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Abstract—Finding an optimal sensing policy for a particular
access policy and sensing scheme is a laborious combinatorial
problem that requires the system model parameters to be known.
In practise the parameters or the model itself may not be com-
pletely known making reinforcement learning methods appealing.
In this paper a non-parametric reinforcement learning-based
method is developed for sensing and accessing multi-band radio
spectrum in multi-user cognitive radio networks. A suboptimal
sensing policy search algorithm is proposed for a particular
multi-user multi-band access policy and the randomized Chair-
Varshney rule. The randomized Chair-Varshney rule is used to
reduce the probability of false alarms under a constraint on
the probability of detection that protects the primary user. The
simulation results show that the proposed method achieves a sum
profit (e.g. data rate) close to the optimal sensing policy while
achieving the desired probability of detection.

Index Terms—Cognitive radio, sensing policy, reinforcement
learning

I. INTRODUCTION

Spectrum sensing is a key task in cognitive radio (CR).

Spectrum sensing is needed for identifying the state of the

licensed spectrum (whether it is idle for secondary use or not)

as well as for modeling and managing interference. In order to

guarantee reliable sensing under demanding fading conditions

and to divide the sensing work cooperation is needed among

the secondary users (SUs).

In cooperative spectrum sensing the SUs send their local

binary decisions (or local test statistics) to a fusion center

(FC), that makes the global decision using a fusion rule. The

reliability of the global decision is measured by the probability

of detection and the probability of false alarm. The probability

of detection tells how well the primary users (PUs) can be

protected from interference, i.e., situations where the SUs

falsely identify the spectrum to be idle and try to access the

spectrum simultaneously with the PU. The probability of false

alarm on the other hand reflects on how well idle spectrum can

be detected. In order to protect the PU while utilizing most of

the available spectrum holes, we would like to minimize the

probability of false alarm under a constraint on the detection

probability.

Depending on the local sensing channel conditions the

detection probability at the FC may be either too low so

that the interference constraint is violated, or too high so that

available spectrum opportunities are being overlooked more

than necessary. Assuming that the FC knows or is able to learn

the SUs’ local sensing performance indices it is possible to use

the Chair-Varshney (CV) rule [1] to balance between the global

false alarm probability and detection probability. Commonly

it is assumed that the values are equal in each detector and

these values are selected by the designer. However, there are

versions of the CV-rule where the values are estimated [2].

In CR-networks the multi-user multi-band secondary spec-

trum use is governed by two policies. A sensing policy that

tells which frequency bands to sense and by which SUs, and an

access policy which tells when, how and by whom the idle

frequencies can be accessed [3]. In this paper we focus only on

who gets to access and when. In [4] a decentralized cognitive

MAC protocol based on the theory of partially observable

Markov decision processes (POMDPs) was proposed, where

the SUs independently search for available spectrum holes. In

[5] the separation principle that decouples the design of the

optimal sensing policy from the design of the access policy

and the sensor operating point was established. However,

these works do not consider the effect of the distribution

of the sensing resources on the sensing policy. In [6] we

proposed a reinforcement learning-based sensing policy with

a sensing assignment optimization for a fixed fusion rule.

In [7] a reinforcement learning based multiagent spectrum

sensing policy is proposed that balances between two mutually

exclusive objectives: minimizing the false alarm rate under a

detection probability constraint and the number of frequency

bands sensed simultaneously.

In this paper a reinforcement learning-based multi-user

multi-band spectrum sensing and access method is proposed.

A heuristic sensing policy search algorithm is proposed for

an access policy that allocates SUs to idle bands so that

a function balancing between sum data rate and fairness is

maximized. For the cooperative sensing the randomized CV-

rule is employed. For estimating the local performance indices

needed by the CV-rule the proposed reinforcement learning

method exploits spatial diversity that makes the global deci-

sions reliable. The contributions of this paper are as follows:

The randomized CV-rule is used to reduce the number of

false alarm under a constraint on the detection probability.

A heuristic sensing policy search is proposed for the

randomized CV-rule and a multi-user multi-band access

policy balancing between data rate maximization and user

fairness.

A reinforcement learning method that learns the needed



local detection performance indices, data rates and the

band availability probabilities.

The rest of this paper is organized as follows. In section II

the system model for the SU and PU networks is described. In

section III the randomized CV-rule is presented. In section IV

a simple access policy is developed that facilitates balancing

between the SU network sum data rate maximization and

fairness. In section V the optimal sensing policy problem is

formulated when all system model parameters are known. In

section VI a reinforcement learning-based sensing and access

method is proposed along with a heuristic sensing policy

search algorithm. Section VII shows simulation examples of

the proposed method against a genie aided optimal sensing

policy. The paper is concluded in section VIII.

