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Abstract

We quantify observability in small (3 node) neuronal networks as a function of 1) the connection 

topology and symmetry, 2) the measured nodes, and 3) the nodal dynamics (linear and nonlinear). 

We find that typical observability metrics for 3 neuron motifs range over several orders of 

magnitude, depending upon topology, and for motifs containing symmetry the network 

observability decreases when observing from particularly confounded nodes. Nonlinearities in the 

nodal equations generally decrease the average network observability and full network 

information becomes available only in limited regions of the system phase space. Our findings 

demonstrate that such networks are partially observable, and suggest their potential efficacy in 

reconstructing network dynamics from limited measurement data. How well such strategies can be 

used to reconstruct and control network dynamics in experimental settings is a subject for future 

experimental work.

I. Introduction

An observer model of a natural system has many useful applications in nonlinear dynamics 

from weather prediction to neuronal systems [1]. A fundamental question that arises when 

utilizing filters to estimate the future states of a system is how to choose a model and 

measurement function that faithfully captures the system dynamics and can predict future 

states [2], [3]. An observer is a model of a system or process that assimilates data from the 

natural system being modeled. The key concept to employ in a “well designed” observer is 

observability, which quantifies whether there is sufficient information contained in the 

measurement to adequately reconstruct the full system dynamics. From the theories of 

differential embeddings and nonlinear reconstruction we have a nonlinear measure of 

observability from the so called differential embedding map, comprised of the measurement 

function and its higher Lie derivatives. The differential embedding map of an observer 

provides the information contained in a given measurement function and model, which can 
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be quantified by an observability index [4]. Computed from the Jacobian of the differential 

embedding map, the observability index is a matrix condition number which quantifies the 

perturbation sensitivity (closeness to singularity) of the mapping created by the 

measurement function used to observe the system. Singularities in the map cause 

observability to decrease and information about the system to be lost.

II. Background

A. Linear Observability

In the early 1960s, Rudolph Kalman introduced the notions of state space decomposition, 

controllability and observability into the theory of linear systems [5]. From this seminal 

work comes the classic concept of linear observability for a linear time-invariant (LTI) 

dynamic system, which defines a ‘yes’ or ‘no’ answer whether a state can be reconstructed 

from a measurement using the Kalman rank condition check, i.e. rank(O) = n of the 

observability matrix O, where n is the dimension of the system (number of state variables).

A dynamic model for a linear system can be represented by

(1)

where x ∈ ℝn represents the state variable, u ∈ ℝm is the external input to the system and y 

∈ ℝp is the output (measurement) function of the state variable. The linear observability 

matrix is defined as [6]

(2)

The finite limit of the matrix comes from the Cayley-Hamilton theorem [6].

B. Differential Embeddings and Nonlinear Observability

From early work on the nonlinear extensions of observability in the 1970s [7], [8] showed 

that the observability matrix for nonlinear systems could be expressed using the 

measurement function and its higher order Lie derivatives with respect to the nonlinear 

system equations. Again, the core idea is to evaluate a mapping φ from the measurements to 

the states. In particular, Hermann and Krener [7] showed that the space of the measurement 

function is embedded in ℝp when the mapping from measurement to states is everywhere 

differentiable and injective by the Whitney Embedding Theorem [9], [10]. In other words, 

an embedding is a map involving differential structure that does not collapse points or 

tangent directions [11]. A map φ is an embedding when the determinant of the map 

Jacobian, Det , is non-vanishing (everywhere differentiable) and one-to-

one (injective). In a recent series of papers [12]-[14], Letellier et al. computed the nonlinear 
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observability matrices for the well-known Lorenz and Rössler systems [15], [16] and 

demonstrated that the order of the singularities present in the observability matrix (and thus 

the amount of intersection between the singularities and the phase space trajectories) was 

related to the decrease in observability.

For a nonlinear system ANL in the form (1), the scalar measurement function is taken as y(t) 

= Cx and the system equations comprise the nonlinear vector field f(x) = ANLx (note: if there 

is no external input, then Bu = 0). Differentiating y(t):

(3)

where Lfy(x) is the Lie derivative of y along the vector field f. The differential embedding 

map φ is defined as the Lie derivatives , and taking the Jacobian of the 

map we arrive at the observability matrix:

(4)

which reduces to (2) for linear system representations. The key intuition here is that in the 

nonlinear case the observability matrix becomes a function of the states, where a linear 

system is always a constant matrix of parameters.

