Loading [a11y]/accessibility-menu.js
Information diffusion in overlaying social-physical networks | IEEE Conference Publication | IEEE Xplore

Information diffusion in overlaying social-physical networks


Abstract:

We study the diffusion of information in an overlaying social-physical network. Namely, we consider a physical information network where information spreads amongst peopl...Show More

Abstract:

We study the diffusion of information in an overlaying social-physical network. Namely, we consider a physical information network where information spreads amongst people through conventional communication media (e.g., face-to-face communication, phone calls), and conjoint to this physical network, there are online social networks where information spreads via web sites such as Facebook, Twitter, FriendFeed, YouTube, etc. Capitalizing on the theory of inhomogeneous random graphs, we quantify the size and the critical threshold of information epidemics in this conjoint social-physical network by assuming that information diffuses according to the SIR epidemic model. One interesting finding is that even if there is no percolation in the individual networks, percolation (i.e., information epidemics) can take place in the conjoint social-physical network. We also show, both analytically and experimentally, that the fraction of individuals who receive an item of information (started from an arbitrary node) is significantly larger in the conjoint social-physical network case, as compared to the case where the networks are disjoint. These findings reveal that conjoining the physical network with online social networks can have a dramatic impact on the speed and scale of information diffusion.
Date of Conference: 21-23 March 2012
Date Added to IEEE Xplore: 24 September 2012
ISBN Information:
Conference Location: Princeton, NJ, USA

Contact IEEE to Subscribe

References

References is not available for this document.