II. SYSTEM MODEL

In this paper the spectrum of interest is assumed to be

divided into bands that are allocated for different indepen-

dent PUs. Each band is assumed to be idle with an unknown

probability , where is the band index.

In the SU network distributed spectrum sensing governed

by an FC is assumed as shown in Fig. 1. The FC may be

part of the network infrastructure (such as a base station) or

one of the SUs may act as the FC. There are spatially

disperse SUs equipped with Neyman-Pearson detectors with

known false alarm rates cooperatively sensing the frequency

bands. The SUs operate in a time slotted fashion as shown in

Fig. 2. In the sensing minislot each SU senses up to bands

assigned by a sensing policy and makes a local binary

decision about the availability of the band(s). In the beginning

of the communication minislot the SUs send their local binary

decisions to an FC via a common control channel. During

the communication minislot the FC makes the global decision

using the randomized CV-rule and grants the SUs access to the

possibly found idle spectrum using an access policy . At the

end of the communication slot the FC selects the next set of

bands to be sensed and the corresponding sensing assignment

using the sensing policy and then signals this information

along with the spectrum access information to the SUs. It is

assumed that the SUs have always data to send and when an

SU is granted access to an idle band the it achieves a data

rate . When the SU gets spectrum access but the band is

occupied by the PU a collision will take place and the achieved

data rate becomes . In the next communication slot the SUs

who were granted access will feed back their achieved data

rates (or estimated rates) to the FC.

III. SENSING SCHEME: RANDOMIZED CHAIR-VARSHNEY

FUSION RULE

In order to simplify the notation momentarily, assume that

the CR-network is sensing only one frequency band. To

minimize the probability of false alarm under the constraint

on the detection probability, the CV-rule [1] may be used.

The CV-rule weights the local decisions according to the local

detection probabilities and false alarm probabilities .

Typically these probabilities are not available, but for now

SU

FC

PU

Fig. 1. A CR setting. The SUs are collaboratively sensing whether the PUs
are active or not. After sensing the spectrum the SUs send their local binary
decisions to a fusion center (FC) that makes a global decision about the state
of the spectrum and grants access for one of the users if the band is found to
be idle. Cooperative spectrum sensing provides spatial diversity that mitigates
the effects of fading caused by large objects and fast fading caused by multi-
path propagation and mobility.

Fig. 2. Slotted operation of the CR-network. In the sensing minislot the SUs
sense the spectrum according to the sensing policy . In the communication
slot they then send their local binary decisions through a common control
channel to the FC which makes a global decision about the availability of
the spectrum using a fusion rule (in this paper the CV-rule). Then the FC
grants access to the spectrum for the SUs according to an access policy
and assigns the SUs for sensing for the next sensing slot. The achieved data
rates are communicated to the FC in the next communication slot.

assume that they are known. A simple reinforcement learning

method for estimating these probabilities is presented later in

section VI.

The SUs send their local binary decisions to an FC

that makes a global decision about the presence of a primary

signal. Let denote the null hypothesis that the PU is not

transmitting and denote the alternative hypothesis that the

PU is transmitting. Given the vector of local decisions the

FC makes the global decision by computing a likelihood ratio

test (LRT) as [1]

Pr

Pr
(1)

where is the index of the SU acting as the FC and

the decision threshold. Assuming conditional independence

among ’s the LRT can be expressed as [1]

(2)

By tuning the threshold one can control the global proba-

bility of false alarm and the global probability of detection.

Assuming that the threshold can be chosen such that

the probability of detection at the FC is above the desired



value , as

Pr (3)

Then the probability of false alarm becomes

Pr .

According to the Neyman-Pearson lemma the probability of

false alarm at the FC is minimized if the detection probability

constraint in (3) is met exactly. Since we are dealing with

discrete random variables, it is not always possible to achieve

the desired detection probability exactly. To meet the detection

probability constraint exactly, randomization can be used,

which however does not anymore guarantee optimality in

the Neyman-Pearson sense [8]. However, as we will show

it still allows us to lower the false alarm probability under

the detection probability constraint compared to the non-

randomized CV-rule given in (3). The randomized decision

rule is given as

Pr

if

if

if

(4)

where

Pr

Pr
(5)

and Pr . The idea of the

randomized CV-rule is to select the decision threshold as the

smallest achieving a detection probability below the desired

level and then use randomization to achieve exactly. The

probability of false alarm at the FC using randomized CV-rule

becomes then

Pr Pr (6)

