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Active Learning of Multiple Source Multiple
Destination Topologies

Pegah SattariMember, IEEE Maciej Kurant, Animashree Anandkumafdember, IEEE,
Athina Markopoulou,Senior Member, IEEEand Michael Rabbatylember, IEEE

Abstract—We consider the problem of inferring the topology
of a network with M sources andN receivers (hereafter referred
to as an M-by-NN network), by sending probes between the
sources and receivers. Prior work has shown that this proble
can be decomposed into two parts: first, infer smaller subnetork
components {.e, 1-by-N's or 2-by-2's) and then merge these
components to identify the M -by-IN topology. In this paper, we

performance optimizatiorﬂ[[l—6]. In this paper, we consider
tomographic approach to topology inference, which assumes
no cooperation from intermediate nodes and relies on end-to
end probes to infer internal network characteristics,udiig
topology El]. Typically, multicast or unicast probes aratse
and received between sets of sources and receivers at the

focus on the second part, which had previously received lessedge of the network, and the topology is inferred based on

attention in the literature. In particular, we assume that a 1-
by-N topology is given and that all 2-by-2 components can
be queried and learned using end-to-end probes. The problem
is which 2-by-2’s to query and how to merge them with the
given 1-by-IN, so as to exactly identify the2-by-IN topology,
and optimize a number of performance metrics, including the
number of queries (which directly translates into measurenent
bandwidth), time complexity, and memory usage. We provide a
lower bound, [£], on the number of 2-by-2's required by any
active learning algorithm and propose two greedy algorithns.
The first algorithm follows the framework of multiple hypoth esis
testing, in particular Generalized Binary Search (GBS), sice
our problem is one of active learning, from 2-by-2 queries. The
second algorithm is called the Receiver Elimination Algorihm
(REA) and follows a bottom-up approach: at every step, it sedcts
two receivers, queries the correspondin@-by-2, and merges it
with the given 1-by-IV; it requires exactly N — 1 steps, which
is much less than aII(’;’) possible 2-by-2’s. Simulation results
over synthetic and realistic topologies demonstrate that @th
algorithms correctly identify the 2-by-IN topology and are near-
optimal, but REA is more efficient in practice.

Index Terms—Adaptive Sensing Algorithms, Inference and
Estimation on Graphs, Applications of Statistical Signal Rocess-
ing Techniques, Sequential Learning, Active Hypothesis Ting,
Network Monitoring, Internet, Tomography.
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the number and order of received probes, or more generally,
using some metric or correlation structure. An important
performance metric is measurement bandwidth overheadl: it i
desirable to accurately infer the topology using a small inem

of probes.

In this paper, we focus on the problem of multiple-source
multiple-destination topology inference: our goal is tdein
the internal network A/-by-N) topology by sending probes
between M sources andN receivers at the edge of the
network. Prior work EIlQS] has shown that this problem can
be decomposed into two parts: first, infer smaller subne¢wor
components €.g., multiple 1-by-N’s or 2-by-2’s) and then
merge them to identify the entir&/-by-N topology.

Significant progress has been made over the past years on
the decomposition as well as the first part of the problem,
i.e.,inferring smaller componentsg-py-N's or 2-by-2's) using
active probes. One body of work developed techniques for in-
ferring 1-by-N (i.e., single-source tree) topologies using end-
to-end measurements| E—LlS]. Follow-up W0|E|<|]1—3] showed
that anM -by-N topology can be decomposed into and recon-
structed from a number of two-source, two-receivaiby-2)
subnetwork components or “quartets”. ir ﬂ 2], a practical
scheme was proposed to distinguish between some quartet
topologies using back-to-back unicast probes. In our rtecen

NOWLEDGE of network topology is important for Work [16,[17], we proposed a method to exactly identify the
network management, diagnosis, operation, security, atqwpology of a quartet in networks with multicast and network

coding capabilities.

In this paper, we focus on the second part of the problem,
namely selecting and merging smaller subnetwork compsnent
to exactly identify theM-by-N, which has received signifi-
cantly less attention than the first part. Existing appreach
developed for merging the quarte& , 3] have several dimit
tions, including not being able to exactly identify thé-by-N
topology and/or being inefficiene(g.,requiring to send probes
over all (ZQV) possible quartets). In this paper, we formulate the
problem as active learning, characterize its complexityg a
follow principled approaches to design efficient algorithta

