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Abstract—Fault detection plays an indispensable role in ensur-
ing the security of smart grid systems. Based on the dynamics of
the generators, we show the time evolution of the smart grid
system can be modeled by a discrete-time linear state space
model. We focus on faults that can be described by changes
in system matrices of the state space model. Newly developed
locally optimum tests are discussed and utilized to improve
the performance for detecting small changes. Numerical results
are provided which demonstrate the superiority of the new
approaches when compared to existing methods, especially in
the detection of small changes.

Index Terms—Fault detection, hypothesis testing, smart grid,
state space model.

I. INTRODUCTION

The vulnerability of smart grid systems is a growing con-
cern. To demonstrate the validity of this concern, we tested the
IEEE 9-bus power system in Fig. 1 using the MATPOWER
simulation package under the default settings specified by
the IEEE document, and we obtain a set of solutions which
include the amount of power flow at each branch. Suppose
the message sent from bus No. 9 to the control center (i.e.,
SCADA) containing the load information is intercepted and
tampered with by a malicious attacker, who induces a false
change in the demanded power at bus No. 9 from the original
125 MW to 560 MW while the overall power demand of this
system remains under its maximum generation capacity. We
again simulate this new 9-bus system and we find that as a
result (see Fig. 2), significant power overflows will occur at
branches a, b, and i. These overflows would likely burn out
lines and damage equipment. Thus the health of this power
system is in great jeopardy due to this malicious data attack.
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IEEE 9-bus system with data attack on bus No. 9.

Fig. 1.

Based on this example, it is clear that the ability to recognize
even a single intrusion is very desirable.

The use of a state space model to describe the dynamics
of a power system has been justified in the past [1], [2].
In order to allow this paper to be self contained, we will
also provide explicit justification in Section II of this paper.
Here we propose to recognize changes in a power system
by employing hypothesis testing to detect changes in the
state space model for the system, a topic which has received
little study to date in the power systems community. The
time for such studies appears right since phasor measurement
devices [5], which allow simultaneous measurement of both
phase and magnitude of any voltage or current, are now
available to provide significant gains in monitoring capability.
It is worth noting that the theory discussed in this paper is
directly applicable to detecting changes in systems for other
applications beyond power systems and these ideas fall in the
general rapidly developing area called cybersystems.

In the course of our study of employing hypothesis testing to
detect changes in power systems, as our results will indicate,
we found that if the change in the matrices describing the
power system are very large, then estimating the change and
employing the estimate in the resulting hypothesis test tends
to work well. This is the so-called generalized likelihood ratio
(GLR) test. On the other hand this approach may not work
well when the changes are small. Here we developed some
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Fig. 2. Power flow at each branch before and after attack.

new locally optimum (LO) tests which tend to outperform the
GLR test for cases with small changes. Previous study of LO
tests were limited to cases where only a scalar parameter is
different under the different hypotheses. In fact, the general
results apply only for positive scalar parameters or for other
very constrained cases. Here we develop new LO tests for
cases with non-scalar parameters which need not be positive.

II. STATE SPACE MODEL FOR SMART GRID SYSTEMS

In this section, we show that a smart grid system can be
modeled using a linear state space model. Consider a smart
grid system consisting of n generators. The mechanical and
electrical dynamics of the ith (: = 1, ..., M) generator can be
described by [1]
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where J;(t) denotes the power angle of the ith generator, w; (t)
the angular velocity of the ith generator, D; in (2) the damping
constant of the ith generator, and J; the rotor inertia of the ith
generator. In (2), P,,;(t) denotes the mechanical input power
of the ¢th generator and

M
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denotes the active power delivered by the ith generator, where
Gi; + jB;; represents the ijth element of the nodal transient
admittance matrix after eliminating all physical busbars, I,;(¢)
represents the quadrature axis stator currents and Ey,(t) in

(3) denotes the transient electromotive force (EMF) in the
quadrature axis for the ith generator. In (3), 7}, denotes the
transient time constant in open circuit for the ith generator,
Eyi(t) the equivalent EMF in the excitation coil of the ith
generator, and

Eqi(t) — xg;) Lai(t) )

denotes the EMF in the quadrature axis for the :th generator,
where x4 and as:h- represent the direct axis reactance and
the direct axis transient reactance, I4;(t) the direct axis stator
currents of the ¢th generator and
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represents the reactive power of the ith generator.
Let the variables on the left hand side of (1)-(3) be the

continuous-time state variables. The state vector of the ith
generator can be written as

E;(t) (6)
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Assume the mechanical torque is constant, so that P,,;(t) =
P,,; does not vary with time. Then in the second component of
the vector in (8), %Pmi (t), becomes zero and can be dropped.
Plugging (4)-(7) into (8), after simplification, approximations,
and manipulation [1], we obtain the continuous-time noise-free
state equation
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The state equation in (10) can be further simplified using
similar approximations [1], and then converted to a discrete-
time version using standard manipulations to get

xp+1 = F(k + Dxg + Gug + wy.
The output equation can be obtained in a similar way as

z;. = Hx;, + Juy, + ey.

