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Abstract—Iterative probabilistic inference, popularly dubbed result is very accurate, but the simulation is usually laggt
the soft-iterative paradigm, has found great use in a wide rage  tedious, and not scaling well. Additionally, simulations ot

of communication applications, including turbo decoding @d  ghaq mych insight into why the performance is so and how
turbo equalization. The classic approach of analyzing thetérative . ;
the performance might be improved.

approach inevitably use the statistical and information-heoretical . < .
tools that bear ensemble-average flavors. This paper consd 2). Classic analytical methods come from the perspectives
the per-block error rate performance, and analyzes it using of maximum likelihood (ML), maximura posteriori (MAP)
nonlinear dynamical theory. By modeling the iterative proeessor probability, or minimum square error (MSE). They inevitabl

as a nonlinear dynamical system, we report a universal “Z-cease assume that the subject method is optimal and always decidin
phenomenon:” the zig-zag or up-and-down fluctuation — rathe . . ’

than the monotonic decrease — of the per-block errors, as the Qn t_he Cand'.date that h_a; the Iargest prOba_b'“ty' m_ax'mum
number of iteration increases. Using the turbo decoder as an likelihood ratio, or the minimal Hamming/Euclidean distan
example, we also report several interesting motion phenomens to what’s been observed. They produce useful performance
which were not previously reported, and which appear to hounds, but may present a non-negligible gap to the true
correspond well with the notion of “pseudo codewords™ and e formance of the practical, iterative estimator at hand.

“stopping/trapping sets.” We further propose a heuristic sopping . . . .
criterion to control Z-crease and identify the best iteration. Our 3). Powerful iterative analytical methods, notably temsity

stopping criterion is most useful for controlling the worst-case €volution (DE) [1] and the extrinsic information transfer
per-block errors, and helps to significantly reduce the aveage- (EXIT) charts [2], were developed in the last decade. These

iteration numbers. methods faithfully capture the iterative trajectory of man
|. INTRODUCTION estimators/decoders, and have unveiled several fundament
The discovery of turbo codes and the re-discovery of lovgnd intriguing properties of the system (e.g. the “convecge
density parity-check (LDPC) codes have, over the night@lo property” and the “area property”y1[2]. However, several
the theory-practice gap of the Shannon capacity limit qihderlying assumptions thereof, including the ergodiaisy
additive white Gaussian noise (AWGN) channels. They hawgmption, the neighborhood independence assumption and
also revolutionized the coding research with a new paradigfe Gausianity assumption, make them suitable mostly for
of iterative probabilistic inferencecommonly dubbed thsoft-  evaluating theasymptoticbehavior (i.e. infinite block size).
iterative paradigm. Since their success with turbo codes a'ﬂﬂ?any real systems have limited lengths of a few hundred to a
LDPC codes, the soft-iterative paradigm has become a vitaly thousand (bits), and the accuracy and usefulness oé thes
tool in widespread applications in communication and digngethods can become limited in such cases.
processing. A complex communication system comprised of4), To tackle the hard problem of iterative analysis for
layers of functional blocks that were previously indivitiyar short-length signal sequence, researchers have alscogedel
sequentially tackled, can now use a “soft-iterative” neait, several interesting concepts and ideas, inclugiseudo code-
close in spirit to that of the turbo or LDPC decoder, to actievyords [9], stopping setsand trapping sets[11] [12]. They
quality performance with manageable complexity. Celeutatpoast some of the most accurate performance predictions at
applications include, for example, iterative demodulamd short lengths. The drawback, however, is that efficient and
decoding, turbo equalization (also known as iterative deCOsystematic ways to identify and quantify these metrics ate n
ing and equalization), and multi-user detection, and fteza readily existent, and hence, one may have to rely on computer
sensing and decision fusion for sensor networks. aided search of some type, causing daunting complexity.
The significance and wide popularity of the soft-iterative The majority of the existing methods, as summarized above,
algorithm has caused a considerable amount of study on|#gyely stem from a statistical and/or information theimat
behavior, performance and convergence. Present models @it They have significantly advanced the field, but are also
methodologies for analyzing estimation and decoding nithaconfronted with challenges and limitations, as they try e u
may be roughly grouped into the following categories: statistical metrics and tools that are based on ensembte ave
1). The most straight-forward way to evaluate the perfogges (such as mean, variance, entropy, mutual informaton)
mance of an estimation/detection/decoding method, beftit SGredict and control the iterative process of a large-dirizens
iterative or otherwise, is through Monte Carlo simulatiofise highly-dynamical, and apparently-random signal sequence
Li's work is supported by the US National Science Foundatioder the The notion that iterative probabilistic inference algiomits
Grants No. CCF-0928092, CMMI-0829888 and OCI-1122027. can be viewed as complex dynamical systems|[3]-[7] presents
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an interesting departure from the existing ensemble-geera single parameter, and examine the time evolution of the
based methods, and brings up new ways of evaluating the sstites at specific signal-to-noise ratios (SNR). In thisepap
iterative algorithm on individual blocks. Generally spigk we take a popular turbo code as an example, and report here
the performance of a system should be assessed amvitage the observation of a wide range of phenomena characteristic
sense, such as the bit error rate (BER) averaged over hundiednonlinear dynamical systems, including several new phe-
of thousands of blocks. At the same time, however, it alsmmena not reported previously.

