 1√
1−̟

, (5)
also goes to0 asn → ∞. To that end, we only need to show
the probabilityP ′ that, there exists anw from the null space
of A such that

‖xK +wK‖1 + ‖
wK1

C∞
‖1 + ‖

wK2

C
‖1 < ‖xK‖1 (6)

goes to0 asn → ∞, whereC∞ is a large number which we
may take as∞ at the end,K1, K2 andK are disjoint sets
such that|K1

⋃

K| = µWn andK1

⋃

K2 = K.
Then the probabilityP ′ will be equal to the probability that

an (n−m)-dimensional uniformly distributed subspace inter-
sects the polyhedral cone WSP−xK nontrivially (intersecting
at some other points besides the apex of the cone), where WSP
is the polytope

WSP= {y ∈ Rn | ‖yK‖1 + ‖
yK1

C∞
‖1 + ‖

yK2

C
‖1 ≤ 1}. (7)

ThenP ′ is also a complementary Grassmann angle, which
can be expressed by [10]:

P ′ = 2×
∑

s≥0

∑

G∈ℑm+1+2s(WSP)

β(F,G)γ(G,WSP). (8)

Now we only need to showP ′ ≤ P1. If we denotel =
(m+1+2s)+1 andk = (1−̟)µWn, in the polytope WSP,
then there are in total

(

n−k
l−k

)

2l−k facesG of dimension(l−1)
such thatF ⊆ G andβ(F,G) 6= 0.

However, we argue that whenC∞ is very large, only
(

n−k1

l−k1

)

2l−k such facesG of dimension(l− 1) will contribute
nonzero terms toP ′ in (8), wherek1 = µWn. In fact, a certain
(l − 1)-dimensional faceG supported on the index setL is
the convex hull ofCiei, wherei ∈ L, Ci is the corresponding
weighting for indexi (which is 1 for the setK, C∞ for
the setK1 and C for the setK2 ), and ei is the standard
unit coordinate vector. Now we show that ifK1 * L, the
corresponding term in (8) for the faceG will be 0 whenC∞
is very large.

Lemma 1. Suppose thatF is a (k − 1)-dimensional face of
WSP supported on the subsetK with |K| = k. Then the
external angleγ(G,WSP) between an(l−1)-dimensional face

1Note the dimension of the hypersphereS here matches the dimension of
the corresponding cone discussed. Also, the center of the hypersphere is the
apex of the corresponding cone. All these defaults also apply to the definition
of the external angles.



G supported on the setL(F ⊆ G) and the polytope WSP is0
whenK1 * L andC∞ is large.

Proof: Without loss of generality, assumeK = {n− k+
1, · · · , n}. Consider the(l − 1)-dimensional face

G = conv{Cn−l+1×en−l+1, ..., Cn−k×en−k, en−k+1, ..., en}
of WSP. The2n−l outward normal vectors of the supporting
hyperplanes of the facets containingG are given by

{
n−l
∑

p=1

jpep/Cp+

n−k
∑

p=n−l+1

ep/Cp +

n
∑

p=n−k+1

ep, jp ∈ {−1, 1}}.

Then the outward normal conec(G,WSP) at the faceG is
the positive hull of these normal vectors. WhenK1 * L, the
fraction of the surface of the(n− l − 1)-dimensional sphere
taken by the conec(G,WSP) is 0 since the correspondingCp

is very large.
Now let us look at the internal angleβ(F,G) between the

(k−1)-dimensional faceF and an(l−1)-dimensional faceG,
whereK1 is a subset of the support set ofG. Notice that the
only interesting case is whenF ⊆ G sinceβ(F,G) 6= 0 only
if F ⊆ G. We will see ifF ⊆ G, the conec(F,G) formed by
observingG from F is the direct sum of a(k−1)-dimensional
linear subspace and the positive hull of(l− k) vectors. These
(l − k) vectors are in the form

vi = (− 1

k
, ...,− 1

k
, 0, ..., Ci, 0, ...0), i ∈ L \K.

For those vectorsvi with i ∈ K1, Ci = C∞. WhenC∞ is
very large, the considered cone takes half of the space at each
i-th coordinate withi ∈ K1.