III. DISCRETE-TIME LINEAR STATE SPACE MODEL

As we have just shown, a smart grid system can be mod-
eled using a linear state space model using approximations
frequently made in the power system literature [1], [2]. Let
Xj be an N dimensional vector which denotes the state of the
system at time k [1], [2]. Denote the available measurements
by the output vector zj. The state and output time evolutions
are

Xk+1 = F(k + ].)Xk + Guy + wy,

z; = Hx, +Ju, + e (15)

where uy denotes the Gaussian or deterministic input to the
system, wj the zero mean Gaussian state disturbance, and
e, the zero mean Gaussian observation noise, which we
assume are each independent and identically distributed (iid)
sequences mutually independent of each other. We further
assume the initial state xq is deterministic or Gaussian, so Xy,
and zj, are Gaussian sequences. Let 3, 3, and 3, denote the
covariance matrices of uy, wy and ey, respectively. Methods
for finding the parameters of such models (F(k + 1), G, ...)
have been extensively studied, see for example [6].

Here we propose to recognize a failure or intrusion by
recognizing a change in the system. If we want to detect a
change in the internals of the system, not the input, then a
focus on a change in F(k + 1) appears very relevant. Since it
may be impossible to detect the difference between a change
in G and a change in the input, we do not focus on changes
in G. A change in H implies some change in the part of the
system that couples the state to the output. This is interesting
and could be handled in a similar way. Here we focus on
changes in F(k + 1) for simplicity. Note that in (15) we use
the notation F(k + 1) to remind the reader that F(k + 1) in
(15) will impact the state and output at the next time k + 1.
In normal operation the matrix F(k + 1) will be constant, but
if a failure or intrusion occurs it can change at a given time,
say k + 1 = n. We want to recognize this change.

IV. HYPOTHESIS TESTING

One way to detect changes in such a system is to continu-
ously estimate the parameters (F(k+1), G, ...) or some related
quantities (for example spectral characteristic, [7]). One can
also attack the problem more directly by employing hypothesis
testing. For example, if we believe the system is operating for
a long time with F(k+1) = F, and desire to judge if a change
occured at time k + 1 = n we can formulate the hypothesis
testing problem as'

Hj : we observe z = (z1, ...,zn)T from (15) with

Fk+1)=F,fork=0,..,n—1
H, : we observe z = (z1, ...,zn)T from (15) with
| F, fork=0,...n—2
F(k+1)_{Fc7éFo fork=n-—1 (16)

"More general problems where the change might occur over a window of
possible times will be discussed in future work.



for a known n. If F, and F. are both known?, then the
Neyman-Pearson optimum test, maximizing detection proba-
bility for fixed false alarm probability, compares the likelihood
ratio (LR) of the observations z = (z1, ..., zn)T to a threshold
[8] where the LR is

Pz(2|H1)

P2(2|Ho)
~ P(2zn|Zn—1; Fo)p(2n—1|2n—2;F,) - - - p(21|20; Fo)p(20; F o)

P(2Zn|Zn—1:F0)p(Zn—1]2n—2:Fo) - - p(21]20; Fo)p(20; F)
_ P(Zn|Zn-1;F.)

P(zn|zn—1;Fo)
Here p,(z|H;) denotes the probability density function (pdf)
of the observation vector z and p(z41|zx; F(k 4+ 1)) denotes
the conditional pdf of zy41 given z; and F(k + 1).

Under the assumptions made concerning the model in (1),
the conditional pdf of z;,; given z; becomes
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The case where F. is unknown is generally more compli-
cated. One approach is to choose the maximum likelihood
estimate of F., the GLR test [9], which works well if the
estimate is very accurate. We give some alternative approaches
later in his paper where we first develop an LO test for a case
with an unknown vector parameter. We have not seen LO tests
for this case provided in the literature to date.

V. NEw LoCALLY OPTIMUM TESTS
A. LOUD Test and LOED Test

Now we develop an LO test for a general detection problem
with a deterministic unknown /N -dimensional vector parameter
(like vec(F(n))), which we call the LO unknown direction
(LOUD) test. Consider the case where we observe a random
vector y whose pdf py(y; @) is dependent on a deterministic
parameter 6. Consider a binary hypothesis testing problem
where 6 takes on values from two disjoint sets ©, and O,
which distinguishes the two hypotheses

Hy :y has pdf py(y;0) with 6 € O,

H; :y has pdf py(y;0) with 8 € O, 17)

2We only consider F,, F. that are full rank (invertible) so that we will not
have a singular detection problem. Thus F.xj # Foxj. To avoid similar
problems, we also assume H is full rank (invertible).