makes sense to evaluate ther-block performance, namely,

the number (or the percentage) of errors in individual bdock  |l. MODELING TURBO DECODER ASNONLINEAR

Per-block error rate reflects error bursts and/or the wease DYNAMICAL SYSTEM

situation, f_;md can be _of interes_t ir_1 several applicatioms. F A ~ommunication or signal processing system generally
example, in multimedia transmission, a modest number Ofsists of many processing blocks inter-connected inllgéra

bit blip errors in an image may cause only a minor quality, serjal, or in hybrid, each fulfiling a specific task. Since
degradation that is hard to perceive by human eyes, Whergas soution space of an “integrated” process is the Kroeeck
excessive errors will cause the image to be badly distortgghyct of all the constituent solution spaces, to launch an
and unusable. In magnetic recording systems, a Reed SolorggRy| optimal solution usually induces prohibitive coemp

(RS) outer code is generally employed after the channeé@ody, A more feasible solution is to apply iterative algorith,
partial-response (PR) channel, to clear up the residuat®ryhich allow constituent sub-units to perform local process
left by the equalizer/decoder. It does_ not really mattet thgq to iterative exchange and refine processed “messages”,
every block has errors (after the equalizer/decoder);@8 & 1,5 achieving a solution considerably better than thanfro
the per-block error rate is w_|th|n the error correctlon_dam sequential processing with a manageable complexity.

of the RS wrap, zero-error is achievable for the entire syste rative algorithms are by nature probabilistic inferenc
Hence, the specific issue we investigate here is how the pglcaq where the “messages” to be processed and com-
block performance improves with the number of iterations. o, nicated represent the reliability or confidence level of

. Common wisdom has I tha_t more iterations can not hug, digital decision, commonly formulated deg-likelihood

i.e., a larger number of iterations may no_t necess_arlly le?gtios (LLR) but they can also be modeled as (nonlinear)
to (worthy or noticeable) performgnce gains, but 't_ _Cannﬁg/namical systems. To help model all the variants of iteeati
degrade the performance either. This apparent truth, #@r 4 4qrithms in a universal mathematical formulation, we éhav

by the numerous studies reported on the bit error rate (BER)ymarized some the properties assumed to be features of
simulations, density evolution (DE) analysis, and exttnsyheqe algorithms: (i) An iterative algorithm is a dynamical

information transfer (EXIT) charts, holds in the context Ogystem with a large number of dimensions, possibly dependin
averageperformance. In terms of the per-