It is easy to show that the false alarm probability at the FC

using the randomized CV-rule given in (4)-(5) is always less

or equal to the false alarm probability of the non-randomized

CV-rule given in (2)-(3):

Pr

Pr Pr

IV. ACCESS POLICY

When idle spectrum is discovered the FC must decide

whether to access the spectrum or not. Denote the probability

of accessing band when the sensing outcome at the FC

has been as . Then the probability of collision

with the PU under is where is

the probability of detection at the FC at band . When the

spectrum regulator requires that the probability of collision

should be no more than , then the optimal operating point in

terms of throughput is and (see

[5] theorem 2). Note that making first the decision about the

availability of the spectrum and then randomizing the access

decision can always be translated into randomizing first the

sensing decision and then trusting it in the access. For instance

in this paper the randomized CV-rule is used.

When idle spectrum is discovered the FC decides which SUs

get access to the spectrum. Assume that the FC knows or is

able to learn the expected data rates when SU accesses

band and band is idle. Furthermore, assume that the SUs

have always data to send. Denote the weighted average data

rate that SU has obtained so far as (counting also the cases

where SU got no access). Assume that the FC has sensed a

set of subbands to be idle. One possible way to allocate the

SUs to the bands in is to maximize a function balancing

between sum data rate and fairness as

(7)

(8)

In (7) and (8) if SU is granted access to band and

otherwise. The constraints in (8) require that each

SU can only get access to one band at a time and that each

band may be accessed only by one SU at a time. Parameters

and control the balance between sum data rate maximization

and fairness, i.e., granting the access to the best SUs with the

currently best channel conditions and granting the access to all

SUs equally fairly. When and the access policy

maximizes the expected sum data rate in the SU network, and

when and the policy distributes the data rate

equally among the SUs. This is a linear assignment problem

(or maximum weight matching problem) that may be solved

in polynomial time using the Hungarian algorithm [9].

More sophisticated access policies tailored for a particular

type of data and network designs could be employed, but in

order to keep the presentation simple in this paper we adopt

the access policy given in (7)-(8).

V. SENSING POLICY

A. Optimal sensing policy

In this paper the optimal spectrum sensing policy is

defined as the policy that selects the optimal frequency bands

to be sensed and the optimal SUs to sense them such that the

expected immediate profit from the employed access policy

is maximized. The profit from the access policy may be

associated with the obtained sum data rate or it may be a

function of the data rate and a measure of fairness (for example

as the policy defined in (7)-(8)). Without loss of generality in

the following the profit from the access policy is denoted as

the achieved data rate. The optimal sensing policy in this paper

is a genie aided policy that knows all the model parameters

and that has no computation time and memory limitations.

Furthermore, the randomized CV-rule is assumed to be used

with and consequently .

Denote the set of sensed subbands that the FC has selected

following a sensing policy as . Once the FC has



discovered a subset of idle bands it grants access

to one of the SUs at each idle subband using an access policy

. Denote the expected sum data rate after applying access

policy to as . Then the expected sum data rate

from the bands is

(9)

where the summation is over all possible subsets of .

is the probability that the FC detects band to be idle and

is given by

(10)

where is the a priori probability that band is idle.

is computed using the Bayes’ formula as

(11)

where is the achievable data rate at band when

access policy is applied to . The false alarm probabilities

are functions of the sensing policy since they depend on which

SUs are assigned to sense which band. Requiring that each

SU can sense only up to bands simultaneously the optimal

sensing policy becomes

(12)

s.t. (13)

where is the number of bands sensed by SU using

sensing policy . Note that the probability of detection

constraint is included implicitly in the CV-rule and hence is

not visible here. Once the design of the sensing scheme and the

access policy are fixed the optimal sensing policy becomes

essentially a function of and the sensing scheme. This is

intuitive since once it is known how the idle bands would

be used and what are the sensing capabilities of individual

SUs one can optimize the sensing strategy. It can be seen that

computing the optimal sensing policy is a difficult combina-

torial problem and hence we focus on a heuristic (possibly

suboptimal) search.

VI. REINFORCEMENT LEARNING-BASED SENSING AND

ACCESS

Since the detection probabilities, PU transmission probabil-

ities and the achievable data rates are generally not known

they need to be estimated. In this paper we propose a simple

reinforcement learning-based sensing and access method that

is non-parametric to the PU activity and achievable data rate

models. The proposed method employs action value-learning

with one state and -greedy exploration [10]. With probability

the method chooses random actions to learn about the values

of all possible actions and with probability it tries

to maximally exploit its current knowledge by choosing the

seemingly best actions. The policy has three types of actions:

selecting the bands to be sensed, assigning an SU to sense a

certain band and granting access to an SU at a certain band.