So by the definition of the internal angle, the internal angle
β(F,G) is equal to 1

2k1−k ×β(F,G1), whereG1 is supported
only on the setL \ K1. It is known that this internal angle
β(F,G1) is equal to the fraction of an(l−k1−1)-dimensional
sphere taken by a polyhedral cone formed by(l − k1) unit
vectors with inner product 1

1+C2k between each other. In this
case, the internal angle is given by

β(F,G) =
1

2k1−k

Vl−k1−1(
1

1+C2k , l − k1 − 1)

Vl−k1−1(Sl−k1−1)
, (9)

whereVi(S
i) denotes thei-th dimensional surface measure on

the unit sphereSi, while Vi(α
′, i) denotes the surface measure

for regular spherical simplex with(i+1) vertices on the unit
sphereSi and with inner product asα′ between these(i+1)
vertices. Thus (9) is equal toB( 1

1+C2k , l − k1), where

B(α′,m′) = θ
m

′
−1

2

√

(m′ − 1)α′ + 1π−m′/2α′−1/2
J(m′, θ),

(10)
with θ = (1− α′)/α′ and

J(m′, θ) =
1√
π

∫ ∞

−∞
(

∫ ∞

0

e−θv2+2ivλ dv)m
′

e−λ2

dλ. (11)

If we takeC = 1√
1−̟

, then

1

1 + C2k
=

1

1 + k1
.

By comparison,β(F,G) = 1
2k1−k × β(F,G) is exactly

the 1
2k1−k β(F1, G1) term appearing in the expression for the

Grassmann angleP between the faceF1 supported on the set
K1 and the polytope SP, whereG1 is an (l− 1)-dimensional
face of SP supported on the setL.

Similar to the derivation for the internal angle, we can show
that the external angleγ(G,WSP) is also exactly equal to
γ(G1,SP) term appearing in the expression for the Grassmann
angleP between the faceF1 supported on the setK1 and the
polytope SP, whereG1 an (l − 1)-dimensional face of SP
supported on the setL.

Since there are in total only
(

n−k1

l−k1

)

2l−k such facesG of
dimension(l − 1) will contribute nonzero terms toP ′ in (8),
substituting the results for the internal and external angles, we
haveP = P ′. Thus for |K|

n = (1 −̟)µW andC = 1√
1−̟

,
with high probability, the condition the condition (3) holds for
all w ∈ Rn satisfyingAw = 0.

V. I TERATIVE WEIGHTED ℓ1 ALGORITHM

Beginning from this section, we will see how the stability
result is used in analyzing the iterative reweightedℓ1 min-
imization algorithms. We focus on the following algorithm
from [16], [17], consisting of twoℓ1 minimization steps: a
standard one and a weighted one. The input to the algorithm
is the vectory = Ax, wherex is a k-sparse signal with
k = (1 + ǫ0)µW (δ)n, and the output is an approximationx∗

to the unknown vectorx. We assume thatk, or an upper bound
on it, is known. Alsoω > 1 is a predetermined weight.

Algorithm 1. [17]

1) Solve theℓ1 minimization problem:

x̂ = argmin ‖z‖1 subject to Az = Ax. (12)

2) Obtain an approximation for the support set ofx: find
the index setL ⊂ {1, 2, ..., n} which corresponds to the
largestk elements of̂x in magnitude.

3) Solve the following weightedℓ1 minimization problem
and declare the solution as output:

x∗ = argmin ‖zL‖1 + ω‖zL‖1 subject to Az = Ax.
(13)

The idea behind the algorithm is as follows. In the first
step we perform a standardℓ1 minimization. If the sparsity
of the signal is beyond the weak thresholdµW (δ)n, then ℓ1
minimization is not capable of recovering the signal. However,
we can use its output to identify an index setL in which
most elements correspond to the nonzero elements ofx. We
finally perform a weightedℓ1 minimization by penalizing
those entries ofx that are not inL because they have a lower
chance of being nonzero elements.

In the next sections we formally prove that, for certain
classes of signals, Algorithm 1 has a recovery threshold
beyond that of standardℓ1 minimization. The idea of the
proof is as follows. In Section VI, we prove that there is a
large overlap between the index setL, found in Step 2 of



the algorithm, and the support set of the unknown signalx

(denoted byK)—see Theorem 3. Then in Section VII, we
show that the large overlap betweenK andL can result in
perfect recovery ofx, beyond the standard weak threshold,
when a weightedℓ1 minimization is used in Step 3.

