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Abstract—We investigate the consensus problem in a net- Despite its importance, study of DbMC is still in infancy.
work wh_ere_ nodes communicate via diffusion-based molecuda_l Very recenﬂy’ new theoretical frameworks are being dqyedb
communication (DbMC). In DbMC, messages are conveyed via for molecular communication [7]-[9]. Broadly speakingeth

the variation in the concentration of molecules in the medim. . - . -
Every node acquires sensory information about the environrant. purpose of understanding DbMC is three-fold. First, in the

Communication enables the nodes to reach the best estimaterf field of system biology. For example, the new field of system
that measurement, e.g., the average of the initial estimaseby biology enables us to engineer microorganisms for certain o

all nodes. We consider an iterative method for communicatio  jectives [10]-[12]. Our study can help to model and manitsula
among nodes that enables information spreading and averagy  |yis|ogical networks comprised of such engineered microor-

in the network. We show that the consensus can be attained &it . S dl tv. th . trend of dewiani
a finite number of iterations and variance of estimates of nods 9aniSmMs. Secondly, recently, there IS a new trend ot desgni

can be made arbitrarily small via communication. micro-scale networks of nano-scale devices to performstask
Index Terms—Molecular Communication, Diffusion, Consen- similar to their biological counterparts [13]. There is agka
sus, Information networks, Distributed averaging number of applications that such networks could apply tee On

may envision molecular based networks built using these-nan
scale devices that can be deployed over or inside the human
There has been numerous evidence of the existence dbadly to monitor glucose, sodium, and cholesterol levels, to
form of communication using molecules in nature. At thdetect the presence of different infectious agents, oreatity
microorganism scale, molecular signals are used for commuspecific types of cancer. Such networks will also enable new
cation and control among cells in living tissues. Communicamart drug administrative systems to release specific drugs
tion enables single cells to process sensory informati@ubinside the body with great accuracy and in a timely manner.
their environment (in a way similar to neural networks) and@ihese networks are to operate in the environments similar
evaluate and react to chemical stimuli. The use of chemidal those of bacteria and other living organisms. Hence, the
signaling by living cells has been under extensive study. Fsame principles hold for these networks and DbMC is the
example, it is known that some bacteria use a process nameakt promising form of communication in these bio-inspired
“Quorum Sensing” to estimate the density of their kind imetworks. There is no need for complex computation in this
the environment [1]-[6]. Quorum Sensing is a decentralizégpe of communication which has been performed by bacteria
coordination process which allows bacteria to estimate tfar millions of years. Therefore, it can be done by primitive
density of their population and regulate their behavioade nano-scale devices that have limited computation capiaisili
ing to the estimated density. To estimate the local popmnati Third, understanding DbMC can help to find out whether there
density, bacteria release specific signaling moleculegs&his any optimality in natural complex bio-systems.
molecules are subject to diffusion process that would mla&e t In this work, we study the consensus problem in a network
molecules drift away instead of accumulating in the baatergoverned by DbMC. In a general consensus problem, nodes
vicinity. Therefore, the concentration near the bactegizds in a network communicate with each other to obtain the best
to the average concentration in the medium. As the locastimate given their initial estimates. Average value @sth
density of bacteria increases, so will the density of mdkeu initial estimates is considered to be an important measwate t
in the medium. Bacteria have molecules receptors that cean be considered as a goal in a network. In this work, we
estimate the molecules density and thus the bacteria pipula capture the situation where a network of nodes (agents) must
density. Bacteria use quorum sensing to coordinate actiathieve a consistent opinion through information exchange
(mostly energy expensive) that cannot be carried out byva molecular signaling with their neighbors.
single bacterium. This phenomenon, captures most of theThe key element of this type of the consensus problem is
important components of a communication system in micrdiffusion. Diffusion describes the spread of particleotigh
scale. Arguably, the most dominating form of communicatiomndom motion from regions of higher concentration to regio
at the scale of microorganisms is Diffusion based Moleculaf lower concentration. Every node has the capability of
Communication (DbMC), i.e., embedding the information isensing the concentration of molecules in the environmmaht a
the alteration of the concentration of the molecules angd rgbroducing new molecules with desired rates. Moleculesisiéf
on diffusion to transfer the information. from the transmitter to the entire media. It is important to