; S block perfo_rmanc%n many parameters, and distances along trajectoriesasere
however, our studies reveal that it is not only possible, bkﬁecrease) polynomially, sub-polynomially or expondhtia

also quite likely, for an individual block to encounter any 1 js formed by two or more units interacting with each
fluctuating” decoding state, such that the number of eriors other; each unit responds to messages received from the

that block keeps bouncing up and down (rather than monotQfirers in a nonlinear manner. (jii) The system is in general
ically decreasing) with the iterations. What this phenoaTen pjearchical: a message may be treated in several different
thereafter referred to as tfecreasephenomenon, implies in o a5 (units) before reaching the center of action. (iveTh

practice is that a larger number of iterations are not awaygsiem in its evolution may be adaptive, i.e. with memory. (v
beneficial, and that the right timing may play a more impdrtaq .o interactions may have global effect: they may produce
role. If the decoder stops at an unlucky iteration, it may,nsigerable global change in the system over the time, e.g.
?‘Ctua?"y gene_rate far more errors than if it stopped sevefgl «yaye effect” in the decoding of an irregular LDPC code.
|te|ra_t|ons eharller. hat 7 ) il it all We start by evaluating the turbo decoder, which is useful
.t IS worth noting that Z-crease Is npt special, 't_ IS acty _in its own righﬂ, and whose information theoretical analysis
universalphenomenon that vastly exists in iterative decodi s reached a good level of maturity. A typical rate-1/3

a_nd estimation system;. We have.exam_med a variety (g code, depicted in Fi@.]ll, is formed of two constituent
different systems, including low-density parity-checldeC) o0 rsjve systematic convolutional (RSC) codes, conedten

codes_with message-passing decoding, turbo _COd_eS Wi_tb tum parallel through a pseudo-random interleaver. It ensode
decod!ng, product accumulgte (PA) COde_S with lterative F& block of & binary bitsag into a codeword of3k binary
decoding [[10], and convolutionally-coded inter-symbdkin bits, [ao, a1, 5. The decoder operates much like the turbo

ference (ISI) channel with turbo equalization. In all of ¢be engine in an automobile, in which two sub-decoders perform
systems, we have observed the Z—creas_e phenomenon. soft-in soft-out decoding, and iteratively exchange arfthee
To study the per-block system behavior and reveal the éLR messagesn, corresponding tay. Let [zo, z1, z] be the

crease _phenome_non, our appr_oach_ IS to_ treat the_ 'tera'illvcﬁse, induced by the physical channel or transmitterivece
estimation/decoding system a high-dimensional nonliiggar

namical system plarameterlzed. by a. set of parameters,_ tI’I’urbo codes are in a number of standards, including the 3mk@#&on
further transform it to a one-dimensional state space wittellular Networks and Digital Video Broadcasting (DVB).



circuitry, and lets; = a;+z; be the noisy observation available Extensive simulations are performed in our preliminary
at the decoder. Exploiting the geometric uniformity of thetudy. A whole range of phenomena known to occur in non-
codeword space of a turbo code (or any practical ECC), we darear dynamical systems, including fixed points, bifuicas,
model the turbo decoder as a discrete-time dynamical systestillatory behavior, period-doubling, limited cycleshaops

in constant evolution: and transient chaos, are observed in the iterative decoding
m§"+1> = fi(so,s2; m§n>) = f1(20,Z2; m0<n>)7 (1) Process as Increases (Fid.12=10). . . .
mE™2 £ (5o 51 mSm > = £y (20,21 mS ) Some of these phenomena were_noted in previous st_udles [5]
0 »Eh 0 PE R0 ’(2) [6], but we report interesting new discoveries. For eachionot

type, we provide two pictures: a wave picture illustratihg t
where the superscript denotes the number of half iterationschange of mean magnitude of LLAS(|m,|) and the mini-

zo, z1 andz, are the parameters of the dynamical system, ansum magnitude of LLRsnin(|m,]|) (y-axis) as a function of

J1 and f, are nonlinear functions describing the constituemihe number of half iterations (x-axis), and a trajectorytynie
RSC sub-decoders, reflecting in general an implementafionggesenting the phase trajectory from one half iteratiorhi t
the Bahl-Cocke-Jelinek-Raviv (BCJR) decoding algoritkime, next. In some cases, we also present a third picture of a

soft Viterbi algorithm (SOVA), or their variations. zoomed-in trajectory after 500 half iterations
Whenk takes on a value of a few thousand or larger, as in

a practical scenario, thig-dimensionabBk-parametrized non- T

linear dynamical system becomes too complex to charaete -  c7=e 2

or visualize. To make the problem tractable, we propos¢
“project” these dimensions to one or a few “critical” one 2
Borrowing insight developed from conventional decoder-ar
ysis and after performing a careful evaluation, we propos: s
project the3k parameters into a single parameter, the (appr .

