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Abstract—Iterative probabilistic inference, popularly dubbed
the soft-iterative paradigm, has found great use in a wide range
of communication applications, including turbo decoding and
turbo equalization. The classic approach of analyzing the iterative
approach inevitably use the statistical and information-theoretical
tools that bear ensemble-average flavors. This paper consider
the per-block error rate performance, and analyzes it using
nonlinear dynamical theory. By modeling the iterative processor
as a nonlinear dynamical system, we report a universal “Z-crease
phenomenon:” the zig-zag or up-and-down fluctuation – rather
than the monotonic decrease – of the per-block errors, as the
number of iteration increases. Using the turbo decoder as an
example, we also report several interesting motion phenomenons
which were not previously reported, and which appear to
correspond well with the notion of “pseudo codewords” and
“stopping/trapping sets.” We further propose a heuristic stopping
criterion to control Z-crease and identify the best iteration. Our
stopping criterion is most useful for controlling the worst-case
per-block errors, and helps to significantly reduce the average-
iteration numbers.

I. I NTRODUCTION

The discovery of turbo codes and the re-discovery of low-
density parity-check (LDPC) codes have, over the night, closed
the theory-practice gap of the Shannon capacity limit on
additive white Gaussian noise (AWGN) channels. They have
also revolutionized the coding research with a new paradigm
of iterative probabilistic inference, commonly dubbed thesoft-
iterative paradigm. Since their success with turbo codes and
LDPC codes, the soft-iterative paradigm has become a vital
tool in widespread applications in communication and signal
processing. A complex communication system comprised of
layers of functional blocks that were previously individually or
sequentially tackled, can now use a “soft-iterative” treatment,
close in spirit to that of the turbo or LDPC decoder, to achieve
quality performance with manageable complexity. Celebrated
applications include, for example, iterative demodulation and
decoding, turbo equalization (also known as iterative decod-
ing and equalization), and multi-user detection, and iterative
sensing and decision fusion for sensor networks.

The significance and wide popularity of the soft-iterative
algorithm has caused a considerable amount of study on its
behavior, performance and convergence. Present models and
methodologies for analyzing estimation and decoding methods
may be roughly grouped into the following categories:

1). The most straight-forward way to evaluate the perfor-
mance of an estimation/detection/decoding method, be it soft-
iterative or otherwise, is through Monte Carlo simulations. The

Li’s work is supported by the US National Science Foundationunder the
Grants No. CCF-0928092, CMMI-0829888 and OCI-1122027.

result is very accurate, but the simulation is usually lengthy,
tedious, and not scaling well. Additionally, simulations do not
shed much insight into why the performance is so and how
the performance might be improved.

2). Classic analytical methods come from the perspectives
of maximum likelihood (ML), maximuma posteriori (MAP)
probability, or minimum square error (MSE). They inevitably
assume that the subject method is optimal and always deciding
on the candidate that has the largest probability, maximum
likelihood ratio, or the minimal Hamming/Euclidean distance
to what’s been observed. They produce useful performance
bounds, but may present a non-negligible gap to the true
performance of the practical, iterative estimator at hand.

3). Powerful iterative analytical methods, notably thedensity
evolution (DE) [1] and the extrinsic information transfer
(EXIT) charts [2], were developed in the last decade. These
methods faithfully capture the iterative trajectory of many
estimators/decoders, and have unveiled several fundamental
and intriguing properties of the system (e.g. the “convergence
property” and the “area property”) [2]. However, several
underlying assumptions thereof, including the ergodicityas-
sumption, the neighborhood independence assumption and
the Gausianity assumption, make them suitable mostly for
evaluating theasymptoticbehavior (i.e. infinite block size).
Many real systems have limited lengths of a few hundred to a
few thousand (bits), and the accuracy and usefulness of these
methods can become limited in such cases.

4). To tackle the hard problem of iterative analysis for
short-length signal sequence, researchers have also developed
several interesting concepts and ideas, includingpseudo code-
words [9], stopping setsand trapping sets[11] [12]. They
boast some of the most accurate performance predictions at
short lengths. The drawback, however, is that efficient and
systematic ways to identify and quantify these metrics are not
readily existent, and hence, one may have to rely on computer-
aided search of some type, causing daunting complexity.