I. INTRODUCTION
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note that this type of molecular communication is different. simultaneous 1-D diffusions. Since the diffusion equation

from other communication schemes where Brownian motids a linear equation, the solution to (1) for an arbitraryunp

of single molecules is studied or molecules are directe@tdw r(z,t), denoted by*(«,t), can be calculated using

specific directions. N
The rest of the paper is organized as follows: in Sec. II, c*(x,) = ga(@,t) @ r(,1),

we capture the effect of diffusion by studying the Fick'syherew denotes multi-dimensional convolution operation on

second law of diffusion and show as to how the production gf 5nq+.

molecules by each node affects the concentration leveksens | gyr setup, the only molecule producers are nodes. There-

by other nodes in the network. In Sec. Ill, the consensgsye we haver(z,t) = F(t)5(z), whereF(¢) is the molecule

problem is presented and formulated in a matrix form. Thegyoquction rate. Hence, we will have

in Sec. IV, consensus problem is studied for compact and - )

uniform networks and an iterative algorithm is proposed f%(x £) :/ F(r) 1 _exp (_ z >d7’.

the uniform type. In Sec. V, the convergence of the proposed 0 (A4rD(t —7))% 4D(t —7)

algorithm is verified and the rate of the convergence is dis- ) ) )
cussed. Finally, in Sec. VI, the results in the previousisast IS response is valid for open free medium where the only
is simulated and verified for a specific network. boundary conditions are at the transmitter. Note that is thi

model, we do not consider the delay due to the travel time of
Il. BACKGROUND molecules between the nodes. That is we assume molecules
The scheme for a typical molecular communication networkach the nodes instantly. This does not affect our anabfsis
is depicted in Fig. 1. The communication between the shadeshsensus, because it only shifts the time that molecukes ar
nodes in the network is modeled in Fig. 2. Each agent hasceived at the nodes.
the capability of sensing the concentration of molecules in
the medium and release molecules at a specific rate back into
the medium. In other words, each agent in such networks is aVe consider collaborative networks and refer to agents as
transceiver. Channel is the medium that molecules aretegecnetwork nodes. The goal is to spread the information about
into and carried depending on the diffusion coefficient &f than event or any other variation through the network with
medium. In molecular communication, information is enabdeminimum latency. The problem setup is such that each node in
into the variations of molecule concentration, e.g., it ¢@n an N-node network initially has a measurement value. These
in the form of different concentration levels correspomdiao initial measurement values are assumed to be formed from
Amplitude Modulation. estimating a specific parameter in the environment. These
Two main features that distinguish the consensus problesstimates are assumed to derive from a random variable. All
under DbMC from that of the traditional electromagnetithe nodes try to obtain the best estimate for this random
communication are the broadcast nature of DbMC and lirariable through the communication in the network. Nade
gering of the molecules in the shared medium. The moleculegps its estimate of the environment parameter into the leve
that are produced by nodes stay in the medium and chargemolecule concentratiop; corresponding to this estimate.
the concentration sensed by all the other nodes; there is Metwork nodes exchange their estimates via producing prope
need for specialized routing which makes it fit fornetwork molecular concentrations in the medium, to arrive at consen
processing. Hence, the first step is to characterize thedsahp sus. We assume these estimated concentrations are drawn fro
and spatial variations of molecules in the channel whiche same distributionV(u, 03), i.e., a Gaussian distribution
follows the general diffusion equations. According to Fck with expected value of. and variance ofZ.
second law of diffusion, the concentration of molecules t) The best unbiased estimate foris the average of initial
at positionz at timet in anm-dimensional space (i.e. medium)estimates of nodes, i.¢. = po, = % vazl p;. This estimate

is computed using the molecule production rate, t) at the a5 variance o%g which can be arbitrarily small wheiV

Ill. PROBLEM STATEMENT

source, as follows: is large enough. Consensus is reached when estimate of each
9 node approaches this value and the variance of their estimat
C(.I‘,t) _ DV2 1 o2 .
o c(z,t) +r(z, t). 1) approachess;. We propose an algorithm that ensures all

Here, z is the distance of any point in the environment fronjdes to arrive at an estimate for the average consensus in
the source (assuming the source is at the zero position) 4fféfe amount of time. After evaluating the average of these
D is the diffusion coefficient of the medium. The impmsé:oncentrauons, nodes can map their molecule productien ra
response of (1), corresponding 16z, t) = d(x)3(t), is the back into the average of the parameter that they measured in