imated) signal-to-noise ratio (SNRY,= 2% /|| [z9, 21,20 [, © = T Te P T
(where R = 1/3 is the code rate), and to project thie Fig.2. = 0.778151 db, indecisive fixed point. (Left: wave picture; Right:
dimensions of the state space into one dimension, the md&aigctory picture.)

magnitude of LLRsz5"~ = E[|m,|] wherem; € mg"~.The  The iterative process inevitably starts with and ends at a
nonlinear dynamical system remains in constant evolution fixed point. The former, occurring at an asymptotically low
the k-dimensional space withk parameters (as a real turbosNR (such asy < 0.778151 db in our experiment, Fid.]12),
decoder does), but characterizing the system using redugegermed arindecisive fixed pointand is associated with an
dimensions drastically simplifies the analysis, enablibgter ynacceptably high error probabilitpZ% in our experiment).
visualization and understanding of the further behavior.  The latter, occurring at an asymptotically high SNR (e.g.,
~v > 1.113943 db, Fig.[10), denotes a successful decoding

a0 a0
al convergence to a zero-erranequivocal fixed point
Between the two asymptotic ends are a myriad spectrum of
bifurcations, some of which correspond well to the ostdasib
a2 concepts and phenomena from the information theory, and oth

ers appear foreign and await an indepth study-yAscreases

sl from 0.778151 to 0.845098 db (Fig.[III-A] the system remains
sO trapped to an indecisive fixed point, but the long convergenc
time indicates the stability of the indecisive fixed poingles
to break d .
s2 RSC DEC2 |1} O preat covn

At SNR of v = 0.857332 db, the indecisive fixed point
Fig. 1. Turbo codes. Top: turbo encoder; Bottom: turbo decod undergoes a flip bifurcation and a stapleriodical fixed point
with period of 5 is formed (Fid.]4).
Further increasingy to 0.902829 db leads to an increased
) i ) ) ~ period from 5 to 10, showing thgeriod-doublingphenomenon
A. Phase Trajectories and Nonlinear Dynamical Behavior (Fig.[8). A closer inspection, shown in the zoomed-in trajec
Consider noise samples represented [my,z1,z2] = tory picture, indicates that the motion is not exactly réje,
[21, 22, ..., 231]. Different vectors of noise samples are said tbut follows an approximate periodic orbit. As been verified
have the same noise realization, if they have the same fixadthe experiment here (as well as other complex systems),
ratios between consecutive sample valug$zs, 22/23, ---, the period will continue to double without bound gsin-
z3k—1/23k. Thus for a given noise realization, the noise vectareases. The “discrete” orbit eventually becomes contisuo
zo,1,2 iS completely determined by the (approximated) SNR at-y = 0.921682 db, presenting #imited cycleor limited ring
In general,k should be chosen sufficiently large to make - a closed curve homeomorphic to a circle (. 6).
close approximation of the true channel SNR. As SNR further increases, the limited ring loses its stbhili

IIl. ANALYZING TURBO DECODERUSING NONLINEAR
DYNAMICAL THEORY



25 0.845098 db 0.921686 db
27 3| 36
> 225 2 2
Z1s F 2 Z s
- ~ 24 = =
K 23 15 33
0s
° 250 300 i8 2 22 24 26 28 3 0 50 100 150 200 250 300 25 3 35 4
n ixy) n ()
Fig. 3. v = 0.845098 db, fixed point breaking down. .
35 -+ = 3 322
¢ 0857332 db 32
3| T
% 316
2 .
5 = 312
1 = 31
05 3308 31 312 314 316 318 32 322 324 326
to ()
° s 300 7 75 B 35 Fig. 6. ~ = 0.921682 db, limited-cycle tractor.
n ()
28 0.922725 db
275 3 7
56
27 2}
Z e 2, 235
L € T
255 e 33
25 1 32
205 0s 5
o e T 2 T ER .
Fig. 4. ~ = 0.857332 db, periodical fixed point. (Top Left: wave picture- °
Top Right: trajectory picture; Bottom Left: zoomed in tretiery picture.) e
3.1648
01902829 db a3 > i

o 50 100 150
n

200

25
25 26 27 28 20 3

(x
Fig. 5.

and converges ones again to @&rdecisive fixed poiniat

diminishing amplitude and it takes longer to converge.