This work has been supported by NSF Award 1028394, AFOSR dwagg|yve it. This complexity is important from both theoreti¢a
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fundamental property of the topology inference probleng an
practical (it determines the measurement bandwidth oaethe
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running time and memory usage) points of view. These costgtement and terminology. Sect[od IV provides a lower loun
can become particularly important when we need to infen the number of quartets required by any algorithm. Sefflon
large or dynamic topologies using active measurements, grdposes a greedy algorithm based on the GBS framework and
an efficient algorithm is required for tHAt. evaluates its performance via simulation. Secfioh VI psgso
More specifically, we start from the problem afby-N the greedy REA, analyzes its correctness and performance,
topology inference, which is an important special case aadd compares it to GBS in simulation. Section]VII discusses
can then be used as a building block for inferring & possible extensions. Sectibn VIl concludes the paper.
by-N. Consistently with |__[|1], we assume that a (static)
by-N topology is known €.g., using one of the methods I
in [@ 7115, ]). Then we query the quartet component
by sending end-to-end probes between the two sources andhere is a large body of prior work on inference of network
the two receivers, and we learn its topology using some #fpology. The most closely related to this paper are the ones
the methods in[[1[12. 16, 117, |24 B8]The problem then using active measurements and network tomography.
becomes one of active learningwhich quartets to query = Tomographic approaches.A survey of network tomog-
and how to merge them with the given-by-N, so as to raphy can be found in[]4]. Tomographic approaches rely
exactly identify the2-by-N topology and optimize a numberonly on end-to-end measurements to infer internal network
of performance metrics, including the number of querieagth characteristics, which may include link-level paramefstech
the measurement bandwidth), time complexity, and memaag loss and delay metrics) or the network topology [25-3¥]. |
usage.” Our contributions are as follows: this paper, we focus on inferring the network topology. Most
1) We provide a lower bound of4] on the number of tomographic approaches rely on probes sent from a single
quartets required bgny active learning algorithm in order to source in a tree topologll[7-15] and feed the number, order, o
identify the2-by-N. This characterizes the inherent complex@ monotonic property of received probes as input to stedisti
ity of the problem and also serves as a rough baseline fé@nal-processing techniques.
assessing the performance of practical algorithms. In [1-3], the authors formulated the multiple source migtip
2) We formulate the problem within the framework ofdestination {/-by-/N) tomography problem by sending probes
multiple hypothesis testing and develop an active learnifigtween) sources andV receivers. It was shown that & -
algorithm based on Generalized Binary Search (GBS). TH¥-NV network can be decomposed into a collectior2dfy-2
is the natural framework to pose the problem; however, i@mponents, also referred to as quartels [5, 6]. Coordinate
evaluate the performance of this algorithm via simulatiod a transmission of back-to-back unicast probes from the two
show that the computational complexity is high in practice.sources and packet arrival order measurements at the two
3) As an alternative, we design an efficient Receiver Elinieceivers were used to infer some information about thetguar
ination Algorithm (REA), which follows a greedy bottom-topology. Assuming knowledge af/ 1-by-IV topologies and
up approach and provably identifies theoy-N topology by the quartets, it was also shown how to merge a second source’s
querying exactlyN — 1 quartets. From the active probingl-Py-N tree topology with the first one. The resulting-by-
perspective, this is attractive since only — 1 queries are V topology is not exact, but bounds were provided on the
required, which is much lower than g} possible quartets locations of the points where the twbby-N trees merge
one could query. This directly results in very low measunemeWith each other. This approach also requires a large number
bandwidth, which is the main performance metric in activef probes for statistical significance, similar to many othe
monitoring. methods |I|7|§]1]. Compared tol [1], our work is different in
We compare the two algorithms to each other and to tifeat (i) we assume perfect knowledge of the quartets, thus
lower bound via simulation over both synthetic and reatistive® identify the topology accurately; (ii) we focus on the
topologies. The results show that both algorithms can gxacgfficiency of active learningi.e., selecting and merging the
identify the topology and are near-optimal in terms of aetiduartets, which has not been studied before. To the best of
measurement bandwidth. Between the two, the Receiver Elifiir knowledge, the only other merging algorithm proposed in
ination Algorithm is found to be very efficient in terms of run the literature if5|-_[|1D3]- However, the merging was not efficie
ning time and memory usage, and is, therefore, recommend#fe all possible quartets were queried exhaustively.
for practical implementation. In our prior work [16,[17], we revisited the problem of
The rest of the paper is organized as follows. Sediion t@Pology inference using end-to-end probes in networksevhe

summarizes related work. Secti@nl Il provides the problefftermediate nodes are equipped with multicast and network
coding capabilities. We built orﬂ[l] and extended it, using
1Examples of networks where up-to-date topology infornmtiand thus n_et\{vork. coding at interm?diate nodes to de_termini.Stica”y
dynamic mapping of the topology, is required include théofwing: detection  distinguish among all possible gquartet topologies, whiasw

systems that detect Internet faults][IL8], 19] or prefix hiaf20] and require ; o ; ;
frequent measurements of Internet paths; content disisibinetworks that not pOSSIble before. While ImE‘l?]’ we focused on Infﬂ‘yrl

need to continuously monitor the topology in order to sefeetbestcontent the quartets fast and accurately, here we assume that any
server for user requests [21]; and overlay networks thatl neenonitor the guartet can be queried and learned, and focus on efficiently
topology to select the best overlay routiiig][22]. » selecting and merging the quartets to infer the larger tupol

Other techniques may also be developed in the future asdghisili an . . .
active research area. However, this is out of the scope ef ghper (see To the best of our knowledge, this work is the first to look at
Sectior(T). this aspect of the problem.

. RELATED WORK



There also exists a rich body of work enultiple hypoth-
esis testingfor active learning problems where queries are
selected adaptively. One of the contributions of this paper
to formulate this problem in that framework and design an
algorithm based on one such active learning scheme, GBS
[385-37], which we describe in detail in Sectibh V.

Topology inference problems have also been studied in the
context ofphylogenetidrees 9]. The work ir[t6] built on
[@] and proposed robust algorithms for multiple source tre
topology inference. The work irﬂ[S] inferred the topology of
sparse random graphs using end-to-end measurements hetwee
a small subset of nodes. However, the quartet structures and
the way we r-neasure- the-m are different in our case due to che 1. An example2-by-4 topology. The solid lines and branching points
nature O.f ac.tlve prqug in network tomography (see problegw?’; ’s‘depict theS; tree topology,Gs.1 <R Ji IS ajoining point, whereP,;
formulation in SeCtIOI’[I:[ll). (indicated by the dashed lines) joiiss, x = . An example quartet is the part

Traceroute-based approachesAn alternative to tomo- of the n_etwork connectingﬁl,_Sg to _Rl,Rg, which _is type 1 sir_1ce both';
graphic approaches tg acer out e-based techniques, which?@"d /2 lie above the branching point dt; and £ in Gis, x=. €., Bi.2.
rely on cooperation of nodes in the middle of the network,
in order to connect the ids of nodes along paths and reCOR> To pathsP;; and Py, j # k, branch at abranching
struct the topoIogy{E@S]. These approaches face their ow point B, and they never merge again.

set of challenges: not all intermediate nodes cooperate Two pathsPy, and Py, i # j, merge at goining point
responding, many of them have multiple network interfaces  ; ;.4 theyznever sij)li't agairil

ids), andt r acer out e is often turned off for security rea- . L . . .
(ids) y We are interested in inferring the logical topollgglefined

sons. Thereford,r acer out e-based methods must deal wit the b hi dioini ints defined ab Wi ¢
missing or incomplete data and alias problems. Regardle 3 € branching and joining points defined above. e presen
st of our discussion in terms aff = 2, i.e., inferring a2-

the point of this paper is not to compare the tomographriEO )
approaches against the acer out e-based approaches, puy-N topologyGsxr, § = {51, S2}; an M-by-N topology,

to provide active learning algorithms that can probe/qukey S = {51,..., Su}, can then be constructed by merging smaller
network in an efficient way. Querying the network can bgtructures, as we dgscnbe in Section Vil.