The majority of the existing methods, as summarized above,
largely stem from a statistical and/or information theoretical
root. They have significantly advanced the field, but are also
confronted with challenges and limitations, as they try to use
statistical metrics and tools that are based on ensemble aver-
ages (such as mean, variance, entropy, mutual information)to
predict and control the iterative process of a large-dimension,
highly-dynamical, and apparently-random signal sequence.

The notion that iterative probabilistic inference algorithms
can be viewed as complex dynamical systems [3]-[7] presents
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an interesting departure from the existing ensemble-average
based methods, and brings up new ways of evaluating the soft-
iterative algorithm on individual blocks. Generally speaking,
the performance of a system should be assessed in theaverage
sense, such as the bit error rate (BER) averaged over hundreds
of thousands of blocks. At the same time, however, it also
makes sense to evaluate theper-blockperformance, namely,
the number (or the percentage) of errors in individual blocks.
Per-block error rate reflects error bursts and/or the worst-case
situation, and can be of interest in several applications. For
example, in multimedia transmission, a modest number of
bit blip errors in an image may cause only a minor quality
degradation that is hard to perceive by human eyes, whereas
excessive errors will cause the image to be badly distorted
and unusable. In magnetic recording systems, a Reed Solomon
(RS) outer code is generally employed after the channel-coded
partial-response (PR) channel, to clear up the residual errors
left by the equalizer/decoder. It does not really matter that
every block has errors (after the equalizer/decoder); as long as
the per-block error rate is within the error correction capability
of the RS wrap, zero-error is achievable for the entire system.
Hence, the specific issue we investigate here is how the per-
block performance improves with the number of iterations.

Common wisdom has it that more iterations can not hurt,
i.e., a larger number of iterations may not necessarily lead
to (worthy or noticeable) performance gains, but it cannot
degrade the performance either. This apparent truth, as verified
by the numerous studies reported on the bit error rate (BER)
simulations, density evolution (DE) analysis, and extrinsic
information transfer (EXIT) charts, holds in the context of
averageperformance. In terms of the per-block performance,
however, our studies reveal that it is not only possible, but
also quite likely, for an individual block to encounter an
“fluctuating” decoding state, such that the number of errorsin
that block keeps bouncing up and down (rather than monoton-
ically decreasing) with the iterations. What this phenomenon,
thereafter referred to as theZ-creasephenomenon, implies in
practice is that a larger number of iterations are not always
beneficial, and that the right timing may play a more important
role. If the decoder stops at an unlucky iteration, it may
actually generate far more errors than if it stopped several
iterations earlier.

It is worth noting that Z-crease is not special; it is actually a
universalphenomenon that vastly exists in iterative decoding
and estimation systems. We have examined a variety of
different systems, including low-density parity-check (LDPC)
codes with message-passing decoding, turbo codes with turbo
decoding, product accumulate (PA) codes with iterative PA
decoding [10], and convolutionally-coded inter-symbol inter-
ference (ISI) channel with turbo equalization. In all of these
systems, we have observed the Z-crease phenomenon.

To study the per-block system behavior and reveal the Z-
crease phenomenon, our approach is to treat the iterative
estimation/decoding system a high-dimensional nonlineardy-
namical system parameterized by a set of parameters, to
further transform it to a one-dimensional state space with

a single parameter, and examine the time evolution of the
states at specific signal-to-noise ratios (SNR). In this paper,
we take a popular turbo code as an example, and report here
the observation of a wide range of phenomena characteristic
to nonlinear dynamical systems, including several new phe-
nomena not reported previously.

II. M ODELING TURBO DECODER ASNONLINEAR

DYNAMICAL SYSTEM

A communication or signal processing system generally
consists of many processing blocks inter-connected in parallel,
in serial, or in hybrid, each fulfilling a specific task. Since
the solution space of an “integrated” process is the Kronecker
product of all the constituent solution spaces, to launch an
overall optimal solution usually induces prohibitive complex-
ity. A more feasible solution is to apply iterative algorithms,
which allow constituent sub-units to perform local process
and to iterative exchange and refine processed “messages”,
thus achieving a solution considerably better than that from
sequential processing with a manageable complexity.

