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Abstract. We study link scheduling in wireless networks under stochastic arrival processes of
packets, and give an algorithm that achieves stability in the physical (SINR) interference model.
The efficiency of such an algorithm is the fraction of the maximum feasible traffic that the algorithm
can handle without queues growing indefinitely. Our algorithm achieves two important goals: (i)
efficiency is independent of the size of the network, and (ii) the algorithm is fully distributed, i.e.,
individual nodes need no information about the overall network topology, not even local information.

1. Introduction

Designing high-performance scheduling algorithms for wireless networks has become an increas-
ingly important topic in recent years. Scheduling in a wireless environment is a non-trivial problem,
since simultaneous transmissions interfere with each other in complex ways. A two-fold challenge of
appropriately modelling the interference, and then developing algorithms for that model presents
itself. Furthermore, in many realistic settings, a centralized controller cannot be assumed, and
algorithms that work in a distributed fashion have to be developed.

In this work, we are interested in stability and the associated throughput performance of sched-
uling algorithms for wireless networks under realistic interference models. We assume that packets
arrive at potential senders according to a stochastic process, and the goal of an algorithm is to
schedule these transmissions so that the queues of unscheduled packets at each sender remain
bounded (in which case, the system is called stable). A rich body of research has been devoted
to dealing with this issue in a variety of settings. The seminal work of Tassiulas and Ephremides
[23] established that an optimal scheduling policy exists, one that stabilizes the system under all
arrival rates for which stability is potentially possible. In most settings, however, such a “perfect”
solution is computationally intractable, and additionally a distributed implementation is unlikely.

Hence, the search for efficient and/or distributed algorithms which, if not as good as the optimal
algorithm, are nevertheless useful. Since these algorithms may not stabilize all feasible arrival
processes, the concept of efficiency of an algorithm has been introduced, being the fraction of Λ that
the algorithm can stabilize, where Λ is the space of arrival processes that the optimum algorithm
can stabilize. There have been many approaches to developing such algorithms. A natural step in
the search for efficient algorithms is to seek maximal solutions. In the context of wireless networks
this is known as Greedy Maximal Scheduling (GMS) algorithm [10] or Longest Queue First (LQF)
algorithm [4]. The stability and efficiency of LQF has been investigated extensively [10, 16, 4].
Many other approaches have been proposed as well [18, 11, 22].

Most analytic work on wireless networks has been done in graph-based interference models (e.g.
[18, 10, 16, 4, 22]). In these models, wireless links (a link is a sender-receiver pair) that are neighbors
in a specified link-graph cannot transmit simultaneously. Though interesting in their own right,
these models are known to over-simplify interference coupling [17, 20]. As a result, many research
communities working on wireless networks have increased their focus on the so-called physical model
or the SINR model. In this model, a transmission is considered successful if the signal received at the
intended receiver is suitably larger than the cumulative interference due to all other transmissions
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in the network, plus the ambient noise. In the SINR model, solving the characterization in [23]
is equivalent to solving the maximum weighted capacity problem, which is known to be NP-hard
[6] and additionally has no known constant factor approximation algorithm (quite apart from the
issue of distributed implementation).

In this paper, we develop an algorithm that is completely distributed, with nodes requiring no
topological information about the network (not even information about “neighbors”), and achieves
an efficiency ratio that is independent of the network size (i.e., the number of links). Thus, the
algorithm is scalable in relation to network size. It can also operate in an asynchronous setting,
with nodes appearing arbitrarily (as long as the stochastic process meets the required condition).

We give simulation results which lend credence to the theoretical bounds. Our algorithm is
extremely robust under fairly high amount of load (achieving efficiency ratios bordering on 0.5).

The only other work (that we are aware of) on stability of algorithms in the SINR model is the
recent work by Le et. al. [14], who analyze the stability properties of the LQF algorithm. The
authors show that the basic LQF is not efficient, but a variation of it that localizes interference is
shown to work, with efficiency similar to ours. In a related work, [15] also consider the SINR model,
but the model there is different (links are always feasible, but have different data rates based on
the SINR achieved. This sort of problem is rather different from the “combinatorial” situation at
hand).

A distinguishing feature of our distributed implementations is that they require almost no addi-
tional “infrastructure”. Often distributed algorithms for wireless networks have to assume another
underlying information infrastructure that can be used to run a localized and/or distributed al-
gorithm, and that infrastructure, moreover, is not subject to the interference constraints of the
original network. This is the case with [14], as well as many other works on the topic ([18, 15]
for example). This is a rather strong assumption, especially in light of the fact that in a wireless
network, one is usually trying to establish such an infrastructure in the first place. It is interesting
that we can do without them while obtaining high throughput performance.