achieved via end-to-end probes; acer out e, or even in a  Example L:Fig.[ illustrates an exampte-by-IV topology
passive way. As long as we can querpy-2 components, the with N = 4. The logical tree topology af; is shown by solid

active learning approach should be applicable and useful”i[ﬁ?S and branching points; ;'s. E?“'h Ji d_epi_cts a joining
minimizing the cost of all such approaches. point, where the path fromi, to receiverR; (indicated by the

Relation to the conference version.This journal paper dashed lines) joins thé) tree. For example, the path from

builds on our conference paper in [40]. In addition to re>2 © ff1 joins thesS, tree at a point betweeB, 5 and B, »,
bap E'[ ] vhereas the path t®, joins at a point abové3, 4. |

visions and elaborating on parts of the writing, new ma? .
terials/contributions in this paper include the followintpe Quartet Components. In [El]’ it has be(_an shown tha_t an
formulation of the problem in the GBS framework as WeIM'by'N topology can be decomp(_)sed_ mtq a collection of
as the performance evaluation of the GBS algorithm vi y-2 subnetvyork compor_1ents, W.h'Ch' in this paper, we call
simulation, and its comparison against REA. quartets foIIOW|_ng the terminology |n_|E|:|6]. Each quartet can
be of four possible types, as shown in Kijy. 2. We refer to[Big. 2
(@), (b), (c), and (d) as types 1, 2, 3, and 4, respectivelyeNo
that in type 1, the joining points for both receivers coircid
M-by-N Topology to be inferred. Consider anM-by- (J1 = J3) and the branching points for both sources coincide
N topology as a directed acyclic graph (DAG), betwekh (Bj, = B} ,). However, the other three types (2, 3, and 4),
source nodess = {S1,..., Sy} and N receiver nodesk = have two distinct joining points and two distinct branching
{Ry,..., Ry}. We denote thisM-by-N topology by Gsxx. points.
Note thatGg,xr, i = 1,..., M, is al-by-N tree. Similar to In order to infer the type of a quartet between two sources
[E—B], we assume that a predetermined routing policy maps, S and two receiversik;, R;, a set of probes must be
each source-destination pair to a unique route from thecgousent froms;, .S; to R;, R;. The received probes can then be
to the destination. This implies the following three prdjgey, processed using techniques such as the ones developed in:

Ill. PROBLEM STATEMENT

first stated in |I|1E [E B] (which distinguish type 1 from types 2, 3, 4 by sending
AL For every sourceS; and every receiveR,, there is a back-to-back unicast probes): [16.117] (which distinguish
unique pathP;. among all four types exploiting multicast and network cagin

[Iﬂ] (which can exactly infer the topology of a super-source

3These assumptions are realistic, the same &3 [n [1-3], arsistent with
the destination-based routing used in the Internet: eaderalecides the next  *A logical topology is obtained from a physical topology bydging nodes
hop taken by a packet using a routing table lookup on therdg&in address. with in-degree = out-degree = 1. Such nodes cannot be id=htfid network
We further assume that the network does not employ load Giakgn tomography always focuses on inferring logical topologies



(a) type 1 (b) type 2 (c) type 3 (d) type 4

Fig. 2. The four possible types of a quartethfy-2 subnetwork component). There are two sourSgsand So multicasting packets; andxs, respectively,
to two receiversRkRy and Rs. All links are directed downwards, but arrowheads are @uito avoid cluttering. Thé-by-2 topology of S; is a tree composed
of Sy, B}’? R1, Ro. Similarly, the 1-by-2 tree rooted atSs is So, B%,w Ry, R2. J1 and Jo are joining points, where the paths frofy to R; and R»
join/merge withS1’s tree topology.

two receivers using network coding)r acer out e [@—@] S and Sgﬁ and learn its type (after sending and processing
from the two sources to the two receivers; or other techriquine received probes, we have essentially queried and karne
that may be developed in the future, since this is still aivact the type of that quartet). We then merge this quartet with the
research area. We consider the design of these techniquekntown topology so far. We continue until identifying the iemt

be out of the scope of this paper and we focus on their use Dyy-N. The goal is to exactly identify the-by-N topology
active learning algorithms to performcpery i.e., to learn a while minimizing the number of queries.€., set of probes
guartet type by sending and processing a set of active proksmnt to measure the quartets). This metric is importantuseca

Being able to query the type of a quartet enables infereniédlirectly translates into measurement bandwidth. Addiil
of an M-by-N topology in two steps, as follows: first infer theperfo_rmance met_rics that it is desirable to keep low include
type of each quartet, and then merge these quartets tofidenf€rging complexity and memory usage.
the original topology. Indeed, knowing the type of the gefart
we can use Figl]2 to infer the relative location of joining IV. LOWERBOUND

and branching points. For example, knowing that the quartetrjrst, we provide a lower bound on the number of quartets
is of type 1 implies that (i) the two joining points coinciderequired by any active learning algorithm to identify théy-

Ji = Ja, (i) the two branching points coincidB{ , = BY,, N topology. This lower bound clearly depends on the topology
and (iii) the joining point is above the branching point. 8&n \ye want to identify and serves as a baseline for assessing the
inferences can be made from the other typeS. performance of the proposed a|gorithm3.

Problem Statement.Consistently withlIh], we assume that Theorem 4.1:Given Gg, xz, the number of quartets re-
Gs,xr (i.e., the 1-by-N tree topology rooted af;, which quired to be queried by any algorithm in order to identify all
contains only branching points) is knowa.g.,using one of the joining points inGsxr, S = {51, 52}, is at Ieast(%}.
the methods in[[AD'Ei 3]). We also assume that the typeBefore proving the theorem, let us discuss some examples
of the quartet betweey;, a new sourceSy, and any two that illustrate the intuition and that this bound is not tigh
receivers can be queried and learned, as explained above. Example 2:Fig.[3(a) shows &-by-N topology with/N = 4,

Given (i) G's,xx and (ii) the ability to query the quartetWhich requires querying exactly = 2 quartets in order to
type betweers;, S», and any two receiverg;, R;, our goal urlliquely. identify all the joinin_g points. This is becausas, i
is to identify all joining points, 7y = {Ji, J, ..., Jv }, where this particular topology, knowing the types OR:, R») and
the paths fromS, to each receiver join the tree describinds, R4) is sufficient for identifying all four joining points.
paths fromS; to the same set of receivétddentifying a Indeed,(Ri, Ry) is of type 4, which, according to Fidl 2,
joining point.J; (for receiverR;) means locating’; on a single Means that boty; and J; lie below By »; also (13, R4) is
logical link, between two branching points @i, . E.g., tYPe 4, which means that bothy and.J, are belowBs 4. Thus,
in Fig.[d, the path fron, to R; joins theS; tree at a point €ach joining point is identified on a single logical link. W

between nodes; 5 and B, ,; i.e., .J; is located on the link ~ Example 3:Fig. [3(b) shows an example wher = 2
(B1 3, B.2). quartets are not sufficient and 3 quartets are required to