Green’s functiony(x, t) whose expression is as follows; ~ the environment. _ _
In this network, nodes communicate with each other through

ga(x,t) = —————exp (_ ) diffusing molecules into the environment with differentes
(4rDt) = 4Dt These rates of molecule production change the concentratio

This impulse response is given for andimensional medium. of molecules at vicinity of other nodes and convey the infor-

Note that diffusion in ann-dimensional space is equivalent tanation from one node to another. Hence, each node needs

il
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Fig. 1. Node 1 Diffusing Molecules into a Network of 5 Fig. 2: Model of Molecular Communication from node 1 to
Nodes. node 2.

to choose the best rate based on its estimate and conirey5), X is a symmetric matrix whose entries (i, j) are

this estimate to other nodes. Based on received molecaldculated according to (4). If we set every entrycods p,.,

concentration and their previous estimate, nodes imptoeie t we will get a linear system of equations that can be solved to

estimates iteratively until they reach a consensus. obtain F}, thei*" element ofF. If X is invertible, there would
Assume node has an initial estimate,. The goal is to be a unique solution foF'. The important issue here is that

obtain the averagg,, = % vazl pi by every node. From (1), each agent choosés based solely on its estimate whereas the

the concentration of molecules(t) in the vicinity of nodei estimates of other nodes are unknown for the agent. Hence,

is given by F; in (5) can depend only op; but the general solution for
N F does not necessarily satisfy this condition. Therefore, we
ci(t) = Zcf;(a:ij,t) for i=1,2,...,N. propose an iterative solution for reaching the consenstie wh
j=1 imposing this dependency constraint.

where ¢} (z;;,t) is the response at the position of node
due to production by nodg. Furthermore.x;; denotes the ) _ )
distance between nodeand;. In its classical communication Ve consider a discrete model of time epochs of leriih
analogue, we have a network df transceivers. Transmittgr [O" @nalyzing the network. The length of an epoch depends
sends the signdl;(t) to N receivers throughV different chan- ©On the topology of the network. In particular, it depends on
nels with the impulse responge(z;, t), j € {1,2...., N}. At the effect!ve r_adlusR of (_each node (wh!ch is explained later)
each receiver, the superposition of outputs frafndifferent 2nd the diffusion coefficient of the mediuf. We can assume
channels is observed. Ty = k% wherek is a constant. We arbitrarily choosdo be
The N equations above should be optimized with respe%ﬂua| to one. Although our ana!ysis is valid forlothervalutas
to F;(t) to produce the average of the initial estimates in thfe In €ach time epoch, nodeemits molecules with a constant

vicinity of each node at a specific tinf,. We assume node 'até Fi. At the beginning of each time epoch, each node
i transmits molecules with a constant rdtein the interval OPtimizesF; based on its previous estimate and measurement

[0, Ty]. Therefore, at timel,, the concentration of moleculesOf the molecular concentration in the environment, such tha

IV. PROPOSEDALGORITHM

at nodei is given by the estimate _of all nodes becomes closept;g Hence, at the
N end of each intervalt = Tj), the concentration at nodecan
. be obtained by (5).
(1) = F;X(3,7), 3 . )
(t) ; X (0:9) ® Note that after each interval, nodes need to wait for a

specific amount of time, which will be again in the form
T of k%, before releasing the molecules for the next epoch.
0 1 |x .|2 . " . . .
X(i,j) = / —exp (_ i ) dr.  This waiting interval is needed to allow the molecules in the
o @ArD(To—7))= 4D(Tp — ) environment diffuse away or equivalently to reset the cleann
o (4)  For the rest of the paper, an iteration includes both thefige
Note that X (i,j) only depends on the geometry of they olecules and the waiting intervals.

neEW?rFk.b t <ing of th duct e of o C2S€ t First, we study the special case of compact net-
€ € a veclor consisting of the production rate o aU\/orks. In such networks, nodes are in vicinity of each other

thel nodles. LIk?\I.VI-SG, Ifetthbe the ViCtordOf c_lczﬂcentratlﬁn 0fand approximately sense the same concentration of mokecule
molecules at vicinity of the network nodes. Then, we have within the radius of the network, i.e; = ¢;, Vi, j. Molecules

c=XF. (5) produced by each node would have the same share in making

where




up the concentration in the network radius. Therefore, the disregarded. We note that in a general casewould be
matrix equation in (5) results in a single equation for tha general symmetric matrix and the analysis will be more
common concentration of node$7;) at the center of the difficult. However, in the uniformly distributed case, wenca

network at timeTy: propose an iterative method that ensures the reduction of
variance in each iteration and convergence to the average
N T, I value.