From a technical perspective, we adopt the vocabulary and techniques developed in the context
of worst-case algorithmic research on the SINR model ([19, 9, 12, 8]). The concept of “affectance”
(defined later) developed in some of these works turns out to be quite effective in this context. This
approach may have further applications in the study of stability of wireless networks.

The paper is organized as follows. In Section 2, we describe our algorithm and state the main
result. In Section 3 we present the system model, and discuss related work further in Sec. 4. The
proof of the stability result is given in Section 5. Finally, in Section 6 we present simulation results.

2. Algorithm and Result

The wireless network is modeled as a set L of n links, where each link lu ∈ L represents a
potential transmission from a sender su to a receiver ru, each a point in a metric space.

We assume that packets arrive at the sender of each link lu according to a stochastic process
with average arrival rate mu.

The extremely simple and fully distributed algorithm is as follows.
Our main result is:

Theorem 1. For all given networks with links on metric spaces, and all sublinear, length-monotone
power assignments, Reflect achieves an efficiency ratio independent of n.

3. Some Preliminaries

The distance between two points x and y is denoted d(x, y). The distance from lu’s sender to lv’s
receiver is denoted duv = d(su, rv). The length of link lu is denoted simply by `u = d(su, ru). The
link set is associated with a power assignment P , which is an assignment of a transmission power
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Algorithm 1 Reflect (Run by each link lu in the system)

1: Qu ← ∅ (queue of outstanding packets)
2: for t← 1, 2, . . . do
3: Let A be the set of packets that arrive at the beginning of time slot t
4: Add A to the end of Qu
5: if Qu is non-empty then
6: Transmit a packet from Qu with probability 2.5 ·mu

7: end if
8: end for

Pu to be used by the sender of each link lu ∈ L. The signal received at point y from a sender at
point x with power Px is Px/d(x, y)α where the constant α > 0 is the path-loss exponent.

We can now describe the physical or SINR-model of interference. In this model, a receiver ru
successfully receives a message from the sender su if and only if the following condition holds:

(1)
Pu/`

α
u∑

lv∈S\{lu} Pv/d
α
vu +N

≥ β ,

whereN is the environmental noise, the constant β denotes the minimum SINR (signal-to-interference-
noise-ratio) required for a message to be successfully received, and S is the set of concurrently
scheduled links in the same slot (we assume that time is slotted). We say that S is SINR-feasible
(or simply feasible) if (1) is satisfied for each link in S.

A power assignment P is length-monotone if Pv ≥ Pw whenever `v ≥ `w and sublinear if Pv`αv
≤ Pw

`αw
whenever `v ≥ `w. This class includes the most interesting and practical power assignments, such
as uniform power (all links use the same power), linear power (Pu = `αu , known to be energy efficient

in the presence of noise), and mean power (Pu = `
α/2
u , the assignment that produces maximum

capacity in this class [8]). Let ∆ = `max
`min

where `max and `min are, respectively, the maximum and
minimum lengths of links in L.

Definition 2. The affectance aPv (u) of link lu caused by another link lv, with a given power as-
signment P , is the interference of lv on lu relative to the signal received, or

aPv (u) = min

{
1, cu

Pv
Pu
·
(
`u
dvu

)α}
,

where cu = β/(1− βN`αu/Pu).

We need the following assumption.

Assumption 3. cu ≤ 2β for any link lu.

This is is fairly reasonable assumption. It simply says that in the absence of other links, the
transmission succeeds comfortably. The constant 2 is not fundamental; any value greater than 1
would suffice.

Since cu ≥ β by definition, this implies that

(2)
cv
cu
≤ 2 for any two links lu, lv

The definition of affectance was introduced in [5, 9] and achieved the form we use in [13]. When
clear from the context we drop the superscript P . Also, let aPv (v) = 0. Using affectance, Eqn. 1
can be rewritten as

(3) aPS (u) ≡
∑
lv∈S

aPv (u) ≤ 1 ,
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for all lu ∈ S.
Signal-strength and robustness. A δ-signal set of links is a set of links where the affectance on

any link is at most 1/δ. A set is SINR-feasible iff it is a 1-signal set. We know:

Lemma 4 ([7]). Let `u, `v be links in a qα-signal set. Then, duv · dvu ≥ q2 · `u`v.