Jentify all the joining points. There exigt;) = 6 possible

We achieve this goal via active learning: we start fro o . .
guartets in this topology, from whlc@) = 15 pairs of quartets

the given, static,l-by-NV topology Gs, x=, and proceed by i .
updating it in steps. In each step, we select which quartet%_n be selected; one can check that none of the 15 possible

query {.e.,which two receivers to send probes to, from sourc%’sa'rs can uniquely identify all the joining points. For exale
et us considef Ry, Ry). Since it is of type 1, Fid.2 indicates

that.J; = J, and both of them lie abovB; . However, there

5Note that we do not need to identify the branching pointsSefbecause is more than a S'ngle link abOVEL?; therefore, we continue

the tree topology ob>, like S1, is given. We are only interested in identifying
where these two tree topologies join/merge with each otleeryve only want 6Since we focus oM = 2, i.e., only two sourcesS; andSa, we represent
to identify the joining points ofS; and S» trees. the quartets(S1, S2, R;, R;) only by the receiver§R;, R;) for brevity.



Theorem[ 4.1l follows from the following reasoning: each
guartet involves two receivers, and thus, at Iqra%f] guartets
are required for each receiver to appear in the set of gsartet
gueried by the algorithm at least once.

V. A GENERALIZED BINARY SEARCH ALGORITHM
A. Background on GBS

The GBS approach has been proposed for the problem of
determining a binary-valued function through a sequence of
strategically selected queries, as explained in the fatigw
Fig. 3. Two example-by-N topologies with\ = 4. In (a), & quartets are [35]. Consider a finite (potentially very large) collectiar
sufficient to identify the joining pointsie., (111, R2) and (Rs, fa). In (b),  pinary-valued functionsH, called the “hypothesis space”,
more thany: quartets are require@, ., (1, fz), (1, fs), and (B, Ra). - gofinay on g domain¥, called the “query space”. Each
h € H is a mapping fromX¥ to {+1,—1}. Let |H| denote

by considering(R;, Rs). It is again of type 1, which meansthe cardinality of#{, i.e., the total number of hypotheses. The
that.J; = Js is located aboveB, 5. Therefore, we go one stepfunctionsh € H are assumed to be unique, and one function,
further and considetR;, R,). Since this is also of type 1, 2" € H, produces the correct binary labeling: is assumed
J, = Jy lies aboveB 4. At this step, we only have a singlef© be fixed but unknown. The goal is to determiiiethrough
link betweenS; and B, 4 and thus,J; = J, = J3 = J, are S few queries fromt’ as possible. Therefore, the queries need
all identified (depicted as in Fig.[@3(b)). Although there are t0 be selected strategically in a sequential manner sudh tha
other choices of triplets of quartets, in this topology,edst /" is identified as quickly as possible.
3 quartets are required. ] It has been shown that the learning problem described above
From these examples, one can see that the lower boundSoNP-completel[41]; a practical heuristic has been progiose
[ is not tight and it is not achievable in every topology the form of a greedy algorithm called Generalized Binary
TheorenTZ11 follows from the following lemma. Search (GBS). At each step, GBS selects a query that results
Lemma 4.21n order for an algorithm to identify all joining in the most even split of the hypotheses under consideration
points for all the receivers, each receiver needs to appearfito two subsets, respondingl and —1, respectively, to the
the set of quartets queried by the algorithm at least once. duery. The correct response to the query eliminates one of
Proof: Assume that there exists a receiverthat has not these two subsets from further consideration. The work &) [3
been queried in any of the quartets. We show that even wiharacterizes the worst-case number of queries required by
complete knowledge of all other joining points, there exist GBS in order to identify the correct hypotheis. The main
least two possible and feasible locations fbr as follows.  result of [35] indicates that under certain conditions oa th
Location 1:J; lies on the last incoming link t@;, i.e.,on duery and hypothesis spaces, the query complexity of GBS
the link between the parent @t; in the S tree (which from (i.e., the minimum number of queries required by GBS to
now on, we denote byarent(R;)), and R;. For example in identify h*) is near-optimalj.e., within a constant factor of
Fig.[3(a) and Fig13(b), assume thAf = R,; then Location logs [#|. The constant depends on two parameterand £,
1 would be the link B, 2, R2). This is allowed by the routing defined in ], and it is desirable that they are both as small
assumptions in SectidnJIl because (1) there is a unique p&gh Possible.
Pa; (2) Py never merges witt,;, j # i; and (3)P,; merges I this section, we pose our problem in the GBS framework
with P;; at J;, and they continue together until they reagh and use the GBS algorithm because (i) our problem is one of
Location 2: Define J; as follows. On pathP;;, start at active learning and lends itself naturally to be posed in the
parent(R;) and move up towards;, until the first link that GBS framework, and (ii) GBS is a principled (although not
does not fully overlap with any?;, j # i. Place.J; on that optimal) approach with provable correctness and perfooman
link. For example in Figl13(a), Location 2 fok would be the guarantees [35].
link (B1 3, B12); whereas in Fig[J3(b), it would be the link
(S1,Bi1,4). This location is also allowed by the assumptionB. Merging Logical Topologies in the GBS Framework

in Section(IIl: In this section, we formulate our problem within the GBS
Al There is a unique path;. framework. Consider a set of hypothesds where each
A2 For everyj # i, the two pathsP; and P»; never join hypothesish € H is a configuration that results from placing
after they branch. Indeed, if; is located above/; on each joining pointJ; on an arbitrary link in the pattP;; in
Py;, then this is guaranteed by the construction/ofin  the S, tree. The query spac¥ is the set of all queries for all
contrast,J; cannot be located below; on P;; since this the quartets, where each query X' asks about the type of a
would imply the violation of A2 even before addin§.  quartet(R;, R;). Since in our problem, each such querpas
A3 P,; merges withPy; at J; and they never split. 4 possible answers (corresponding to the 4 quartet types), w
Thus, both Location 1 and Location 2 are valid fér, ac- need to modify our queries to make them consistent with the
cording to the routing assumptions, afidcannot be uniquely binary functions in the standard GBS framework. We assume
identified. ThereforeR; needs to be queried at least ona. that each query: consists of 4 subqueries, each of which asks

(a) Two quartets are sufficient.  (b) Three quartets are required.