Next we will discuss how the estimated values of the actions

are updated and how the actions are selected in the exploration

and exploitation phases.

A. Action value updates

The value update after taking an action at time instant

is given by exponential smoothing as [10]

(14)

where is the step size and is the obtained reward after

taking action . In this paper constant a step size is used

since in practise the sensing policy problem is non-stationary.

A constant does not guarantee the estimated values to

converge to the true values with probability but only in

expectation [6]. However, this is an unavoidable concession

when tracking non-stationary problems. The -values that the

FC keeps track of are denoted as:

Value of assigning SU to sense band

Value of granting SU access to band

Value of assuming band to be idle

The reward from allocating SU to band at time

is

if and no collision

otherwise
(15)

where is the achieved instantaneous data rate when

SU accessed band at time . A collision takes place

when a missed detection occurs at the FC and one of the

SUs tries to access the band simultaneously with the PU. This

reward function makes to become an estimate of the

mean achievable data rate at band by user .

The reward function for estimating the probabilities of band

being idle is given by

if or collision

if and no collision

Otherwise

(16)

This reward function makes to become an estimate for

the probability of band being idle.

The reward for assigning SU to sense band at

time is given by

if or collision

otherwise
(17)

where is the local sensing decision at the th SU at

band at time instant and is the corresponding

decision at the FC. When the local decision agrees with the

FC that the PU is present the Q-value of the SU is increased

towards 1. When the local decision indicates that the band

is idle and the decision at the FC indicates that the band is

occupied the value is shifted towards . If a missed detection

occurs at the FC and one of the SUs tries to access the band

simultaneously with the PU a collision will take place making



the achieved throughput to be . Also in this case the local

detection probability estimates are shifted either towards or

according to the local decision. Whenever the FC thinks

that the primary signal is not present at band the detection

probability estimates are kept unchanged.

B. Exploration by random sensing and access

With probability the learning method goes in to explo-

ration phase. In the exploration phase random actions are

taken, i.e., random sensing and access policies are executed.

In practise a more systematic approach can be taken and

the actions could be made pseudorandom. However, to keep

the presentation compact in this paper we use uniformly

distributed random actions. For the access policy this means

that SUs are allocated randomly to the found idle bands. In the

sensing policy the bands to be sensed and the corresponding

sensing assignments are picked randomly with a fixed diversity

order , where is the number of SUs simultaneously

sensing a band. Diversity guarantees reliability in the sensing

needed to obtain good estimates for and . The idea

in exploration is to avoid using the information obtained from

the past observations, which might offset the action value

estimates. In order to avoid this happening to the probability

estimates and equal weight decision fusion, i.e., the

m–out–of–n rule is used. It is easy to show that with

and all SUs assumed to have identical detectors (i.e.,

and ) the m–out–of–n rule with ,

minimizes the probability of error (sum of the probability of

missed detection and false alarm) at the FC [1]. In this paper in

the exploration phase the local detection probability estimates

are momentarily replaced by , i.e., the mean of

a uniform random variable between . Consequently the

- and -values are updated only during the exploration

phase.

C. Exploitation by a heuristic sensing policy search

With probability the proposed learning method goes

in to exploitation phase. In the exploitation phase the FC

tries to maximally use the learned knowledge from the past

observations.

As it was seen in section V-A finding the optimal sensing

policy is in general a tedious combinatorial problem. In this

paper a suboptimal search algorithm (listed in Algorithm 1) is

proposed that has low computation and memory requirements.

The idea of the proposed policy is to select the set of bands to

be sensed by evaluating different -size candidate

sets and finding a feasible sensing assignment for them by

solving multiple consecutive linear assignment problems (step

3). The goodness of a candidate set is evaluated as the sum of

all data rate estimates weighted by the estimated probability

of the bands being idle and also detected idle (step 4). The

considered candidate sets of bands to be sensed are selected

as the ones with the largest data rate estimate sum weighted

by the sum of one minus the local sensing error probability

estimates and the probability estimates of the band being idle

Algorithm 1

STEP 1: Initialize the number of sensed bands as
.

STEP 2: Select the bands to be sensed as the bands with the largest

values of .

STEP 3: Find a sensing assignment by iteratively assigning one SU
to each selected band using the Hungarian algorithm [9] with costs:

until all SUs are assigned.