Now we switch to the aspects of this paper related to queueing theory and stochastic processes.
We first define stability.

Definition 5. An algorithm stabilizes a network for a particular arrival process if, under that
arrival process, the average queue size is bounded (at any given time).

The throughput region is then the set of all possible arrival rate vectors such that there exists
some scheduling policy that can stabilize the network.

As proved in [23], the throughput region is characterized by

Λ = {λ : λ � φ, for some φ ∈ Co(Ω)} ,
where Ω is the set of all maximal feasible schedules (meaning arrival processes that put weight
1 on a single maximal feasible set) and Co(Ω) is the convex hull of Ω. Note that λ and φ are
n-dimensional vectors and λ � φ means each element of λ is upper bounded by the corresponding
one in φ.

Since fast and/or distributed algorithms might not stabilize all of Λ, one hopes to achieve a large
efficiency ratio.

Definition 6. The efficiency ratio γ of a scheduling algorithm is γ = sup{η : all networks are
stabilized for all λ ∈ ηΛ}, where ηΛ = {ηλ : λ ∈ Λ}.

We assume that the arrival process on a link is i.i.d. across time, and different links are indepen-
dent of each other.

We will use Mi to denote both maximal feasible sets, and characteristic vectors of said sets (the
usage being clear from context). For a given efficiency ratio γ, it must hold for all permissible
arrival rate vectors λ that λ �

∑
imiMi, where and mi are weights such that

(4)
∑
i

mi = γ .

It can be easily seen that for any link lu,

(5) mu =
∑

i:lu∈Mi

mi ≤ γ .

4. Related work

As stated in Thm. 1, the efficiency of the algorithm is independent of n (the number of links
in the system). It is, however, dependent on another network parameter ∆, the ratio between
the longest and the shortest link in the system (the proof in the next section contains the exact
expression). The only comparable work on this model [14] has the same dependence on ∆ (this
is not explicitly stated in the paper, but can be seen to be necessary). The main discriminating
feature of our work is that it is distributed in a much stronger sense. The algorithm in [14] can
be characterized as “localized”, where each link needs to be aware of and have communicated with
other links in its neighborhood. We have no need for such infrastructure.

In terms of efficiency ratio, a range of results have been derived in a variety of models. Naturally
one seeks efficiency of 1 whenever possible [18], but results for efficiency ratio of 1 under certain
conditions [4], or 1

2 [3], or 1
6 [10] can be found in the literature. Ratios in terms of certain network

characteristics are known as well – such as in terms of the degree of the interference graph [2] or
4



the local pooling factor [10, 14]. In [21], the abstract SINR model (received signal is a general
function instead of being length-based) in the context of MIMO networks is studied. An efficiency
ratio based on a system-specific value (“effective interference number”) is derived, with no direct
comparison with distance-based SINR models.

For the SINR model, an efficiency ratio that is an “unconditional” constant (independent of both
n and ∆) is not known.

5. Proof of Stability

We now present a proof of Thm. 1.
Note that the probability 2.5 ·mu used for link lu in the algorithm is well-defined, since we claim

stability with constant efficiency ratio bounded from above by 1
3 .

We first need the following observation.

Observation 7. For any two links `u and `v using a length monotone, sub-linear power assignment,

Pu`
α
v

Pv`αu
≤ ∆α .

Proof. If `v ≤ `u, it holds by sub-linearity that Pu/`
α
u ≤ Pv/`

α
v . Otherwise, if `u ≤ `v, then by

monotonicity Pu ≤ Pv and by definition of ∆, `αv /`
α
u ≤ ∆α. �

The following key lemma shows that no link is affected too much by any single feasible set.

Lemma 8. Consider a feasible set S and a link lv (not necessarily a member of S). Then,

(6)
∑
lz∈S

az(v) ≤ κ ·∆α ,

for some constant κ.

Proof. We use the signal strengthening technique of [9]. For this, we decompose the set S to
d2 · 3α/βe2 sets, each a 3α-signal set. We prove the claim for one such set; since there are only
constantly many such sets, the overall claim holds (with the appropriate increase in the constant
factor). Let us reuse the notation S to be such a 3α-signal set.