o(Ty) = Z / J _ Let p(n) be the estimate vector of nodes at epecland

=1 /0 (4rD(To — 7)) > pi(n) be theit" element of the vector. In addition, le{n)

|22 denotes the vector of molecule concentrations at the woofi

_ J d L .

exp < AD(To — T)> 7’] nodes at epoch. Assume each node has an initial estimate

N pi(0). After each epoch, nodes update their estimate based
_ v on the molecules received from other nodes. Sups®
= > FX;. (6) e o

be the sum of entries in th&" column of X. Because of the

] ] isotropic settingS; is the same for all columns, denoted By
Here,z; is the distance between the nofland the center of 1o nodes set their molecule production ratefgs) = 2

. S
the network (note that we choose the center for the notaum)e assume that each node is aware of the location of other

§imp|ifica_tion). FurthermoreX; is the result of integration ,,4es at its effective radius and hence can compjitelence,

in (6) which depends only om; and the network constants. paseq on (5), after communication among nodes, we will have
Equation (6) implies that by setting; = %, we can -

equate the concentratiof(7y) t0 puy = %Z;V:lpj. We c(n) = X@ = gp(n). @)

observe that the previously mentioned dependency constrai _ )

is taken into account. In this scenario, all the nodes are alkj Y observe that sum of each row or column in the matrix

to observe each other. Hence, by setting appropriate ratds; % is equal to one. Henck is a doubly stochastic matrix.
they can reach the consensus in one step without any furtf assume that each nodaipdates its estimate by putting
iterations. In the following, we study the more challengingi( + 1) = ci(n). Thus, we have an iterative equation for
case that the network is extended and the concentration€§fimate of nodes.

molecules differs at the vicinity of _each node. In addition, p(n) = Xp(n —1). 8)
nodes may not be able to interact with all the other nodes. In

this case, the information is conveyed from one side of the the following, we examine the convergence of (8).
network to another by nodes acting as relays.

Case Il: We consider a network with nodes that are
uniformly deployed in ann-dimensional medium. In a suf- First, we verify that the iterative algorithm proposed in) (8
ficiently large network, each node observes the same relati@sults in an unbiased estimate for= E[p;(0)] wherey is
distances to the other nodes in the network (except for tH'l:? expected value of the Gaussian distribution that th&ini
nodes on the boundary of the network whose effects are négtimate is from. We denote I8{p(n)] the vector of expected
ligible when the number of nodes is large enough). Since tMalues of the estimates at iterationWe know thatE[p(0)] =
network is extended, each node has effective communiaatistl, wherel is the (N x 1) vector whose elements are all
with only a specific number of nodes. To obtain this numbe@ne. Since the matriX is assumed to be constant during the
we consider a circle of radius around each node whichiterations,E[p(n)] is given by
includes the nodes that it can have effective communication < <
The number of nodes at distaneefrom node: increases Elp(n)] = EXp(n —1)] = XE[p(n — 1)] ©)
linearly with . However, based on (2), the effect they havBince the sum of each row & is equal to zeroXE|[p(0)] =
on nodei decreases as~"". Hence, the collective effect of E[p(0)]. Hence, by continuing the chain in (9), we conclude
all the nodes at distancevaries as a factor ofe="" which that E[p(n)] = E[p(0)] = p1. This implies that the estimate
approaches zero whenbecomes large. By setting a threshol@f nodes at each stepis an unbiased estimate for the initial
e for this factor, we can findR, the effective radius around parameter.
each node. Therefore, the number of nodéshat each node In order to study the variance of the estimates in each
is able to interact with, is equal toR?d in a 2-D medium, iteration, we need to elaborate on some characteristics of
whered is density of nodes in the medium. the matrix X. This doubly stochastic matrix resembles the

Based on the above discussion, the maflx will be transition matrix in a Markov chain. We observe that this
an (N x N) symmetric matrix where the columns are théransition matrix is aperiodic because the entries on thim ma
permutation of each other. In addition, at each column (difagonal, which shows the effect of each node on its own, are
equivalently at each row), there a8’ nonzero elements nonzero. It is also irreducible because the graph reprasent
whereas the rest oN — N’ elements are zero. These zeraf this matrix is connected and we can reach other nodes from
elements correspond to the nodes that the node cannotdnteeach node. Hence, we use the Perron-Frobenius Theorem [14],
directly. In this model, the effect of nodes on the boundarnggarding the eigenvalues)(of X:

