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Abstract—1 In this paper, a cognitive relay channel is consid-
ered, and amplify-and-forward (AF) relay beamforming designs
in the presence of an eavesdropper and a primary user are
studied. Our objective is to optimize the performance of the
cognitive relay beamforming system while limiting the interfer-
ence in the direction of the primary receiver and keeping the
transmitted signal secret from the eavesdropper. We show that
under both total and individual power constraints, the problem
becomes a quasiconvex optimization problem which can be solved
by interior point methods. We also propose two sub-optimal
null space beamforming schemes which are obtained in a more
computationally efficient way.

Index Terms: Amplify-and-forward relaying, cognitive radio,
physical-layer security, relay beamforming.

I. INTRODUCTION

The need for the efficient use of the scarce spectrum in
wireless applications has led to significant interest in the
analysis of cognitive radio systems. One possible scheme
for the operation of the cognitive radio network is to allow
the secondary users to transmit concurrently on the same
frequency band with the primary users as long as the resulting
interference power at the primary receivers is kept below the
interference temperature limit [1]. Note that interference to
the primary users is caused due to the broadcast nature of
wireless transmissions, which allows the signals to be received
by all users within the communication range. Note further
that this broadcast nature also makes wireless communica-
tions vulnerable to eavesdropping. The problem of secure
transmission in the presence of an eavesdropper was first
studied from an information-theoretic perspective in [2] where
Wyner considered a wiretap channel model. In [2], the secrecy
capacity is defined as the maximum achievable rate from the
transmitter to the legitimate receiver, which can be attained
while keeping the eavesdropper completely ignorant of the
transmitted messages. Later, Wyner’s result was extended
to the Gaussian channel in [4]. Recently, motivated by the
importance of security in wireless applications, information-
theoretic security has been investigated in fading multi-antenna
and multiuser channels. For instance, cooperative relaying
under secrecy constraints was studied in [9]–[11]. In [11],for
amplify and forwad relaying scheme, not having analytical
solutions for the optimal beamforming design under both
total and individual power constraints, an iterative algorithm

1This work was supported by the National Science Foundation under Grants
CNS–0834753, and CCF–0917265.

is proposed to numerically obtain the optimal beamforming
structure and maximize the secrecy rates.

Although cognitive radio networks are also susceptible to
eavesdropping, the combination of cognitive radio channels
and information-theoretic security has received little attention.
Very recently, Peiet al. in [12] studied secure communi-
cation over multiple input, single output (MISO) cognitive
radio channels. In this work, finding the secrecy-capacity-
achieving transmit covariance matrix under joint transmitand
interference power constraints is formulated as a quasiconvex
optimization problem.

In this paper, we investigate the collaborative relay beam-
forming under secrecy constraints in the cognitive radio net-
work. We first characterize the secrecy rate of the amplify-
and-forward (AF) cognitive relay channel. Then, we formulate
the beamforming optimization as a quasiconvex optimization
problem which can be solved through convex semidefinite pro-
gramming (SDP). Furthermore, we propose two sub-optimal
null space beamforming schemes to reduce the computational
complexity.

II. CHANNEL MODEL

We consider a cognitive relay channel with a secondary user
sourceS, a primary userP , a secondary user destinationD,
an eavesdropperE, andM relays{Rm}Mm=1, as depicted in
Figure 1. We assume that there is no direct link betweenS
andD, S andP , andS andE. We also assume that relays
work synchronously to perform beamforming by multiplying
the signals to be transmitted with complex weights{wm}. We
denote the channel fading coefficient betweenS andRm by
gm ∈ C, the fading coefficient betweenRm andD by hm ∈ C,
Rm and P by km ∈ C and the fading coefficient between
Rm and E by zm ∈ C. In this model, the sourceS tries
to transmit confidential messages toD with the help of the
relays on the same band as the primary user’s while keeping
the interference on the primary user below some predefined
interference temperature limit and keeping the eavesdropperE
ignorant of the information. It’s obvious that our channel is a
two-hop relay network. In the first hop, the sourceS transmits
xs to relays with powerE[|xs|

2] = Ps. The received signal at
themth relayRm is given by

yr,m = gmxs + ηm (1)
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Fig. 1. Channel Model

whereηm is the background noise that has a Gaussian distri-
bution with zero mean and variance ofNm.