Iterative algorithms are by nature probabilistic inference
based, where the “messages” to be processed and com-
municated represent the reliability or confidence level of
a digital decision, commonly formulated aslog-likelihood
ratios (LLR); but they can also be modeled as (nonlinear)
dynamical systems. To help model all the variants of iterative
algorithms in a universal mathematical formulation, we have
summarized some the properties assumed to be features of
these algorithms: (i) An iterative algorithm is a dynamical
system with a large number of dimensions, possibly depending
on many parameters, and distances along trajectories increase
(decrease) polynomially, sub-polynomially or exponentially.
(ii) It is formed by two or more units interacting with each
other; each unit responds to messages received from the
others in a nonlinear manner. (iii) The system is in general
hierarchical: a message may be treated in several different
levels (units) before reaching the center of action. (iv) The
system in its evolution may be adaptive, i.e. with memory. (v)
Local interactions may have global effect: they may produce
considerable global change in the system over the time, e.g.
the “wave effect” in the decoding of an irregular LDPC code.

We start by evaluating the turbo decoder, which is useful
in its own right1, and whose information theoretical analysis
has reached a good level of maturity. A typical rate-1/3
turbo code, depicted in Fig. II, is formed of two constituent
recursive systematic convolutional (RSC) codes, concatenated
in parallel through a pseudo-random interleaver. It encodes
a block of k binary bits a0 into a codeword of3k binary
bits, [a0, a1, a2]. The decoder operates much like the turbo
engine in an automobile, in which two sub-decoders perform
soft-in soft-out decoding, and iteratively exchange and refine
LLR messagesm0 corresponding toa0. Let [z0, z1, z2] be the
noise, induced by the physical channel or transmitter/receiver

1Turbo codes are in a number of standards, including the 3rd Generation
Cellular Networks and Digital Video Broadcasting (DVB).



circuitry, and letsi = ai+zi be the noisy observation available
at the decoder. Exploiting the geometric uniformity of the
codeword space of a turbo code (or any practical ECC), we can
model the turbo decoder as a discrete-time dynamical system
in constant evolution:

m
<n+1>
0 = f1(s0, s2;m

<n>
0 ) = f1(z0, z2;m

<n>
0 ), (1)

m
<n+2>
0 = f2(s0, s1;m

<n+1>
0 ) = f2(z0, z1;m

<n+1>
0 ),

(2)

where the superscriptn denotes the number of half iterations,
z0, z1 andz2 are the parameters of the dynamical system, and
f1 and f2 are nonlinear functions describing the constituent
RSC sub-decoders, reflecting in general an implementation of
the Bahl-Cocke-Jelinek-Raviv (BCJR) decoding algorithm,the
soft Viterbi algorithm (SOVA), or their variations.

Whenk takes on a value of a few thousand or larger, as in
a practical scenario, thisk-dimensional3k-parametrized non-
linear dynamical system becomes too complex to characterize
or visualize. To make the problem tractable, we propose to
“project” these dimensions to one or a few “critical” ones.
Borrowing insight developed from conventional decoder anal-
ysis and after performing a careful evaluation, we propose to
project the3k parameters into a single parameter, the (approx-
imated) signal-to-noise ratio (SNR),γ = 3k

2R/|| [z0, z1, z2] ||
2,

(where R = 1/3 is the code rate), and to project thek
dimensions of the state space into one dimension, the mean
magnitude of LLRs,x<n>

0 = E[|mi|] wheremi ∈ m
<n>
0 . The

nonlinear dynamical system remains in constant evolution in
the k-dimensional space with3k parameters (as a real turbo
decoder does), but characterizing the system using reduced
dimensions drastically simplifies the analysis, enabling abetter
visualization and understanding of the further behavior.

RSC 1

RSC 2
π

RSC DEC2

RSC DEC1

π

π−1

π
m0
m0

s2

s0
s1

a2

a1

a0a0

Fig. 1. Turbo codes. Top: turbo encoder; Bottom: turbo decoder.