This proof idea was already used in [17] to prove a thresh-
old improvement in recovering sparse vectors with Gaussian
distributed nonzero elements by using a numerical evaluation
of the robustness

VI. A PPROXIMATE SUPPORTRECOVERY, STEPS1 AND 2
OF THE ALGORITHM

In this section, we carefully study the first two steps of
Algorithm 1. The unknown signalx is assumed to be ak-
sparse vector with support setK, wherek = |K| = (1 +
ǫ0)µW (δ)n, for someǫ0 > 0. The setL, as defined in the
algorithm, is in fact thek-support set of̂x. We show that for
small enoughǫ0, the intersection ofL and K is very large
with high probability, so thatL can be counted as a good
approximation toK.

We now lower bound|L ∩ K|. First, we state a general
lemma that bounds|K ∩ L| as a function of‖x − x̂‖1 [17].
Then, we recall an intrinsic property ofℓ1 minimization called
weak robustnessthat provides an upper bound on the quantity
‖x− x̂‖1.

Definition 1. [17] For a k-sparse signalx, we defineW (x, λ)
to be the size of the largest subset of nonzero entries ofx that
has aℓ1 norm less than or equal toλ.

W (x, λ) := max{|S| | S ⊆ supp(x), ‖xS‖1 ≤ λ}

Note thatW (x, λ) is increasing inλ.

Lemma 2. [17] Let x be ak-sparse vector and̂x be another
vector. Also, letK be the support set ofx and L be thek-
support set of̂x. Then

|K ∩ L| ≥ k −W (x, ‖x− x̂‖1) (14)

We now review the notion of weak robustness, which allows
us to bound‖x− x̂‖1, and has the following formal definition
[9].

Definition 2. Let the setS ⊂ {1, 2, · · · , n} and the subvector
xS be fixed. A solution̂x is called weakly robust if, for some
C > 1 called the robustness factor, and allxS , it holds that

‖(x− x̂)S‖1 ≤
2C

C − 1
‖xS‖1. (15)

The weak robustness notion allows us to bound the error in
‖x − x̂‖1 in the following way. If the matrixAS , obtained
by retaining only those columns ofA that are indexed byS,
has full column rank, then the quantity

κ = max
Aw=0,w 6=0

‖wS‖1
‖wS‖1

must be finite, and one can write

‖x− x̂‖1 ≤
2C(1 + κ)

C − 1
‖xS‖1 (16)

From [9] and the scaling law discovered in this paper, we
know that for Gaussian i.i.d. measurement matricesA, ℓ1
minimization is weakly robust, i.e., there exists a robustness
factor C > 1 as a function of|S|

n < µW (δ) for which (15)
holds. Now letk1 = (1− ǫ1)µW (δ)n for some smallǫ1 > 0,
and K1 be thek1-support set ofx, namely, the set of the
largestk1 entries ofx in magnitude. Based on equation (16)
we may write

‖x− x̂‖1 ≤ 2C(1 + κ)

C − 1
‖xK1

‖1 (17)

For a fixed value ofδ, C in (17) is a function ofǫ1 following
the scaling law discovered in this paper, and becomes arbi-
trarily close to1 as ǫ1 → 0. κ is also a bounded function of
ǫ1 and therefore we may replace it with an upper boundκ∗.
We now have a bound on‖x− x̂‖1. To explore this inequality
and understand its asymptotic behavior, we apply a third result,
which is a certain concentration bound on the order statistics of
the random variables following certain amplitude distributions.

Lemma 3. SupposeX1, X2, · · · , XN are N i.i.d. random
variables whose amplitudes, with a mean value ofE(|X |),
follow the probability density functionf(x) for x ≥ 0. Let
SN =

∑N
i=1 |Xi| and letSM be the sum of the smallestM

numbers among the|Xi|, for each1 ≤ M ≤ N . Then for
everyǫ > 0, asN → ∞, we have

P(|SN

N
− E(|X |)| > ǫ) → 0,

P(|SM

SN
− 1

E(|X |)

∫ F−1(M

N
)

0

xf(x)dx| > ǫ) → 0,

whereF (x) is the corresponding cumulative distribution func-
tion for the considered random variable amplitude|X |.
Without loss of generality, we assumeE(|X |) = 1. As a direct
consequence of Lemma 3 we can write:

P(|
‖xK1

‖1
‖x‖1

−
∫ F−1(

ǫ0+ǫ1
1+ǫ0

)

0

xf(x)dx| > ǫ) → 0 (18)

for all ǫ > 0 asn → ∞. Define

ζ(ǫ0) := inf
ǫ1>0

2C(1 + κ∗)

C − 1

∫ F−1(
ǫ0+ǫ1
1+ǫ0

)

0

xf(x)dx > ǫ

Combining (17) with (18) we can get

P(
‖x− x̂‖1
‖x‖1

− ζ(ǫ0) < ǫ) → 1 (19)

for all ǫ > 0 asn → ∞. In summary, we have showed that
|K ∩ L| ≥ k −W (x, ‖x− x̂‖1), and then “weak robustness”
of ℓ1 minimization guarantees that for largen with high
probability ‖x− x̂‖1 ≤ ζ(ǫ0)‖x‖1. These results will further
lead to the main claim on the support recovery, which extends
a similar claim in [17] by using the closed-form scaling law
result in this paper.