Algorithm 1 GBS algorithm for identifying the joining points. maximally discriminating[[35]) quartet to query as follaws
1: Let J = [0,0,...,0] be a vector of lengthV, which represents the By querying a quartet and learning its type, some infornmatio
locations of the joining points. is obtained about the locations of two joining points. Thus,

2: while 3 0 in J do ) . .
3 LetweB = [] represent the worst case benefits for all the quartetsthe number of feasible hypotheses, which agree with the
4. for each receiver?; do constraints imposed by the quartets queried and learned so
> for each receivert?;, j > i do far, is reduced by a number, which depends on the topolo
6: Let B; ; be the lowest common ancestor®f, R; in Gs, xr . y . ! _p pology
7 Letup; C Py; be the subset of;; located aboveB; ; in general. We call this number theenefitof the quartet. The
g ll:et uPs - }Iju é’e trf]le Sugset $1j Ilocateéi g"tioveB?i,j best quartet to select to query is the one with maximum benefit
. etdn; C Py; be the subset 1; locate elowb; 5 .
10: Letdn,; C Py; be the subset of’ located belows, ; !—l(_)wever,_the benefit of each quartet beqomes known afitdy .
11 typel B= lu»:] it is queried. Thus, the algorithm considers all four possib
12: tvoe2 B }S;ZHQL?‘\ types for every possible quartet, and focuses on the wosst ca
' ypesrE= Qj;;;”fy“ benefit of that quartet,e., the type that gives the minimum
13: type3 B= 15 1P| benefit. The best quartet to query is the one with maximum
14: typed B= (it worst case benefit.
15: wcB.append(max({typeB, type2B, type3 B, type4 B]) We denote the benefit of each type for a quaigt ;) by

16: selectedQuartet=wcB.index(min(wcB))

17: Let selectedQuartetTypbe the type ofselectedQuartet

18: switch selectedQuartetTypdo

typelB, - -, typed4 B in Alg. I, and define it as follows. Each
guartet type limits the number of candidate edges whegeand

19: casetype 1: J; can be located on, in the way depicted in Fig. 2. The benefit
20 };12 P of a type for (R;, R;) is the ratio of the number of edges
22; Caset;pe 9 ’ where J; and J; can potentially be located on after learning
23: Pr; —— up; this type, divided by the current number of candidate edges
24: Pyj +— dn; for the locations ofJ; and J;. The worst case (minimum)
25: casetype 3: benefit of (R;, R;) results from the type for which this ratio
g? };12 :‘i’;ﬁ is maximized, and the maximum of these worst case benefits
o8 Caset;pe 4 ! over all quartets is given by the quartet with minimum ratio.
29: Py +— dn; In order to provide an analytical upper bound on the number
30: Prj — dn; of quartets required by Ald.]1, one can try to use the main
g% if Il('};i\:=13=1_1 then result of [35], which indicates that Ald] 1 requirésg, ||

33 if | Pllj‘ 1 then quartetﬂ However, we cannot computé{| exactly in our

34: Jj =Py problem; we can only provide a loose upper bound on that,
35: Output.J. which is N[ Therefore, we obtain the upper bound of

log N! = Nlog N on the number of quartets required by
Algorithm [, which is loose, and much larger than the lower

whether(R;, R;) is of a specific type (1, 2, 3, or 4) or not;bound. In the next section, we evaluate the performance of

i.e.

Alg. [ via simulation to obtain a better estimate of the numbe

Is (R;, R;) of type 17? of quartets it requires to query in order to infer different
_ ) Is(Ri, R;) of type 2? topologies.
Is (R;, R;) of type 3?

Is (R;, R;) of type 4?

The answer to each such subquery is binary, which is con-
sistent with the GBS formulation. Of course, not all four

subqueries are always required for a quartet; one would st%Y)
as soon as she gets the first “yes”, which would reveal P
type of the quartet. Note, however, that we count the num
of queries (not subqueries) as the performance metric of t 3

GBS algorithm.

Our goal is to find the target hypothegis, which is the
configuration that results from the correct placement of the
joining points in theS; topology, using as few
the knowledge of as few quartet types) as possible. .

Algorithm [I describes a greedy strategy based on GB
for determiningh*. In the beginning, there arg{| possible

C. Performance Evaluation

1) Simulation Setup:We evaluate Alg[]1l in simulations
er both synthetic topologies (as shown in Eig. 4) andsgali
ologies (as shown in Fidl 5), and we compare it to the

d er bound. The main performance metric of interest is

number of quartets queried in order to exactly infer the
topology, which directly translates into measurementlosad.
Additional metrics include the running time and the memory
ed by the algorithm,e., the computational complexity.

For the synthetic topologies, we illustrate only thdvy-N
tree topology ofS; in Fig.[4. We consider the star topology,
%erfect” and “tall” binary trees (referring to the topolieg

8This is the best case, where the constahtandk in [38] are both as small

hypotheses. In each step, the algorithm selects the best (as possible. In practice, there is an additional constantorfor log, |#].

9The bound is obtained by starting from tisg tree and considering all

“More formally, h* answers every query, for any pair of receivers, irpossible placements of; on Py;, V 4. Fig.[4(c) shows that there a¥ x
accordance with the trug-by-N topology. Mathematicallyh* is a mapping N x (N —1)---x 2 = N! possible such placements. In practice, the routing
from queries to{+1, —1}, not a topology itself. However, there is a bijectionassumptions in Sectidn]Il impose some constraints on plesgj locations.
between alR-by-N logical topologies and the corresponding mappingstin  Also, the type of each quartet may rule out some types for ther@uartets.

and therefore, knowing* is equivalent to knowing the-by-N topology.

Therefore, the exadt{| depends on the topology and we cannot compute it.
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(@) Gs, xR, Star topology. (b) G's, x®. perfect binary tree. (€) Gs, xR, tall binary tree. (d) Gs, xr, perfect ternary tree.