In the AF scenario, the received signal atRm is directly
multiplied by lmwm without decoding, and forwarded toD.
The relay output can be written as

xr,m = wmlm(gmxs + ηm). (2)

The scaling factor,

lm =
1

√

|gm|2Ps +Nm

, (3)

is used to ensureE[|xr,m|2] = |wm|2. There are two kinds of
power constraints for relays. First one is a total relay power
constraint in the following form:||w||2 = w†w ≤ PT where
w = [w1, ...wM ]T and PT is the maximum total power.
(·)T and (·)† denote the transpose and conjugate transpose,
respectively, of a matrix or vector. In a multiuser network such
as the relay system we study in this paper, it is practically more
relevant to consider individual power constraints as wireless
nodes generally operate under such limitations. Motivatedby
this, we can impose|wm|2 ≤ pm∀m or equivalently|w|2 ≤ p

where | · |2 denotes the element-wise norm-square operation
andp is a column vector that contains the components{pm}.
pm is the maximum power for themth relay node.

The received signals at the destinationD and eavesdropper
E are the superposition of the messages sent by the relays.
These received signals are expressed, respectively, as

yd =

M
∑

m=1

hmwmlm(gmxs + ηm) + n0, and (4)

ye =

M
∑

m=1

zmwmlm(gmxs + ηm) + n1 (5)

wheren0 and n1 are the Gaussian background noise com-
ponents with zero mean and varianceN0, at D and E,

respectively. It is easy to compute the received SNR atD
andE as

Γd =
|
∑M

m=1 hmgmlmwm|2Ps
∑M

m=1 |hm|2l2m|wm|2Nm +N0

, and (6)

Γe =
|
∑M

m=1 zmgmlmwm|2Ps
∑M

m=1 |zm|2l2m|wm|2Nm +N0

. (7)

The secrecy rate is now given by

Rs = I(xs; yd)− I(xs; ye) (8)

= log(1 + Γd)− log(1 + Γe) (9)

= log

(

∑M

m=1 |zm|2l2m|wm|2Nm +N0
∑M

m=1 |hm|2l2m|wm|2Nm +N0

×

|
∑M

m=1 hmgmlmwm|2Ps +
∑M

m=1 |hm|2l2m|wm|2Nm +N0

|
∑M

m=1 zmgmlmwm|2Ps +
∑M

m=1 |zm|2l2m|wm|2Nm +N0

)

(10)

whereI(·; ·) denotes the mutual information. The interference
at the primary user is

Λ = |

M
∑

m=1

kmgmlmwm|2Ps +

M
∑

m=1

|km|2l2m|wm|2Nm. (11)

In this paper, under the assumption that the relays have
perfect channel side information (CSI), we address the joint
optimization of {wm} and hence identify the optimum col-
laborative relay beamforming (CRB) direction that maximizes
the secrecy rate in (10) while maintaining the interferenceon
the primary user under a certain threshold, i.e,.Λ ≤ γ, where
γ is the interference temperature limit.

III. O PTIMAL BEAMFORMING

Let us define

hg = [h∗
1g

∗
1l1, ..., h

∗
Mg∗M lM ]T , (12)

hz = [z∗1g
∗
1 l1, ..., z

∗
Mg∗M lM ]T , (13)

hk = [k∗1g
∗
1l1, ..., k

∗
Mg∗M lM ]T , (14)

Dh = Diag(|h1|
2l21N1, ..., |hM |2l2MNM ), (15)

Dz = Diag(|z1|2l21N1, ..., |zM |2l2MNM ), and (16)

Dk = Diag(|k1|2l21N1, ..., |kM |2l2MNM ) (17)

where superscript∗ denotes conjugate operation. Then, the
received SNR at the destination and eavesdropper, and the
interference on primary user can be written, respectively,as

Γd =
Psw

†hghg
†w

w†Dhw +N0
, (18)

Γe =
Psw

†hzhz
†w

w†Dzw+N0
, (19)

Λ = Psw
†hkhk

†w +w†Dkw. (20)

With these notations, we can write the objective function of
the optimization problem (i.e., the term inside the logarithm
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in (10)) as

1 + Γd

1 + Γe

=
1 +

Psw
†hghg

†w

w†Dhw+N0

1 + Psw†hzhz
†w

w†Dzw+N0

=
w†Dhw +N0 + Psw

†hghg
†w

w†Dzw +N0 + Psw†hzhz
†w

×
w†Dzw+N0

w†Dhw +N0
(21)

=
N0 + tr((Dh + Pshghg

†)ww†)

N0 + tr((Dz + Pshzhz
†)ww†)

×
N0 + tr(Dzww†)

N0 + tr(Dhww†)
.