III. A NALYZING TURBO DECODERUSING NONLINEAR

DYNAMICAL THEORY

A. Phase Trajectories and Nonlinear Dynamical Behavior

Consider noise samples represented by[z0, z1, z2] =
[z1, z2, ..., z3k]. Different vectors of noise samples are said to
have the same noise realization, if they have the same fixed
ratios between consecutive sample values,z1/z2, z2/z3, · · · ,
z3k−1/z3k. Thus for a given noise realization, the noise vector
z0,1,2 is completely determined by the (approximated) SNRγ.
In general,k should be chosen sufficiently large to makeγ a
close approximation of the true channel SNR.

Extensive simulations are performed in our preliminary
study. A whole range of phenomena known to occur in non-
linear dynamical systems, including fixed points, bifurcations,
oscillatory behavior, period-doubling, limited cycles, chaos
and transient chaos, are observed in the iterative decoding
process asγ increases (Fig. 2–10).

Some of these phenomena were noted in previous studies [5]
[6], but we report interesting new discoveries. For each motion
type, we provide two pictures: a wave picture illustrating the
change of mean magnitude of LLRsE(|mu|) and the mini-
mum magnitude of LLRsmin(|mu|) (y-axis) as a function of
the number of half iterations (x-axis), and a trajectory picture
presenting the phase trajectory from one half iteration to the
next. In some cases, we also present a third picture of a
zoomed-in trajectory after 500 half iterations
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Fig. 2. γ = 0.778151 db, indecisive fixed point. (Left: wave picture; Right:
trajectory picture.)

The iterative process inevitably starts with and ends at a
fixed point. The former, occurring at an asymptotically low
SNR (such asγ ≤ 0.778151 db in our experiment, Fig. 2),
is termed anindecisive fixed point, and is associated with an
unacceptably high error probability (22% in our experiment).
The latter, occurring at an asymptotically high SNR (e.g.,
γ ≥ 1.113943 db, Fig. 10), denotes a successful decoding
convergence to a zero-errorunequivocal fixed point.

Between the two asymptotic ends are a myriad spectrum of
bifurcations, some of which correspond well to the ostensible
concepts and phenomena from the information theory, and oth-
ers appear foreign and await an indepth study. Asγ increases
from 0.778151 to 0.845098 db (Fig. III-A, the system remains
trapped to an indecisive fixed point, but the long convergence
time indicates the stability of the indecisive fixed point begins
to break down.

At SNR of γ = 0.857332 db, the indecisive fixed point
undergoes a flip bifurcation and a stableperiodical fixed point
with period of 5 is formed (Fig. 4).

Further increasingγ to 0.902829 db leads to an increased
period from 5 to 10, showing theperiod-doublingphenomenon
(Fig. 5). A closer inspection, shown in the zoomed-in trajec-
tory picture, indicates that the motion is not exactly repetitive,
but follows an approximate periodic orbit. As been verified
in the experiment here (as well as other complex systems),
the period will continue to double without bound asγ in-
creases. The “discrete” orbit eventually becomes continuous
at γ = 0.921682 db, presenting alimited cycleor limited ring
– a closed curve homeomorphic to a circle (Fig. 6).

As SNR further increases, the limited ring loses its stability,
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Fig. 3. γ = 0.845098 db, fixed point breaking down.
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Fig. 4. γ = 0.857332 db, periodical fixed point. (Top Left: wave picture;
Top Right: trajectory picture; Bottom Left: zoomed in trajectory picture.)
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Fig. 5. γ = 0.902829 db, periodical fixed point losing stability.

and converges ones again to anindecisive fixed pointat
γ = 0.922725 db (Fig. 7). This is rather surprising and is
the first time that this type of indecisive fixed points has
been observed for turbo decoders. Unlike the fixed points at
both asymptotic ends, here the phase trajectory oscillateswith
diminishing amplitude and it takes longer to converge.