Fig. 4. Four synthetic? s, « = topologies used to evaluate the performance of Blg. 1 (th& @pproach) in simulations.

Comparison of GBS and REA algorithms in perfect binary trees
140 T T T T T T

120f g

=

=)

3
T
L

@

3
T
L

Average number of required quartets

60 \«\9‘\\ . 4
40 B
S o
(a) A realistic 2-by-16 topology from a US Uni- © S
versity departmental LAN3]. BT e s ]
.E o o Lower Bound

0

. . . I
0 20 40 60 80 100 120 140
Number of receivers (N)

Fig. 6. Simulation results for the average number of quarteguired by
Alg. [l (GBS) to infer the2-by-N topology whenGs, « is a perfect binary
tree (Fig[4(b)) of various sizesy = 4, ..., 128. The results are averaged over
100 realizations of random placements of the joining poifitse standard
deviation error bars (not shown) are comparable with thekerasize. The
figure also shows the number of quartets required by [Alg. 2AR&d the
lower bound in comparison to Alg] 1 (GBS).

(b) A 2-by-16 topology generated from the Exodus nodes to which both sources had routes to be the receivers.
topology [28]. We then found the shortest path trees from each source to the
Fig. 5. Two realistic2-by-N topologies used to evaluate the performance orfeceivers' and considered the overlap between these tem tre
Alg. [l (GBS). The solid lines indicate the paths taken by peofromS; and Our experiments are conducted using the Python implemen-
the dashed lines indicate the paths taken by probes fom tation of Algorithm[l, which we have made available online
[Iﬂ]. It takes as input any topology and returns the number of
quartets required by Algorithid 1 to infer that topology. Wex
depicted in Fig.L(b) andl4(c), respectively), and perfegle summarize the simulation results.
ternary trees, for thé/s, x» tree topology. Starting from this  2) Simulation Results (for the Number of Quartetéyhen
tree, we then create 2by-NV topology, with sources’; and G % is a star topology as depicted in Fig. 4(a), Alg. 1
S2, by choosing the location of each joining poirit (for  always identifies th@-by-N topology by querying only ¥
receiver ;) on a single logical link, selected uniformly atquartets, which is the lower bound. Therefore, it is optimal
random, onPy; in G, xr. For eachGs,x= in Fig.[4, we  WhenGg, . is a perfect binary tree as shown in Higy. 4(b),
consider 100 realizations of such random placements (regul Alg. [ requires different numbers of quartets, betwefén
in different2-by-N topologies) and report the average numbeind N, in different 2-by-N topologies. However, as shown
of quartets required for these topologies in the next sectio in Fig.[8, on average, Ald]1 requires N quartets.
For the realistic topologies, we show the completby- Similar results are obtained for tall binary trees (Fih.)%(c
N topology in Fig.[®. Fig.[lb(a) depicts a US Universityand perfect ternary trees (FIg. 4(d)). Here, we omit the &gur
departmental LAN with 16 receivers, first usedlih [3]. Eilb)B( and only report the results. Whe#g, % is a tall binary tree,
is a 2-by-16 directed acyclic graph (DAG), extracted fromthe number of quartets required by Alg. 1 varies depending on
the Exodus topology, which is a large commercial ISP whosiege quartet types in differer2-by-V topologies; however, in
backbone map was inferred by the Rocketfuel proj [28Jur simulations on tall binary trees witN' > 100 receivers,
To generate this topology, we picked randomly two nodes wfe observe that in at leas0% of the realizations, Alg[J1
Exodus (nodes 5, 36) to be the sources, and selected akbsixteequiresN — 1 quartets. This percentage increases upi



Algorithm 2 REA starts fromGg, xz, Selects the quartets
sequentially, queries their types, and merges them urit-id
tifying all joining points 7.

1: Let J be a vector of lengthV of edge labels, which represents the

locations of the joining points.
2: while |[R| > 1 do

3: Pick any two receiver®?;, R; in G5, x &, such thatR; and R; are
siblings; denote their parent k.

4 Query the type of R;, R;).

5 switch (R;, R;) do

6: casetype 1:

7: Ji=J;

8 Delete R; and edge( P, R;).

9: if outdeg(P)==1then

10: Contract(P, R;) into R;.

11: casetype 2:

12 Jj = label((P, R;))

13: DeleteR; and edge(P, R;).
Fig. 7. Deletion and contraction of edge in a graph. 14: if outdeg(P)==1then

15: Contract(P, R;) into R;.
) ) ) ) ) 16: casetype 3:
in topologies with N < 100 receivers. WhenGgs, xz is a 17 Ji = label((P, R;))
perfect ternary tree, again on average, Alg. 1 requives 1 ig; i'}?ilsttgfé(s)nzdzlelﬂ%i(ﬂ R;).
quartets, while for some topologies, it requires even moaat 5o Contract(P, R;) into R;.
N quartets. 21: casetype 4:

For the realistic topologies in Figl 5(a) and Hig). 5(b), Aly. 22: Jj rlabel((lg,lzj)é( )

; i _hv ; ; N 23: DeleteRR; and edge(P, R;).
identifies both2-by-16 topologies by querying4 (= N — 2) oa. if outdeg(P)==1then
quartets. 25: Contract(parent(P), P) into P.

Therefore, in our simulations, we find out that Alg. 1 onlgs: /*There is one remaining receiver, which we c&ll.*/
performs as well as one could hope fag., it requires as 27: LetJ. = label((parent(R:), R:)).
few quartets as the lower bound, for fl@fs, <= topologies, 28: Output/.
such as the star topology in Figl 4(a). In other topologies,
such as binary/ternary trees or realistic topologies,quies
many more queries, and each round of querying is extremélfythe remaining edges in the graph remain unchanged.
complex: at each step, Algl 1 needs to calculate the worst casDefinition 2: Contractingedge(u, v) into nodew, consists
benefits of all the quartets, in order to pick the best one @moof deleting that edge and mergingandv into a single node
them. In fact, the time complexity of Alf] 1 i9(N?), and its w. The labels of the remaining edges do not change (although
memory requirement is also high because it requires to keepdes may be renamed t@).
track of all the benefits and the worst case benefits for all theREA is described in Alg[J2. It starts from thg; tree
guartets, as well as all the path updates for the location @SlxR) and proceeds by selecting one quartet to query at
each joining point, and so forth. each stepife., two receiversR;, R; to send probes to, from
Since Alg.[1 is not very efficient in practice as describegourcessS;, S5). The two receivers ;, R;) in the selected
above, we propose an alternate algorithm in the next sectigiartet are sibling leaves. Based on the type of the selected
which is much simpler and more efficient than the GB{uartet, Alg.[2 identifies exactly one joining point in one

approach. step. It then update&'s, xz by deleting the receiver whose
joining point has been identified and the last incoming edge t
VI. THE RECEIVER ELIMINATION ALGORITHM that receiver. That is why we call it the Receiver Eliminatio