Theorem 3 (Support Recovery). Let A be an i.i.d. Gaussian
m×n measurement matrix withmn = δ. Letk = (1+ǫ0)µW (δ)
and x be ann × 1 randomk-sparse vector whose nonzero
element amplitude follows the distribution off(x). Suppose
that x̂ is the approximation tox given by theℓ1 minimization,
namelyx̂ = argminAz=Ax‖z‖1. Then, for anyǫ0 > 0 and
for all ǫ > 0, asn → ∞,

P(
|supp(x)∩ suppk(x̂)|

k
− (1− F (y∗)) > −ǫ) → 1, (20)

wherey∗ is the solution toy in the equation
∫ y

0
xf(x)dx =

ζ(ǫ0).
Moreover, if the integert ≥ 0 is the smallest integer for

which the amplitude distributionf(x) has a nonzerot-th order
derive at the origin, namelyf (t)(0) 6= 0, then asǫ0 → 0, with
high probability,

|supp(x) ∩ suppk(x̂)|

k
= 1−O(ǫ

1
t+2

0
). (21)

The proof of Theorem 3 relies on the scaling law for
recovery stability in this paper and concentration Lemma 3.
Note that if ǫ0 → 0, then Theorem 3 implies that|K∩L|

k
becomes arbitrarily close to 1. We can also see that the support
recovery is better when the probability distribution function
of f(x) has a lower order of nonzero derivative. This is
consistent with the better recovery performance observed for
such distributions in simulations of the iterative reweightedℓ1
minimization algorithms.

VII. PERFECTRECOVERY, STEP 3 OF THE ALGORITHM

In Section VI we showed that. ifǫ0 is small, thek-support
of x̂, namelyL = suppk(x̂), has a significant overlap with
the true support ofx. The scaling law gives a quantitative
lower bound on the size of this overlap in Theorem 3. In Step
3 of Algorithm 1, weightedℓ1 minimization is used, where
the entries inL are assigned a higher weight than those in
L. In [8], we have been able to analyze the performance of
such weightedℓ1 minimization algorithms. The idea is that if
a sparse vectorx can be partitioned into two setsL andL,
where in one set the fraction of non-zeros is much larger than
in the other set, then (13) can potentially increase the recovery
threshold ofℓ1 minimization.

Theorem 4. [8] Let L ⊂ {1, 2, · · · , n} , ω > 1 and the
fractionsf1, f2 ∈ [0, 1] be given. Letγ1 = |L|

n andγ2 = 1−γ1.
There exists a thresholdδc(γ1, γ2, f1, f2, ω) such that with
high probability, almost all random sparse vectorsx with at
leastf1γ1n nonzero entries over the setL, andat mostf2γ2n
nonzero entries over the setL can be perfectly recovered using
minAz=Ax ‖zL‖1+ω‖zL‖1, whereA is a δcn×n matrix with
i.i.d. Gaussian entries. Furthermore, for appropriateω,

µW (δc(γ1, γ2, f1, f2, ω)) < f1γ1 + f2γ2,

i.e., standardℓ1 minimization using aδcn × n measurement
matrix with i.i.d. Gaussian entries cannot recover suchx.

A software package for computing such thresholds can
also be found in [19]. We then summarize the threshold
improvement result in the following theorem, with the detailed
proofs omitted due to limited space.

Theorem 5(Perfect Recovery). LetA be anm×n i.i.d. Gaus-
sian matrix withm

n = δ. If δc(µW (δ), 1−µW (δ), 1, 0, ω) < δ,
then there existǫ0 > 0 and ω > 0 such that, with high
probability as n grows to infinity, Algorithm 1 perfectly
recovers a random(1 + ǫ0)µW (δ)n-sparse vector with i.i.d.
nonzero entries following an amplitude distribution whosepdf
has a nonzero derive of some finite order at the origin.
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