If we denote t1 =
N0+tr((Dh+Pshghg

†)ww†)

N0+tr((Dz+Pshzhz
†)ww†)

, t2 =
N0+tr(Dzww†)
N0+tr(Dhww†)

, defineX , ww†, and employ the semidef-
inite relaxation approach, we can express the beamforming
optimization problem as

max
X,t1,t2

t1t2

s.t tr
(

X

(

Dh + Pshghg
† − t1

(

Dz + Pshzhz
†
)))

≥ N0(t1 − 1)

tr (X (Dz − t2Dh)) ≥ N0(t2 − 1)

tr
(

X
(

Dk + Pshkhk
†
))

≤ γ

and diag(X) ≤ p, (and/or tr(X) ≤ PT ) and X � 0.
(22)

The optimization problem here is similar to that in [11]. The
only difference is that we have an additional constraint due
to the interference limitation. Thus, we can use the same
optimization framework. The optimal beamforming solution
that maximizes the secrecy rate in the cognitive relay channel
can be obtained by using semidefinite programming with a
two dimensional search for both total and individual power
constraints. For simulation, one can use the well-developed
interior point method based package SeDuMi [14], which
produces a feasibility certificate if the problem is feasible,
and its popular interface Yalmip [15]. It is important to note
that we should have the optimalX to be of rank-one to
determine the beamforming vector. While proving analytically
the existence of a rank-one solution for the above optimization
problem seems to be a difficult task2, we would like to
emphasize that the solutions are rank-one in our simulations.
Thus, our numerical result are tight. Also, even in the case we
encounter a solution with rank higher than one, the Gaussian
randomization technique is practically proven to be effective
in finding a feasible, rank-one approximate solution of the
original problem. Details can be found in [8].

IV. SUB-OPTIMAL NULL SPACE BEAMFORMING

Obtaining the optimal solution requires significant compu-
tation. To simplify the analysis, we propose suboptimal null
space beamforming techniques in this section .

2Since we in general have more than two linear constraints depending on the
number of relay nodes and since we cannot assume that we have channels
with real and positive coefficients, the techniques that areused in several
studies to prove the existence of a rank-one solution (see e.g., [5], [8],and
references therein) are not directly applicable to our setting.

A. Beamforming in the Null Space of Eavesdropper’s Channel
(BNE)

We choosew to lie in the null space ofhz. With this as-
sumption, we eliminateE’s capability of eavesdropping onD.
Mathematically, this is equivalent to|

∑M

m=1 zmgmlmwm|2 =
|hz

†w|2 = 0, which meansw is in the null space ofhz
†. We

can writew = H⊥
z v, whereH⊥

z denotes the projection matrix
onto the null space ofhz

†. Specifically, the columns ofH⊥
z

are orthonormal vectors which form the basis of the null space
of hz

†. In our case,H⊥
z is anM × (M − 1) matrix. The total

power constraint becomesw†w = v†H⊥
z

†
H⊥

z v = v†v ≤ PT .
The individual power constraint becomes|H⊥

z v|
2 ≤ p

Under the above null space beamforming assumption,Γe is
zero. Hence, we only need to maximizeΓd to get the highest
achievable secrecy rate.Γd is now expressed as

Γd =
Psv

†H⊥
z

†
hghg

†H⊥
z v

v†H⊥
z
†
DhH⊥

z v +N0

. (23)

The interference on the primary user can be written as

Λ = Psv
†H⊥

z

†
hkhk

†H⊥
z v + v†H⊥

z

†
DkH

⊥
z v. (24)

DefiningX , vv, we can express the optimization problem
as

max
X,t

t

s.t tr
(

X
(

PsH
⊥
z

†
hghg

†H⊥
z − tH⊥

z

†
DhH

⊥
z

))

≥ N0t

tr
(

X
(

H⊥
z

†
DkH

⊥
z + PsH

⊥
z

†
hkhk

†H⊥
z

))

≤ γ

and diag(H⊥
z XH⊥

z

†
) ≤ p, (and/or tr(X) ≤ PT ) and X � 0.