Next at v =

chaos(Fig.[8).
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~v = 0.902829 db, periodical fixed point losing stability.
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Fig. 7. v =0.922725 db, a fixed point.
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~v = 0.929419 db, chaos.

+ min
mean

0.929419 db

Fig. 8.
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The previous limited studies have suggested that afterschao
v = 0.922725 db (Fig.[7). This is rather surprising and iswill be transient chaos and then the convergence to an un-
the first time that this type of indecisive fixed points hagquivocal fixed point[5]. It is intriguing indeed to repokere
been observed for turbo decoders. Unlike the fixed points &tually exist a rich variety of motion types between chaus a
both asymptotic ends, here the phase trajectory osciNatés the asymptotic unequivocal fixed point. They includejasi-
periodic fixed pointat v = 0.982271 db (Fig.[9), transient
0.929419 db, the fixed point undergoeschaosat v = 0.991226 db (Fig.[10), aperiodic fixed point
Neimark-Sacker bifurcation through which the phase ttajgc at v = 1.002166 db (Fig.[11), anothetransient chaoswith
goes into an invariant set and, after a transient periodyrnes a short transient lifetime at = 1.00432 db (Fig.[12), and

eventually the zero-erramequivocal fixed poinfFig.[13).
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B. Analysis and Simulations
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Fig. 13. ~+ = 1.113943 db, unequivocal fixed point.

given any noise realizatiom and positive numbebp, there
exists an SNR thresholgh (z, §), such that for any SNR

v (z,0), the iterative algorithm converges, with a probability
greater tharl —4, to a unique and stable indecisive fixed point;
(2) likewise, there exists an SNR threshojd(z,d), such
that for any SNR> 7(z, ¢), the iterative estimator/decoder
starting with an unbiased initialization converges, with a
probability greater thain — §, to a stable unequivocal fixed
point that corresponds to zero decoding errors.

Also of interest is the rich variety of fixed points we
observed in the waterfall region, none of which were re-
ported previously. These fixed points behave much like ¢baot
(sensitive) non-hyperbolic attractors. (Chaos is a spetias
of aperiodic, nonlinear dynamical phenomenon, and is char-
acterized by a prominent feature of “sensitivity to initial
conditions.” This feature, commonly known as the “buttgr-fl
effect”, states that a small perturbation to the initiatestaould
lead to huge and drastically different changes later on.) In
comparison, the fixed points at the two extreme ends of SNR
are hyperbolic attractors, where distances along trajesto
decrease exponentially in complementary dimensions in the
ambient space. These newly observed fixed points, some or
all of which may or may not occur depending sensitively on
the specific noise realization, are usually associated with
few detection errors. They appear to provide support, fioen t
dynamical system perspectives, for the information thiéore
conjecture that there exists one or more pseudo codewords

Repeated tests on a large sample of random noise realifathe vicinity of a correct codeword (i.e. a few bits of

tions show that although different realizations produdéedi

Hamming distance away)|[9]. They may also correspond well

ent bifurcation diagrams, the entire SNR range nonexadligiv to the coding concept aftopping seandtrapping set which

falls apart into three regions: a low-SNR region corresgrogd Characterize an high-SNR undesirable convergence in ti@2 BS
to stable indecisive fixed points, a transition region knamwn (binary symmetric channel) decoding model and the Gaussian
the communication jargon as theaterfall regionin which decoding model, respectively [11], [12].