V. CONVERGENCEANALYSIS



1) Ay =1 and itis a singular root, 0.35

2) |/\N|§|/\N—1|§|/\2|<1 —N=10
Since the sum of each row is one, the eigenvector corre- 0.3] m;igo
sponding to); is a uniform vector which is the consensus == N=500
vector. The normalized form of this vectoris = \/—%1. The 0.25]
eigenvalue decomposition & is given by ¢ 02

g Yap
X =QAQ " =QAQT. (10) =
] ] ] §0.15f '
Here, @ is a matrix that whose columns are the eigenvectors of
X andA is a diagonal matrix containing the eigenvaluesXof 0.1 |
The result in (10) comes from the fact th¥tis a symmetric
matrix. Hence, eigenvectors are orthogonal to each othér an 0.05%
we haveX ! = X7, Based on (10), we hav&* = QA*QT.
Therefore, the estimate of nodes at iteratiors given by 00 20 20 50 30 100
p(n) = Xp(n 1) number of iterations
= X"p(0) Fig. 3: Convergence of the iterative algorithm versus the
= QA"QTp(0). (11) number of nodes in the network.

Since all the eigenvalues except fby = 1 are smaller than v,; < 1,4 € 1,2...., N. Hence, the variance of the estimate of
one, all the entries in the main diagonal of matkiapproaches node: at iterationn is obtained as

zero except forA;; = 1. Hence, we have 1
o2(n) < od(—=+AN3") i€1,2..,N. (15)
lim p(n) = vvfp(0) N
noee N By deploying more iterati02n3, the upper-bound in (15) can
_ 1 (Z Pi(0)> 1 become arbitrarily close t§¢ which approaches to zero in a
P network with large number of nodes. It is obvious that smalle
= paol. (12) A2 will result in a faster convergence. It can be proved that

when matrixX becomes more sparse, i.e. the columns and the
As we see in (12), after sufficient number of iterations, th@&ws contain more zeros,, becomes closer to one. This can
estimate of nodes approaches to the average of initialfeeliehe explained by the fact that a more spakseneans a more
In order to quantify the rate of convergence, we look intextended network. Hence, more number of relays are needed
the variance of estimates of nodes. As mentioned before, taespread the information in the network and hence, reaching
smallest variance that can be ach|eve§f§|srvh|ch corresponds consensus will be more time consuming. In particular when
to the average value. The covariance matthaw(n) of the X becomes a dlagonal matriX, is equal to one and? does

estimates at iteration is given by not converge to—a This case is equivalent to the scenario
B o in which none of the nodes are able to communicate with each
Cov(n) = [( (n) = Elp(m)])(p(n) — Elp(n)])"] other and their initial beliefs cannot be improved.
= E[p(0) — E[p(0)

VI. CASE STuDY

(
(p(0) —E . . .
_ chov( X (13) . In this se_ctlon, We_present an example to verify our results
in the previous section. We assume a networkNofnodes

where the fact that all powers of a symmetric matrix are al$pat are placed on a line where the distance between two
symmetric is used. Since the initial estimates are consitlesuccessive nodes is a constanfThis network would satisfy

to be independent of each othétou(0) = 02l v wherel the uniform network condition in Sec. IV as long as this line
is the identity matrix. Hence, from (13¥;ov(n) = 085(2"- extends to infinity in both ends. For a realistic situatiorg w
We denote the diagonal elements of the matfisw(n) by assumeN to be finite. We assume nodes communicate with

Covsi(n) which gives the variance of the estimate of eachach other througd-D DbMC in the medium and the size of
node at iteratiom. For largen, we consider only the effect nodes is small such that it does not interfere with diffusién

of )2, the second largest eigenvalueXf Thus, by using the molecules.

decomposition in (10), we have We compute the elements of matibased on (4) and by
normalizing the columns, we obtaiK. Since, the boundary
Cov;;(n) = O'S(N + 02, A3, (14) nodes are taken into account, the symmetric matriX efould

not be doubly stochastic. We compute the variance of columns
where vy; denotes the’” element of eigenvector, corre- of powers of X and verify the convergence of the matrix
sponding to\,. Since the norm of eigenvectos is one, then that governs the convergence of the estimates. The results f
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