(25)

This problem can be easily solved by semidefinite program-
ming with bisection search [10].

B. Beamforming in the Null Space of Eavesdropper’s and
Primary User’s Channels (BNEP)

In this section, we choosew to lie in the null space
of hz and hk. Mathematically, this is equivalent to re-
quiring |

∑M

m=1 zmgmlmwm|2 = |hz
†w|2 = 0, and

|
∑M

m=1 kmgmlmwm|2 = |hk
†w|2 = 0. We can writew =

H⊥
z,kv, whereH⊥

z,k denotes the projection matrix onto the
null space ofhz

† andhk
†. Specifically, the columns ofH⊥

z,k

are orthonormal vectors which form the basis of the null space.
In our case,H⊥

z,k is anM × (M − 2) matrix. The total power

constraint becomesw†w = v†H⊥
z,k

†
H⊥

z,kv = v†v ≤ PT .
The individual power constraint becomes|H⊥

z,kv|
2 ≤ p.

With this beamforming strategy, we again haveΓe = 0.
Moreover, the interference on the primary user is now reduced
to

Λ =

M
∑

m=1

|km|2l2m|wm|2Nm = v†H⊥
z,k

†
DkH

⊥
z,kv (26)
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which is the sum of the forwarded additive noise components
present at the relays. Now, the optimization problem becomes

max
X,t

t

s.t tr
(

X
(

PsH
⊥
z,k

†
hghg

†H⊥
z,k − tH⊥

z,k

†
DhH

⊥
z,k

))

≥ N0t

tr
(

X
(

H⊥
z,k

†
DkH

⊥
z,k

))

≤ γ

and diag(H⊥
z,kXH⊥

z,k

†
) ≤ p, (and/or tr(X) ≤ PT )

and X � 0.
(27)

Again, this problem can be solved through semidefinite pro-
gramming. With the following assumptions, we can also obtain
a closed-form characterization of the beamforming structure.
Since the interference experienced by the primary user consists
of the forwarded noise components, we can assume that the
interference constraintΛ ≤ γ is inactive unlessγ is very small.
With this assumption, we can drop this constraint. If we further
assume that the relays operate under the total power constraint
expressed asv†v ≤ PT , we can get the following closed-form
solution:

max
v†v≤Pt

Γd

= max
v†v≤Pt

Psv
†H⊥

z,k

†
hghg

†H⊥
z,kv

v†H⊥
z,k

†
DhH

⊥
z,kv +N0

= max
v†v≤Pt

Psv
†H⊥

z,k

†
hghg

†H⊥
z,kv

v†

(

H⊥
z,k

†
DhH

⊥
z,k +

N0

PT

I

)

v

= Psλmax

(

H⊥
z,k

†
hghg

†H⊥
z,k,H

⊥
z,k

†
DhH

⊥
z,k +

N0

PT

I

)

where λmax(A,B) is the largest generalized eigenvalue
of the matrix pair (A,B) 3. Hence, the maximum se-
crecy rate is achieved by the beamforming vectorvopt =
ςu where u is the eigenvector that corresponds to
λmax

(

H⊥
z

†
hghg

†H⊥
z ,H

⊥
z

†
DhH

⊥
z + N0

PT

I

)

and ς is chosen

to ensurev†
optvopt = PT .