C. Observability Index

In systems with real numbers, calculation of the Kalman rank condition may not yield an 

accurate measure of the relative closeness to singularity (conditioning) of the observability 

matrix. It was demonstrated in [4] that the calculation of a matrix condition number [17] 

would provide a more robust determination of the ill-conditioning inherent in a given 

observability matrix. The observability index δ(x) is given in [4], however we will use the 

inverted form in [18] so that 0 ≤ δ(x) ≤ 1

(5)

where δ(x) = 1 indicates full observability and δ(x) = 0 indicates no observability.

III. Observability of 3-node Fitzhugh-Nagumo network motifs

A. Fitzhugh-Nagumo System Dynamics

The Fitzhugh-Nagumo (FN) equations [19], [20], comprise a general representation of an 

excitable neuronal membrane. The model is used as a 2-dimensional analogue of the well 

known Hodgkin-Huxley model [21]: an axonal excitable membrane with ionic currents and 

voltage gated ion channels. The FN model can exhibit a variety of dynamical modes which 
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include active transients, limit cycles, and chaos [19]. The nonlinear connection function 

takes the form of the sigmoidal activation function of neighboring activity (hyperbolic 

tangent) and an exponential decay with inter-nodal distance to convey the connection/

coupling strength.

The system dynamics at a node are given by the equations [19]:

(6)

where υ represents membrane voltage, w is recovery, d the inter-nodal distance, υ* the 

voltage of neighbor nodes, I = −1.15 the input current, and the standard parameters a = 0.7, 

b = 0.8, c = 3. In the following analysis, we are interested in directed information flow 

between nodes as a function of various topological connection motifs. As such, each motif is 

representative of a unique combination of directed connections in between the 3 nodes. We 

utilize a hyperbolic tangent in the nonlinear connectivity function:

(7)

The sigmoid parameters k = 1, h = 0, w = 1/4, are set such that tanh outputs [0,1] for the 

input [−2,2], which is the range of the typical FN voltage variable. In this configuration 

inputs from neighboring nodes act in an excitatory-only manner, while the driving input 

current I = −1.15 was applied to all three nodes and provided a limit cycle regime to the 

network for certain network connection strengths.

To contrast for the linear case, we piecewise linearize the Heaviside threshold function in 

the Wilson-Cowan equations [22], thereby removing the nonlinearity and admitting a 

network with true linear nodal dynamics. The system dynamics at a node are given by the 

state space [23]:

(8)

where υ represents activity, a is recovery, d the inter-nodal distance, υ* the activity of 

neighbor nodes, and H(·) the Heaviside function.

B. Network Motifs

As we are interested in the effect of connection topology on observability, we start with the 

simplest nontrivial network: a 3-node network. These 3-node network motifs are highly 

overrepresented in both neuronal and other complex system networks [24]. For each 

network motif shown in Fig. 1, we compute the observability index for various measurement 

functions, nodal equations, and connection strengths. Measurements of υ for each motif 

were from nodes 1, 2, then 3. Simulated data was used to compute the observability index 

for two cases: 1) the nodal dynamics comprise the nonlinear Fitzhugh-Nagumo equations, 

and 2) the nodal dynamics are linear Wilson-Cowan equations [22]. The data comprise 100 
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seconds of FN system dynamcis with a time step of dt = 0.04 integrated using the Runge-

Kutta 4th order (RK4) method. These calculations are summarized in the Fig.l for the 

observability for the various network motifs.

C. Construction of the Differential Embedding Map

As an example case we begin constructing the observability matrix for motif 1 (shown in 

Fig.l), the FN network equations form the nonlinear vector field f:

(9)

and the measurement function for node 1 in motif 1 is y = Cx = [1, 0, 0, 0, 0, 0]x = υ1. 

Construct the differential embedding map by taking the Lie derivatives from  to 

 shown in (10).

(10)

We obtain the observability matrix by taking the Jacobian of (10). In this FN network the 

observability matrix is dependent on the state variables and thus a function of the location in 

phase space. In this situation, Letellier et al. [12] used averages of the observability index 

over the state trajectories in phase space as a qualitative measure of observability. We also 

adopt this convention in the results section when computing observability of various 

network motifs. The indices are computed for each time point in the trajectory, then the 

average is computed over all of the time points.