In this section, we design another greedy algorithm as Atgorithm. Furthermore, if a node of degree two appears
alternative to the GBS approach, called the Receiver Etiminn Gs,xr as a result of this edge deletion, the algorithm
tion Algorithm (REA), which requires more queries than GBSliminates that node by contracting the corresponding .edge
for some topologies, but each iteration is extremely simplghe algorithm continues iteratively until there is one etige
and fast, and it scales linearly in the number of receivers. ie.,all joining points are identified. This way, Algl 2 identifies
particular, givenGs, xz and the ability to query the type ofall joining points (where paths from, to each receiver join
any quartet, REA is able to identify alN joining points where the S; tree), one-by-one, proceeding from the bottom to the
Gs,xr Merges withGs, x ., i.€., the entire2-by-V topology, root of the tree. Next, we describe an illustrative example.
in N — 1 steps. Example 4 Fig.[8(b)-(e) demonstrate the steps performed by

Let every edge: in Gg, xr have a unique naméubel(e). REA to identify the2-by-N topology shown in Fig.I8(a). The
In our algorithm, we use two operations “edge deletion” aralgorithm starts fromGs, xz shown in Fig.[8(b);e1, ..., s
“edge contraction”, depicted in Fifgl 7 and defined as followare the edge labels on this tree. The algorithm first selects

(R2, R3) and queries its type. Since the answer is type 1, the

Definition 1: Deletingedge(u, v), entails taking that edge algorithm assignsg/, = Js, and deletes?, ande;. Since the

out of the graph while the end-nodesandv, and the labels degree ofB; 3 becomes 2, the algorithm contraetsinto Rs.



(@ The Gsxr topology, (b) Gs,xr (T4). (R2,R3) (c) Ts.(R1,R3)isoftype 4; (d) Tz. (R1, Rs)isoftype 3; (e) T1. R. = Ry; thus Jy is
which we want to identify.  is of type 1; thusJ, = Js. thus J3 is identified ones. thus J; is identified ones. identified one;.

Fig. 8. The steps (b), (c), (d), and (e), performed by Blg. EARto identify the2-by-IN topology in (a). The output of the algorithm &= [e2, e3, €3, €1].

In the second step shown in Figl 8(c), REA selects two 2) When(R;, R;) is of type 2, 3, or 4, we can see in lines
sibling leaveg R, R3), randomly out of three possible pairs ofl2, 17, and 22 of the algorithm, respectively, that one jani
siblings, and queries its type. Since it is type 4, the atbori point is identified. Wher{R;, R;) is of type 1, line 7 assigns
identifies J; on es (which, together with the previous stepto R;, the same joining point ag;’s. Then, in line 8,R; is
means that/, is also identified). It also deleteB; andes. deleted so that we do not create a loop by assigdinggain
There is no contraction in this step &5 4's degree is> 2.  to J; later. Also,J; eventually becomes identified, either in

In the third step shown in Fidl 8(d),?;, R4) is selected one of the other types (2, 3, or 4) in the while loop, or in the
and queried; it is of type 3. Therefore, the algorithm idiéegi last line of the algorithm. Thus, we havg,_; after one step.

J1 on eq, deletesR, andes, and contractg, into R,. Since 3) Alg.[2 changeq,. by 2 processes: edge deletion and edge
there is only one receiver left, there are no more quartetsaontraction. We show that neither deletion nor contractian
query; thus the algorithm exits the while loop and proceeds ¢liminate an edge iff, that contains a joining point itVy—_1 .
the last step (line 26). FoR, = R4, the algorithm identifies  Deletion: Alg. [ is constructed such that any edge deleted
Ji on ey, as shown in Fid.18(e). The identified joining pointfrom the S; tree contains either no joining point ({fR;, R;)
agree with the real locations iis<= topology in Fig[8(a), is of type 1) or exactly one joining point, corresponding to
which demonstrates the correctness of the algorithm. B the receiver being removed along with that edge(fif, R;)
is of type 2, 3, or 4).

) Contraction: An edge is contracted only when it does not
A. Properties of REA contain any joining point, neither foR; and R; (see lines

Let Ty = G, x= denote the logical tree fror; to all N 9 — 10 for type 1, lines14 — 15 for type 2, lines19 — 20 for
receivers, which we assume to be known. In this section, Wée 3, and line24 —25 for type 4), nor for any other receivers
use the notatioly to emphasize that this initial tre@g, xz ~ (Since(R;, R;) are sibling leaves, the contracted edge cannot
containsN receivers. After each iteration through the whilgontain any joining point for any other receiffé. ]
loop in Alg.[2, one receiver is deleted. We wrifg to denote  The following theorem establishes the correctness and com-
the tree (rooted a$; ) obtained at the end of iteratigv — k),  plexity of Algorithm[2 (REA).
at which point there aré receivers remaining. Lef,, denote ~ Theorem 6.2:REA terminates inN steps and correctly
the set of joining points, which still remain to be identifieddentifies all N joining points after queryingV — 1 quartets.
after iteration(NV — k), i.e., one for each remaining receiver. Proof: The proof is via induction. In the beginningy =

Proposition 6.1:Let T}, and.J;, be given. The next iteration G's, % is a logical tree and according to Corollary 1 i [1],
of Alg. 2 (lines3—25) producesl,_; and.J;_1, which satisfy the joining points are identifiable using sufficient quast@ur
the following properties: inductive step is one iteration of the while loop. First,etiat

1) The S; topology is still a logical tree, and it has— 1 there exist two sibling receivers at every step: it is enough
receivers ie., one receiver and its corresponding edge afé pick one of the lowest receiversd, a receiver with the
deleted fromT},). Therefore, we denote it by, ;. largest distance from the source); it will always have airsgol