Consider the link lu = (su, ru) ∈ S such that d(rv, ru) is minimum. Also consider the link
lw = (sw, rw) ∈ S such that d(sw, rv) is minimum. Let D = d(rv, ru). We claim that for all links
lx = (sx, rx) ∈ S with `x 6= `w, it holds that

(7) d(sx, rv) ≥
1

2
D .

To prove this, assume, for contradiction, that d(sx, rv) <
1
2D. Then, d(sw, rv) <

1
2D, by definition

of lw. Now, again by the definition of lu, d(rx, rv) ≥ D and d(rw, rv) ≥ D. Thus `w ≥ d(rw, rv) −
d(rv, sw) > D

2 and similarly `x >
D
2 . On the other hand d(sw, sx) < D

2 + D
2 = D. Now, dwx · dxw ≤

(`w + d(sw, sx))(`x + d(sw, sx)) < (`w +D)(`x +D) < 9`w`x, contradicting Lemma 4.
Now that we have proven Eqn 7, by the triangle inequality, dxu = d(sx, ru) ≤ d(sx, rv) +

d(rv, ru) ≤ 3d(rv, sx) = 3dxv. Applying Obs. 7, we see that

ax(v)

ax(u)
≤ cv
cu
· Pu
Pv
· d

α
xu

dαxv
· `

α
v

`αu
≤ 2 · 3αPu`

α
v

Pv`αu
≤ 2 · 3α∆α .
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where cv
cu
≤ 2 follows from Eqn. 2. Finally, summing over all links in S,

aS(v) =
∑
lz∈S

az(v) = aw(v) +
∑

lz∈S\{lw}

az(v)

≤ 1 + 2 · (3∆)α
∑

lz∈S\{lw}

az(u)

≤ 1 + 2 · (3∆)α ,

where we use aw(v) ≤ 1 by the definition of affectance, and
∑

lz∈S\{lw} az(u) ≤ 1 since S is feasible

and lu ∈ S.
This completes the proof setting κ = 3α+1. �

We turn to the proof of Thm. 1.

Proof. We claim an efficiency ratio of 1/(6κ∆α) where κ is the constant from Lemma 8. Thus, it
is enough to prove stability for all stochastic processes for which the following holds:

(8)
∑
i:Mi

mi ≤
1

6κ∆α
.

Consider the affectance on any link lu during the execution of the algorithm in a single slot, and
denote it by a(u). This can be computed as a(u) =

∑
lv
Xvav(u), where Xv is a Bernoulli random

variable which is 1 iff link lv has a non-empty queue and chooses to transmit during the same slot.
Now,

E(a(u)) =
∑
lv

E(Xv)av(u)
1
≤
∑
lv

2.5mvav(u)

2
= 2.5

∑
i

mi

∑
Mi3lv

av(u)

3
≤ 2.5

∑
i

miκ∆α
4
≤ 2.5κ∆α

6κ∆α
=

5

12
,

where explanations of the numbered (in)equalities are:

(1) E(Xv) ≤ 2.5mv by the description of the algorithm.
(2) By Eqn. 5 and rearrangement.
(3) By Lemma 8.
(4) By Eqn. 8.

Thus, with probability at least 1
2 , a(u) < 1 (by Markov’s inequality). Hence, if lu has a non-

empty queue, with probability at least 5
4 ·mu, the queue size decreases. Note that the probability

can potentially be higher than 5
4 · mu, but never smaller. Therefore, this system is at least as

efficient as the system where in each slot the queue size reduces by 1 with i.i.d. probability exactly
5
4 ·mu.

The queue dynamics on a single link become equivalent to the following single server system with
slotted time and an infinite queue. In this system, at the beginning of each time slot, A packets
arrive, where A is a random variable on the non-negative integers, with E(A) = mu. At the end of
each slot, the server processes D packets (or empties the queue), where D is a Bernoulli random
variable with E(D) = 5

4 ·mu > mu = E(A). Since the departure process is faster than the arrival
process, the stability of the queue is guaranteed by basic results in queueing theory [1]. �

We note that for linear power assignment, the dependence on ∆ in Obs. 7 completely disappears,
and thus also in Lemma 8 and Thm. 1.
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Figure 1. The maximum queue lengths for the distributed algorithms Distr-
SingleLink and Reflect. The problem instances are based on random topology with
n = 200, `min = 1, `max = 20, α = 2.5 and β = 1.

Corollary 9. For all given networks with links on metric spaces, using linear power assignment,
Reflect achieves an efficiency ratio that is an absolute constant (independent of n and ∆).