STEP 4: Calculate the probabilities of false alarm using the
randomized CV-rule with the constraint using the sensing
assignment obtained in step 3. Then calculate:

.

STEP 5: Set and repeat steps 2 to 5 until .
STEP 6: Return the set of bands to be sensed as

and the corresponding sensing assignment .

(step 2). At each round the size of the candidate set is reduced

by one until the size becomes zero. The reduction of the

candidate set size facilitates the possibility of sensing less

bands with higher diversity and consequently with lower false

alarm probability. Finally (step 6) the set of bands and the

corresponding sensing assignment is selected as the one with

the largest value evaluated in step 4.

When idle bands are discovered they are allocated to the

SUs according to the access policy given in (7)-(8) using the

Hungarian method.

VII. SIMULATION EXAMPLE

We simulated the proposed reinforcement-based sensing

and access method for a small network with and

. The PU activity at each band is modeled as an

independent Bernoulli process with probabilities of being idle

, and . The mean local

detection probabilities at each SU for each band are given in

table I. The local detectors are assumed to be Neyman-Pearson

detectors with known false alarm probabilities .

The achievable mean data rates at each band for each SU when

the bands are idle are given table II. The simulation was run

for different exploration probabilities , and

. The step sizes for the two probability estimates are

and for the data rate estimates . The diversity

order in the exploration phase is , making the fusion

rule to become the simple OR-rule. In the exploitation phase

algorithm 1 is used to find a set of bands to be sensed and the

corresponding sensing assignment for the randomized CV-rule.

In the exploitation phase the access policy defined in (7)-(8)

is used with parameters and , i.e., the access

policy is maximizing the sum data rate in the SU network.

The collision probability is constrained to be .

Figure 3 shows the achieved sum data rate of the proposed

method as a function of time compared to an optimal genie

aided sensing policy. Curves are shown to the three different

values of . The genie aided sensing policy is assumed to

know the system model parameters and is able to select

the best bands to be sensed and the corresponding sensing

assignments that maximize the sum data rate. It can be seen
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Fig. 3. The achieved sum data rate in the SU network relative to an optimal
genie aided policy with known parameters. After the initial transition the
method is caught in a local maxima, but eventually reaches close to 90% of
the optimal sum data rate. The transition from the local maxima to a better
solution is faster for large . However, in steady state small values of produce
higher data rate.

that the proposed method achieves in this case approximately

90% of the optimal sum data rate. After the initial transition

the method is momentarily caught in a local maxima, but is

eventually able to find its way out to a better solution.

Figure 4 shows the collision probability under at the

three bands as a function of time for . After conver-

gence the sensing policy chooses to sense only bands 1 and 3

in the exploitation phase. It can be seen that at these two bands

the collision probability approaches the desired value .

For band 2 the collision probability is clearly below since

it is practically only sensed during exploration phases. Due to

the exploration phase with OR-rule the collision probabilities

at bands 1 and 3 are slightly biased from the desired value

. However, for small this bias is expected to be small.

For large if the bias is unacceptably large the SUs may be

denied to access during the exploration phases.

TABLE I
THE MEAN LOCAL ’S AT EACH BAND FOR EACH SU.

Band 1 Band 2 Band 3

SU 1 0.53 0.93 0.14

SU 2 0.16 0.70 0.78

SU 3 0.18 0.42 0.50

SU 4 0.66 0.83 0.52

TABLE II
MEAN DATA RATES AT EACH BAND FOR EACH SU.

Band 1 Band 2 Band 3

SU 1 67.9 75.0 45.5

SU 2 4.0 13.9 75.0

SU 3 60.0 3.9 51.1

SU 4 36.8 23.7 99.2

VIII. CONCLUSIONS

In this paper a spectrum sensing and access method based on

reinforcement learning has been proposed for multi-user multi-

band CR. The method uses the randomized CV-rule in order to
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Fig. 4. The probability of collision under at the 3 bands as a function of
time when . The collision probability a band 1 and 3 approach to the
desired value . Since in steady state band 2 is basically sensed only
during the exploration phases (due to its lower availability and data rates),
the collision probability at band 2 is small.

reduce the number of false alarms under a detection probability

constraint. The optimal sensing policy for a particular access

policy and sensing scheme can be found via an exhaustive

search. However, such a search is not computationally feasible

in practice. In this paper a simple and fast suboptimal sensing

policy search algorithm has been proposed for the CV-rule

and an access policy that allows for balancing between data

rate maximization and fairness. The simulation results have

illustrated the performance of the proposed method to be close

to a genie aided policy.
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