IV. Results

For motif 1 (Fig.1), the data (in black) show that a symmetry caused by the connection 

topology and identical nodal parameters generate very low observability indices. The values 

are averaged over a few system trajectories and the measurements from each node yield 

nearly identical values as we expect them to be for a symmetric system. This is further 

evidenced by the several orders of magnitude decrease in the indices for the linear 

calculation (in red), where the symmetry creates fixed singularities in the reconstruction 

map. In motif 2, observability is confounded when a reconstruction map is created from 

measurements of node 2, as the inputs from nodes 1 and 3 become ambiguous and 

distiguishability is lost. In the cases where the indices are zero (motifs 4,5, and 7), the motif 

Whalen et al. Page 5

Proc Conf Inf Sci Syst. Author manuscript; available in PMC 2015 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



must contain an isolated or immeasureable node(s). From the viewpoint of observability this 

means that information from the ‘isolated’ node(s) cannot reach the measured node. This 

nodal ‘isolation’ is exemplified in motif 7 and fits well with the theory of Structural 

Controllability and Obsevability from Lin [25] and Rech and Perret [26].

In Fig.2, data points are shown for averaged observability indices for the nonlinear FN 

network in motif 2. These data are averaged over a time course of 2400 timesteps for each 

simulated trajectory for a different network connection strength value, as measured from 

each node. The results show the synchrony of nodes 1 and 3, demonstrated in Fig.3, 

confounds the reconstruction when measured from node 2. The observability is higher for 

stronger coupling strengths when measuring from nodes 1 or 3 as compared to measuring 

from node 2 where symmetry creates ambiguity (singularities) in the recontruction. This 

phenomenon is more clearly visualized in Fig.4, where locations in phase space with high 

observability are marked with an asterisk on the trajectories passing through these regions. 

The nonlinearities in a network cause observability to become a function of the state 

variables. Te dynamics in these systems can move near the singularities present in the 

particular reconstrucion map created from a single time series measurement function which 

causes poor observability. As our results demonstrate here, the observability is not only 

influenced by the nodal dynamics, but also by the strength and configuration of the network 

connections.

V. Discussion

The effects of network topolgy, connection strength, nonlinearities, and symmetery on the 

effective observability were evaluated for Fitzhugh-Nagumo (nonlinear) and Wilson-Cowan 

(linear) neuronal networks. To our knowledge, this is the first quantification of dynamical 

observability in networked biological models of neuronal activity.

In certain cases of topologic symmetry (motif 1, motif 2 measured from node 2) the identical 

nodal parameters cause the system to become unobservable in the linear case and nearly 

unobservable in the nonlinear case. These results agree with the views of symmetries 

presented in [13], which underscores the importance of careful model selection and 

measurement when reconstructing dynamics from data. Observation in motif 3 seems to 

suggest a relationship between the degree of connections into and out of a node and its 

effective observability. A more complete exploration of the relation of network structure to 

observability in the nonlinear context is clearly warranted.
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Fig. 1. 
Calculation of observability indices for each of the 7 network motifs, as measured from each 

node and averaged over a range of network connection strengths. In black, the observability 

indices represent the computations for nonlinear Fitzhugh-Nagumo networks, while in red 

are for linear Wilson-Cowan networks. The calculations show the effect of network 

topology, nonlinearities, and choice of mesurement function on observability.
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Fig. 2. 
Trends of averaged observability as a function of connection strength, plotted for each node 

in motif 2. As connection strength decreases from left to right, the average observability 

changes for each node in motif 2, showing the effects of symmetry as measuring from nodes 

1 and 3 is more observable at stronger coupling than measuring from node 2 (the symmetric 

case)
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Fig. 3. 
(a) The 3-node dynamics for a FN network of motif 2, showing trajectories for a range of 

connection strengths. Here the decrease in nodal connection strength facilitates faster firing, 

and the network symmetry present in motif 2 causes the dynamics of nodes 1 and 3 to 

synchronize despite differences in initial conditions. (b) The local network observability 

index measured from node 1 for motif 2. The black dashed line is the average obserability 

index value for motif 2 as measured from node 1. This averge value is used as a threshold 

for the points of local obserability above the mean value in Fig.4
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Fig. 4. 
The 3-dimensional phase space for υ, showing trajectories in motif 2 for a range of 

connection strengths. The connection strengths that are on average more observable visit 

regions of phase space that are observable more frequently, which in the FN system case is a 

portion of the trajectories contained in a limit cycle. Connectivities that cause faster (limit 

cycle) firing lead to more observability (averaged over time).

Whalen et al. Page 11

Proc Conf Inf Sci Syst. Author manuscript; available in PMC 2015 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