Remark: In Reflect we have assumed that each link lu knows mu. In practice, this can be easily

approximated at time t by min{1, A(t)t } (where A(t) is the number of packet arrivals up to time t),
which converges to the right value almost surely.

5.1. Link partitioning. If link lengths are known beforehand and some pre-processing is allowed,
the efficiency can be made to have a better dependence on ∆, specifically, we can achieve an
efficiency ratio of 1/(6 · 2ακ log ∆).

We can partition the link set into a collection of nearly equi-length link sets, i.e., sets where the
lengths in the set vary by at most a factor of 2. It is easy to show that a link set L can be be
partitioned into at most log2 ∆ + 1 sets of nearly equi-length links Lr for r = 1 . . . log2 ∆ + 1 where
Lr contains links of lengths in [2r−1 · `min, 2

r · `min).
We partition the time slots accordingly, a time slot t is used to schedule links from class Lr where

r = ((t− 1) mod (log2 ∆ + 1)) + 1.
With the partition, the arrival process on a sequence of slots devoted to a single length class

is equivalent to the setting where all links are nearly equi-length and assuming that
∑

imi =
1/(6 · 2ακ).1 This partitioning combined with Lemma 8 proves the claimed efficiency.

6. Simulations

To see how the distributed algorithm Reflect performs, we ran simulations on instances based
on random topology. The problem instances were created by generating random links in a rectangle
with side length 100. The length of the links were uniform random variables between `min and `max,
which we set as 1 and 20 respectively. We generated random transmission requests for 100,000 time
slots while running the algorithms. Our focus was on the behavior of the maximum queue length,
i.e., the largest number of waiting transmission requests over all the links, which was measured
every 10,000 rounds.

Figure 1 shows the results of the distributed algorithm Reflect for random instances with 200
links after 10,000, 50,000 and 100,000 time slots. The probability scaling factor, ρ, defines the load

1There are certain technicalities here, since a) Mi ∩ Lt may not be a maximal feasible set in Lt and b) Two sets
Mi and Mj may have the same “projection” in Lt, i.e., it is possible that Mi ∩ Lt = Mj ∩ Lt for Mi 6= Mj . These
can be handled in a straightforward way.
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on the system. Thus when ρ = 1, the system will, in expectation, receive a maximal feasible set in
every round, while if the scaling factor is zero, no requests are generated. The efficiency ratio of an
algorithm is then equal to the largest ρ such that the algorithm is stable. We used a granularity of
0.01 for values of ρ between 0.01 and 0.6 and took the average over 10 runs for each value of ρ.

The Reflect algorithm used in Figure 1 approximates the arrival rate of requests for each link, as
mentioned in an earlier remark, instead of assuming that the links know the arrival rate of requests.

It is interesting to note, in Figure 1, that there is a very sharp threshold where the algorithm
is no longer stable. As soon as the algorithm becomes unstable, the queue lengths increase very
rapidly. As expected, the centralized Longest Queue First (LQF) algorithm was more stable than
the distributed algorithm, managing to keep the maximum queue length below 2 for all values of
ρ ≤ 0.6 and not becoming unstable until ρ > 0.9. We note here again that though our algorithm has
a lower (though still high) throughput, its main feature is the lack of a requirement for a centralized
or even localized control.

8



References

[1] Søren Asmussen. Applied Probability and Queues. Springer, 2nd edition, 2003.
[2] Prasanna Chaporkar, Koushik Kar, Xiang Luo, and Saswati Sarkar. Throughput and fairness guarantees through

maximal scheduling in wireless networks. IEEE Transactions on Information Theory, 54(2):572–594, 2008.
[3] J. G. Dai and Balaji Prabhakar. The throughput of data switches with and without speedup. In INFOCOM,

pages 556–564, 2000.
[4] Antonis Dimakis and Jean Walrand. Sufficient conditions for stability of longest-queue-first scheduling: second-

order properties using fluid limits. Advances in Applied Probabability, 38(2):505–521, 2006.
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(M. M. Halldórsson) School of Computer Science, Reykjavik University, 101 Reykjavik, Iceland,
E-mail address: mmh@ru.is

(P. Mitra) School of Computer Science, Reykjavik University, Reykjavik 101, Iceland
E-mail address: ppmitra@gmail.com

9

http://arxiv.org/abs/1010.3427

	1. Introduction
	2. Algorithm and Result
	3. Some Preliminaries
	4. Related work
	5. Proof of Stability
	5.1. Link partitioning

	6. Simulations
	References