We assume O, = {6,} and ©, includes all 8 in a very small
ball around 8, and we focus on obtaining good performance
for all such € on average. By employing the /N-dimensional
spherical coordinate system, we write a length r vector in V-
dimensional space as {2 with

cos(¢1)
sin(¢1) cos(¢2)
: (18)

sin(¢q) sin(¢s) - - - cos(dn—1)
sin(¢q) sin(¢s) - - - sin(dn—1)

where ¢; is in [0, 7] for i < N —1 or [0,27] for i = N — 1,
such that (6, + r€2) describes the points on the surface of
an N-sphere centered at 6,. This sphere has a radius r and
a surface area of D = 27N/2¢N=1/T'(N/2). Denote ® =
(b1, 02, ..., dn—1)" and do1des - - - dpn_1 = dP. We define
the differential surface area element as

ds = rN"LsinV 72 (1) sinV 73 (o) - - - sin(py_2)dP.

Let P4(6;0) denote the detection probability of the test
with test function § when the parameter is 8. We define the
LOUD test as the test, with test function  (which describes
the conditional probability that we decide for H; conditioned
on our observing y), that maximizes

8771,

—_— {/ Py(6;0, + TQ)g(@)d@} (19)
(37"7" P

r=0
where m is the lowest order derivative for which (19) is
nonzero, and
_ VTt sin® 2 () sin™ P (6o) -+ sin(én o)
9(®) = D
is the fractional differential area of a small surface element
centered at 8, + r€2. The integrations span over the relevant
angles so that 8, + r€2 ranges over all points in a radius r
N-dimensional sphere around 6,. The LOUD test criterion
searches for a test that produces the largest average P;(J; )
when we average over all possible small changes in the pa-
rameter 6. This is a reasonable extension of the LO test which
is relevant for cases when we have no information concerning
the direction of change from 6, to 6. If some directions are
known to be more likely, this is easy to incorporate.
Since a LOUD test maximizes the lowest order term in a
Taylor series of the quantity differentiated in (19) then its test
function ¢ will ensure

(20)

/ Py(6;0, + 1) g(®)dP 2/ Py(6';0,+rQ)g(®)dP
3 FS

when compared to any other test &’ for 0 < 7 < ryax and
Some 7'max. More details about the LOUD test can be found
in [10].

Instead of attempting to optimize performance averaged
over all the possible directions, an alternative approach is to
estimate the change direction from the observations and to
use this estimate in the LO test. With this idea, we define
the LO estimated direction (LOED) test as the test, with test



function ¢, that maximizes fd(é ; 0.), among all possible tests,
for changes 6. — 6, = r{2 along the estimated direction 2
for 0 < r < rmax and some 7ry,. See [10] for more details.

B. LOUD-GLR Test and LOED-GLR Test

The LOUD and LOED tests are designed for small changes
(6.—8,). On the other hand, if the change is sufficiently large
such that the unknown parameter can be estimated accurately
enough, the performance of the GLR test is known to be
good. Accordingly, we propose to combine the LOUD (or
LOED) test with the GLR test to obtain a new test called
the LOUD-GLR (or LOED-GLR test). The combined test
employs the LOUD (or LOED) test when the change looks
small, and switches to the GLR test when the change looks
large. An intuitive way to assess the size of the change is to
measure the distance between the observed y and the mean
of the observation under Hy hypothesis, p, = E{y;0,}.

Thus, we compute ¢ :\/(y — 110)TEg (v — 1), where
S0 = E{(y — po)(y — po)T;6,}. If € is small then this
observation y would occur under Hy with high probability,
so we select the LOUD or LOED test. If € is large we select
the GLR test. The switch between these two tests can be done
gradually or abruptly.