Next at γ = 0.929419 db, the fixed point undergoes
Neimark-Sacker bifurcation through which the phase trajectory
goes into an invariant set and, after a transient period, becomes
chaos(Fig. 8).
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Fig. 6. γ = 0.921682 db, limited-cycle tractor.
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Fig. 7. γ = 0.922725 db, a fixed point.
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Fig. 8. γ = 0.929419 db, chaos.

The previous limited studies have suggested that after chaos
will be transient chaos and then the convergence to an un-
equivocal fixed point [5]. It is intriguing indeed to report there
actually exist a rich variety of motion types between chaos and
the asymptotic unequivocal fixed point. They include: aquasi-
periodic fixed pointat γ = 0.982271 db (Fig. 9), transient
chaosat γ = 0.991226 db (Fig. 10), aperiodic fixed point
at γ = 1.002166 db (Fig. 11), anothertransient chaoswith
a short transient lifetime atγ = 1.00432 db (Fig. 12), and
eventually the zero-errorunequivocal fixed point(Fig. 13).



0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

n

fn (x
0)

 

 
min
mean

0.982271 db

2 4 6 8 10 12 14 16
4

6

8

10

12

14

16

fn(x
0
)

fn+
1 (x

0)

8 9 10 11 12 13 14 15
8

9

10

11

12

13

14

15

fn(x
0
)

fn+
1 (x

0)

Fig. 9. γ = 0.982271 db, quasi-periodic fixed point.

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

n

fn (x
0)

 

 
min
mean

0.991226 db

0 5 10 15 20 25 30 35
5

10

15

20

25

30

35

fn(x
0
)

fn+
1 (x

0)

Fig. 10. γ = 0.991226 db, transient chaos
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Fig. 11. γ = 1.002166 db, periodic fixed point.

B. Analysis and Simulations

Repeated tests on a large sample of random noise realiza-
tions show that although different realizations produce differ-
ent bifurcation diagrams, the entire SNR range nonexclusively
falls apart into three regions: a low-SNR region corresponding
to stable indecisive fixed points, a transition region knownin
the communication jargon as thewaterfall region in which
bifurcations occur, and a high-SNR region corresponding to
stable unequivocal fixed points. It can be proven that (1) foran
iterative estimator/decoder that is probabilistic inference based,
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Fig. 12. γ = 1.004321 db, transient chaos
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Fig. 13. γ = 1.113943 db, unequivocal fixed point.

given any noise realizationz and positive numberδ, there
exists an SNR thresholdγ1(z, δ), such that for any SNR<
γ1(z, δ), the iterative algorithm converges, with a probability
greater than1−δ, to a unique and stable indecisive fixed point;
(2) likewise, there exists an SNR thresholdγ2(z, δ), such
that for any SNR> γ2(z, δ), the iterative estimator/decoder
starting with an unbiased initialization converges, with a
probability greater than1 − δ, to a stable unequivocal fixed
point that corresponds to zero decoding errors.

Also of interest is the rich variety of fixed points we
observed in the waterfall region, none of which were re-
ported previously. These fixed points behave much like chaotic
(sensitive) non-hyperbolic attractors. (Chaos is a special class
of aperiodic, nonlinear dynamical phenomenon, and is char-
acterized by a prominent feature of “sensitivity to initial
conditions.” This feature, commonly known as the “butter-fly
effect”, states that a small perturbation to the initial state would
lead to huge and drastically different changes later on.) In
comparison, the fixed points at the two extreme ends of SNR
are hyperbolic attractors, where distances along trajectories
decrease exponentially in complementary dimensions in the
ambient space. These newly observed fixed points, some or
all of which may or may not occur depending sensitively on
the specific noise realization, are usually associated witha
few detection errors. They appear to provide support, from the
dynamical system perspectives, for the information theoretic
conjecture that there exists one or more pseudo codewords
in the vicinity of a correct codeword (i.e. a few bits of
Hamming distance away) [9]. They may also correspond well
to the coding concept ofstopping setand trapping set, which
characterize an high-SNR undesirable convergence in the BSC
(binary symmetric channel) decoding model and the Gaussian
decoding model, respectively [11], [12].