V. M ULTIPLE PRIMARY USERS ANDEAVESDROPPERS

The discussion in Section III can be easily extended to
the case of more than one primary user in the network.
Each primary user will introduce an interference constraint
Γi ≤ γi which can be straightforwardly included into (22).
The beamforming optimization is still a semidefinite pro-
gramming problem. On the other hand, the results in Section
III cannot be easily extended to the multiple-eavesdropper
scenario. In this case, the secrecy rate for AF relaying is
Rs = I(xs; yd) − maxi I(xs; ye,i), where the maximization
is over the rates achieved over the links between the relays
and different eavesdroppers. Hence, we have to consider the
eavesdropper with the strongest channel. In this scenario,the
objective function cannot be expressed in the form given in

3For a Hermitian matrixA ∈ Cn×n and positive definite matrixB ∈

Cn×n, (λ, ψ) is referred to as a generalized eigenvalue – eigenvector pair of
(A,B) if (λ, ψ) satisfyAψ = λBψ [13].
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Fig. 2. AF secrecy rate vs.PT /Ps. σg = 10, σh =, σz = 1, σk = 1,M =
10, γ = 0dB.

(10) and the optimization framework provided in Section III
does not directly apply to the multi-eavesdropper model.

However, the null space beamforming schemes discussed in
Section IV can be extended to the case of multiple primary
users and eavesdroppers under the condition that the numberof
relay nodes is greater than the number of eavesdroppers or the
total number of eavesdroppers and primary users depending
on which null space beamforming is used. The reason for this
condition is to make sure the projection matrixH⊥ exists.
Note that the null space ofi channels in general has the
dimensionM × (M − i) whereM is the number of relays.

VI. N UMERICAL RESULTS AND DISCUSSION

We assume that{gm}, {hm}, {zm}, {km} are complex,
circularly symmetric Gaussian random variables with zero
mean and variancesσ2

g , σ2
h, σ2

z and σ2
k respectively. In this

section, each figure is plotted for fixed realizations of the
Gaussian channel coefficients. Hence, the secrecy rates in the
plots are instantaneous secrecy rates.

In Fig. 2, we plot the optimal secrecy rates for the amplify-
and-forward collaborative relay beamforming system under
both individual and total power constraints. We also pro-
vide, for comparison, the secrecy rates attained by using
the suboptimal beamforming schemes. The fixed parameters
are σg = 10, σh = 1, σz = 1, σk = 1, γ = 0dB, and
M = 10. Since AF secrecy rates depend on both the source
and relay powers, the rate curves are plotted as a function
of PT /Ps. We assume that the relays have equal powers in
the case in which individual power constraints are imposed,
i.e., pi = PT /M . It is immediately seen from the figure
that the suboptimal null space beamforming achievable rates
under both total and individual power constraints are very
close to the corresponding optimal ones. Especially, they are
nearly identical in the high SNR regime, which suggests that
null space beamforming is optimal at high SNRs. Thus, null
space beamforming schemes are good alternatives as they
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are obtained with much less computational burden. Moreover,
we interestingly observe that imposing individual relay power
constraints leads to small losses in the secrecy rates.

In Fig. 3, we change the parameters toσg = 10, σh =
1, σz = 2, σk = 4, γ = 10dB and M = 10. In this case,
channels between the relays and the eavesdropper and between
the relays and the primary-user are on average stronger than
the channels between the relays and the destination. We note
that beamforming schemes can still attain good performance
and we observe similar trends as before.

In Fig. 4, we plot the optimal secrecy rate and the se-
crecy rates of the two suboptimal null space beamforming
schemes (under both total and individual power constraints)
as a function of the interference temperature limitγ. We
assume thatPT = Ps = 0dB. It is observed that the secrecy

rate achieved by beamforming in the null space of both the
eavesdropper’s and primary user’s channels (BNEP) is almost
insensitive to different interference temperature limitswhen
γ ≥ −4dB since it always forces the signal interference to
be zero regardless of the value ofγ. It is further observed
that beamforming in the null space of the eavesdropper’s
channel (BNE) always achieves near optimal performance
regardless the value ofγ under both total and individual power
constraints.

VII. C ONCLUSION

In this paper, collaborative relay beamforming in cognitive
radio networks is studied under secrecy constraints. Optimal
beamforming designs that maximize secrecy rates are investi-
gated under both total and individual relay power constraints.
We have formulated the problem as a semidefinite program-
ming problem and provided an optimization framework. In
addition, we have proposed two sub-optimal null space beam-
forming schemes to simplify the computation. Finally, we have
provided numerical results to illustrate the performancesof
different beamforming schemes.
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