bifurcations occur, and a high-SNR region corresponding tolt is particularly worth noting that in almost all the motion
stable unequivocal fixed points. It can be proven that (1afor stages, the mean and the minimum magnitude of LLRs fluc-
iterative estimator/decoder that is probabilistic infme based, tuate in a rather notable manner as the number of iteration



increases (see the wave pictures). Since the mean magnitudé should be noted that previous researchers have also used
of LLR is shown to relate fairly well with the percentage othe mean magnitude of LLR for early stopping purpadse [8],
errors occurred in each franie [13], it is therefore reastentab but it was used in a different way that did not recognize
predict that the per-block error number will also fluctuafthw the Z-crease phenomenon. To the best of our knowledge,
iterations. For example, for a short block of 1024 bits, weehathe minimum magnitude of LLR has not been exploited
observed that the number of errors in a particularly bloak cgreviously. Our stopping criterion here is most useful in
easily vary between 80 and 120, in a “quasi-periodic” Z-seeaimproving the worst-case per-block performance, but not so
manner. In other words, it is highly likely that an early lyck much for the average performance (averaged over lots of
iteration may save both complexity and3 less of erroneous blocks). It can also cut down the iteration number &1
bits than a longer, unlucky iteration. or even larger (especially at lows or when the specific

Since where the decoder stops also makes a differenceframme encounters lucky deep distortion), without sacrifici
per-block performance, questions arise as how to stop at the average performance.
right iteration, and how much benefit there is. We propose the
following rule of thumb to detect Z-crease: IV. CONCLUSION

i) The minimum magnitude of LLRmin(|m,|), is a very ~ We report the Z-crease phenomenon in soft-iterative de-
accurate indicator of whether or not the iterative decoder hcoding systems, and use the theory of nonlinear dynamics
successfully converged to the unequivocal attractor the. to justify its existence and generality. We show that while
correct codeword). In a correct convergence (i.e. when the the average system error rate performance in general im-
tractor is the unequivocal fixed point or the unequivocakshaproves (or, does not deteriorate) with iterations, forviglial
attractor), the minimum magnitude and the mean magnituti@mes, more iterations may actually do harm to the decoding
of LLR will both increases with iterations. Otherwise, thelecisions. Analyzing the dynamical behavior of the system,
iterative process is trapped in some local minimum (whicke further propose a simple stopping criterion based on the
corresponds to the indecisive fixed point, the quasi-paad minimum magnitude and the mean magnitude of LLR to detect
cycles, and the indecisive chaos). In such as case, thegavegiccessful convergence and determine the right iteration t

magnitude of LLRE(]m,|) may continue to increase withstop.

iterations at a decent pace, but the minimum magnitude
min(|m,|) will remain at a very low value, sending a clear
signal of unsuccessful convergence. It is thus convengesgt

a threshold foE(|my|) to indicate decoding success.

i) The Z-crease is most prominent (with large error fluc-
tuation) in the quasi-periodical cycle and the indecisiaas [2
stages. Hence, it is beneficial to detect Z-crease phenameno
as early as possible and to terminate decoding at the aarlig3
“best” iteration. Since the Z-crease of the bit errors is@dn ]
always accompanied with a Z-creaseRffim,|), we suggest
using E(jmy|) to detect the Z-crease of errors. Here is a
simple but rather effective method: Each local maximum poin®!
of E(Jmy|) is taken as aandidate pointwhich is like the g
“local optimal point”. We predict that Z-crease is occugin
when theE(|m,|) value of any one candidate point is Iowerm
than theE(Jm,|) value of its previous candidate point.

Following these observations, we also propose a heuristic
stopping criterion and suggest performing iterative déugpd (8]
in the follow manner: The iterative decoder keeps track of
min(|jm,™|) and E(jm,|™), and terminate when any one [9]
of the following conditions happens:

1) Whenmin(|m,™|) increases above a threshold.

2) WhenE(|m,|) of any one candidate point is lower than

E(|/m,|) of the previous candidate point. [

If the decoder stops at condition 1), the current bit deaisio12]
and the current iteration are considered as our “best 8hbts.
the decoder stops at condition 2), then we suggest the decqg
trace back to the previous candidate point and use the bit
decisions of that iteration as the final decision. Otherwise
the decoder will proceed to reach the maximum iteration cap
without voluntary stop.

(1]

[20]
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