For simplicity, we present an example for a case where y
is a scalar. Let the test statistic of the combined tests be

Tioair(y) = (1 = NTio(y) + Mair(v) 1)

where

Torr(y) =[Torr () — 7o,V (y — po — A)
+ [Teir(y) — 7o, v (po —y — A)

with v(t) = 1ift > 0or 0if ¢ < 0. In (21), 75, and 7,
are employed to make the test statistic in (21) continuous in
y, and T1o(y) and ToLr(y) denote the test statistics of the
LO and the GLR tests, where the subscript “LO” represents
LOUD or LOED.The factor 0 < A < 1 will switch gradually
between the test statistics used in (21). For example, we can
choose

A=PE (e—A(e—A)/s)

where P(a,b) = fob tte~tdt/ ([, t*te~"dt) denotes the
regularized Gamma function, ¢ > 0 and s > 0 are the
shape and scale parameters that set the range where we have
transition, and the predetermined scalar value A indicates a
distance between y and o within which the LO test will be
used. A more general transform (even nonlinear) on TG r(y)
could be employed in non-scalar cases. We now discuss one
way to choose A. Let y. be the nearest (with respect to
o) critical point of the LOUD or IEOED test statistic which
satisfies Mgi‘;(y)b:yc = 0 and %‘y:yc < 0. Then
A = |ye — pol-
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VI. NUMERICAL RESULTS

In this section, we apply the proposed LO tests to a simpli-
fied version of the model in (15) and illustrate the change
detection performance of the new tests and compare them
with the conventional approaches via numerical investigations.
Here, for simplicity, we consider the case where the variables
and parameters involved are scalars. Assume X,, = 0.001,
e = 0.005, H = 1 and G = 0 and the hypothesis testing
problem in (16). In particular, we assume that prior to times
k+1=n we have F(k + 1) = 1. However, if an abnormal
event occurs then F(n) = F, = F, + AF = 1+ r(), where
r = |AF| and €, indicating the change direction, is either
—1 or 1. Of course if the abnormal event does not occur
then F'(n) = 1. To employ the LO tests we denote § =
vec(F(n)) = F(n) and py(y;60) = Pz, 2, (2n]2n—1; Fo).
The false alarm probability is fixed at Py = 10~3. The simu-
lation results are obtained using 5000 Monte Carlo runs. The
LOUD, LOED, mismatched LR, GLR, ideal LR, LOED-GLR,
and LOUD-GLR tests are considered, where the mismatched
LR detector assumes F'(n) = F, = 1.5 (AF = 0.5) and is
always matched to this value no matter what the actual change
is. Alternatively, the ideal LR detector is perfectly matched to
the actual F,. (thus the actual AF). For the LOUD-GLR or
LOED-GLR test, we use the test statistic

Tio(y), if ly—pol <A

Tiocr(y) = { Tor(y), if |y — po| > A

to switch between the two tests abruptly, where Tio(y) and
TGLR(y) are defined after (21), A = |y. — po| and y. is the
nearest (with respect to pg) critical point of the LOUD or
LOED test.

In Fig. 3, the detection probability P, is plotted versus AF
for various tests, assuming the last observation z,_1 = 1. It is
observed that when the change is positive, all the curves are
almost on top of each other, indicating similar performances.
When the change becomes negative, these tests exhibit very
different behaviors. We see from the curves that the ideal
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LR test (a genie type approach which perfectly sees the
unknown change) has the best performance, which provides
a benchmark for evaluating different tests. The mismatched
LR is significantly affected by the change directions when
the amplitude of the change is small. The LOUD and LOED
tests outperform the GLR test for small changes, as expected,
but their performance is not acceptable in some regime for
negative large changes since they are designed only for small
changes. The performance of the LOUD-GLR and LOED-
GLR tests are close to those of the LOUD and LOED tests
when the change is small, and are good as well when the
change is large due to the switching to the GLR test.

In the second example, we look at the case where AF is
uniformly distributed in [—R, R]. Assume the last observation
Zn—1 = 2. We plot P; versus R in Fig. 4 for the tests
considered in the previous example. It is seen that the LOUD
and LOED tests have superior performance compared with the
traditional GLR test or mismatched LR test for small changes.
The performance the LOUD and LOED test degrade when
R becomes large. The LOUD-GLR and LOED-GLR have
similar performance as the LOUD and LOED for small R, and
maintain a good performance for large R. Again, these results
illustrate the superiority of the proposed LO tests for small
changes. They also show that the LOUD-GLR and LOED-
GLR tests are preferable, since they perform nearly as good as
the LOUD and LOED tests when the change is small and also
have satisfactory performance when the change is large. We
studied many other examples and obtain a similar conclusion.

VII. CONCLUSIONS

The importance of failure and intrusion detection of smart
grid systems was illustrated. We showed that a smart grid
system can be modeled by a linear state space model using
some frequently made approximations. We introduced two new
locally optimum tests, the LOUD test and the LOED test. Then
we discussed combining the LO tests with the GLR test. It
was shown that the new LO tests are favorable for detecting

small changes with unknown directions. while the LOUD-
GLR and LOED-GLR tests have satisfactory performance for
the detection of both small and large changes.
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