It is particularly worth noting that in almost all the motion
stages, the mean and the minimum magnitude of LLRs fluc-
tuate in a rather notable manner as the number of iteration



increases (see the wave pictures). Since the mean magnitude
of LLR is shown to relate fairly well with the percentage of
errors occurred in each frame [13], it is therefore reasonable to
predict that the per-block error number will also fluctuate with
iterations. For example, for a short block of 1024 bits, we have
observed that the number of errors in a particularly block can
easily vary between 80 and 120, in a “quasi-periodic” Z-crease
manner. In other words, it is highly likely that an early lucky
iteration may save both complexity and1/3 less of erroneous
bits than a longer, unlucky iteration.

Since where the decoder stops also makes a difference in
per-block performance, questions arise as how to stop at the
right iteration, and how much benefit there is. We propose the
following rule of thumb to detect Z-crease:

i) The minimum magnitude of LLR,min(|mu|), is a very
accurate indicator of whether or not the iterative decoder has
successfully converged to the unequivocal attractor (i.e.the
correct codeword). In a correct convergence (i.e. when the at-
tractor is the unequivocal fixed point or the unequivocal chaos
attractor), the minimum magnitude and the mean magnitude
of LLR will both increases with iterations. Otherwise, the
iterative process is trapped in some local minimum (which
corresponds to the indecisive fixed point, the quasi-periodical
cycles, and the indecisive chaos). In such as case, the average
magnitude of LLRE(|mu|) may continue to increase with
iterations at a decent pace, but the minimum magnitude
min(|mu|) will remain at a very low value, sending a clear
signal of unsuccessful convergence. It is thus convenient to set
a threshold forE(|mu|) to indicate decoding success.

ii) The Z-crease is most prominent (with large error fluc-
tuation) in the quasi-periodical cycle and the indecisive chaos
stages. Hence, it is beneficial to detect Z-crease phenomenon
as early as possible and to terminate decoding at the earliest
“best” iteration. Since the Z-crease of the bit errors is almost
always accompanied with a Z-crease ofE(|mu|), we suggest
using E(|mu|) to detect the Z-crease of errors. Here is a
simple but rather effective method: Each local maximum point
of E(|mu|) is taken as acandidate point, which is like the
“local optimal point”. We predict that Z-crease is occurring
when theE(|mu|) value of any one candidate point is lower
than theE(|mu|) value of its previous candidate point.

Following these observations, we also propose a heuristic
stopping criterion and suggest performing iterative decoding
in the follow manner: The iterative decoder keeps track of
min(|mu

(n)|) andE(|mu|
(n)), and terminate when any one

of the following conditions happens:
1) Whenmin(|mu

(n)|) increases above a threshold.
2) WhenE(|mu|) of any one candidate point is lower than

E(|mu|) of the previous candidate point.
If the decoder stops at condition 1), the current bit decisions

and the current iteration are considered as our “best shots.” If
the decoder stops at condition 2), then we suggest the decoder
trace back to the previous candidate point and use the bit
decisions of that iteration as the final decision. Otherwise,
the decoder will proceed to reach the maximum iteration cap
without voluntary stop.

It should be noted that previous researchers have also used
the mean magnitude of LLR for early stopping purpose [8],
but it was used in a different way that did not recognize
the Z-crease phenomenon. To the best of our knowledge,
the minimum magnitude of LLR has not been exploited
previously. Our stopping criterion here is most useful in
improving the worst-case per-block performance, but not so
much for the average performance (averaged over lots of
blocks). It can also cut down the iteration number by50%
or even larger (especially at lowγs or when the specific
frame encounters lucky deep distortion), without sacrificing
the average performance.

IV. CONCLUSION

We report the Z-crease phenomenon in soft-iterative de-
coding systems, and use the theory of nonlinear dynamics
to justify its existence and generality. We show that while
the average system error rate performance in general im-
proves (or, does not deteriorate) with iterations, for individual
frames, more iterations may actually do harm to the decoding
decisions. Analyzing the dynamical behavior of the system,
we further propose a simple stopping criterion based on the
minimum magnitude and the mean magnitude of LLR to detect
successful convergence and determine the right iteration to
stop.
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