2) One joining point has been identified; therefore, theecause of the logical tree topology. The algorithm queries
algorithm hask — 1 more joining points in7,_; to identify. ONe quartet per step, identifies one joining point per stad, a

3) All joining points in J,,_; are located on edges ifi,_;. at the end of the step, it preserves properties 1, 2, and 3. The

Proof: These properties follow directly from the operaWhile loop terminates inV — 1 iterations and there is one
tions performed by one step of Algl 2: additional step forRR, after the loop (which does not use any

1) In each iteration, a single receiver is eliminated frofjuartet). Therefore, the algorithm terminateshnsteps, and
the tree. Consequently, the only node that can possibly h&@rectly identifies all\V joining points by querying exactly
degree two (or out-degree one) after deleting the recesviés i N —1 quartets. u
parent,”. However, after each deletion, A[g. 2 tests to seR if _ . _

- " . 10A|gorithm 2 selectssibling receiversR; and R; at each step. Therefore,
has OUt'degree 1, andifit does_, then an addlthnal gommathere are only two potential candidates for the joining poithat can be
is performed so that the resulting tréB, 1, is still logical.  identified at this stepJ; and J;.
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Discussion.An important observation is that th& — 1 the (modified version of the) graph at each step; while GBS
quartets are not known a priori, but are easily selected inrequires to keep track of all the benefits and the worst case
sequential way, as needed; this makes REA easy to implemieeanefits for all the quartets, all the path updates for thation
in practice using active probing. Another observation iswtb of each joining point, and so forth.
the running time: exactlyV — 1 quartets need to be queried
(by sending sets of probes). This is much less than(@ﬁ)s VII. EXTENSIONS
possible quartets queried by a brute-force apprdadH [BiB], |, this section, we briefly outline the possible extensians t

higher than the lower bound on the number of required quartgle 5ctive learning algorithms we have discussed so far.
by any algorithm [4'], Theoreni4l1). Therefore, REA is not

optimal, but it is simple, efficient, and provably correcher . o .
next section compares the performance of REA to GBS '|Ar‘1 Extension tal/-by-I" Topologies

different topologies. So far, we have focused on inferring2aby-/N topology,
which is a special but important cagd.-by-N topologies can
B. Comparison to GBS be inferred by merging the tree topologies of the remaining

— 2 sources to thi2-by-N topology, one source at a time.

In Section[V-C, we evaluated the performance of . .
b Al ssume that we have inferredcaby-N topology,2 < k < M.

(GBS) in simulations over both synthetic topologies of HEg. th . . S
and realistic topologies of Figl 5. In this section, we conﬂrpaTo."’\dd the(k +1)™ source, we need to identify each joining
oint of the new sourceSy.1, and any one of thé sources

the performance of Ald]2 (REA) against Algl 1 (GBS) anff ) )
the lower bound, over the same topologies. The performaﬂeethe Iculrrent tIOFOILOgny'e; E ZNStk’ f(l)r eac: ;_ecegvsr, OI?
metrics of interest include the number of quartets queri single ogical fink in -by-N" topology (defined by a

in order to exactly infer the topology.e., the measurement the branching points). Therefore, we need to apply REA (or

overhead, as well as the running time and the memory us%&s) t05k+1 and any one (in the best case) or all (in the worst

: case) of the current sources. Therefore, for example using

bylt)aa_?nealNgSthEr}r:.of Quartetstvhen Gis, » % is a star topol- REA, the_number of quartets required to igfentify thieby-N
ogy as in Figlk(a), we saw in Section V-C that GBS is optim<I;1(1)|00|Ogy is betweert) — 1)(N — 1) and () (N — 1).
and requires onl)f%] quartets. Therefore, it performs better _ _
than REA, which requiresV — 1 quartets. B. Extension to Noisy Case

On the other hand, whef@is, « = is a perfect binary tree as  So far, we have considered the noiseless scenario, where
in Fig.[4(b), we can see in Figl 6 that on average, REA pahe answer to each query is the correct quartet type. One can
forms very close to GBS, while GBS is much more complexxtend the algorithms to deal with noisy queries, using the
than REA. Similar results are obtained for tall binary treesvo approaches proposed in [35]. The first one is a simple
(Fig.[4(c)) and perfect ternary trees (Fig. 4(d)). As ddsali solution that applies to both GBS and REA,; it repeats theyjuer
in Sectior\V=C, for bothGs, « = topologies, on average, REAmultiple times and considers the majority vote as the answer
performs close to GBS, and for some topologies, GBS requitesthat query. The second approach is more sophisticated and
even more tharV quartets. fits naturally in the GBS framewofH. It assigns weights to

For the realistic 2-by-16 topologies in Fig.[b(a) and each hypothesis using a probability distribution. Theiahit
Fig.[H(b), we saw in Sectidn VIC that GBS requirés-2 = 14  weighting is uniform, but it gets updated after each query.
quartets, while REA require§y — 1 = 15 quartets. The update naturally boosts the probability measure of the

Therefore, one can see that GBS only requires significantypotheses that agree with the answer to the query. At the
fewer quartets than REA for fla¥'s, «= topologies, such as end, the hypothesis with the largest weight is selected. a¥e ¢
the star topology in Figl]4(a). In other topologies, such agiopt this approach for the GBS algorithm by incorporating
binary/ternary trees or realistic topologies, REA is pnefe  the probability measures in the path updates and in comgutin
over GBS, because it is much simpler and it identifies thRe benefits. Using this approach, GBS can handle the noisy
joining points using the same number of quartets (or evejeries more naturally than REA. The query complexity and
fewer quartets in large topologies) as GB®.(N —1). the probability of error for both approaches have been aealy

2) Time and Space Complexityrhe time complexity of in [@],
REA (O(N)) is significantly lower than that of GBSX(V?)).
The reason is that at each step, REA only needs to select a VIIl. CONCLUSION

pair of sibling receivers (any of them will do); while GBS Although active topology inference is a well-studied prob-

calculates the worst case benefits of all the quartets, iaror : . X
. . m, to the best of our knowledge, this paper is the first taigoc
to pick the best one among them, which takes much longer. As " . . ) .
. o . . on efficient merging algorithms. We formulate the problem as
an example, for a single realization of our simulations when

. . ) . - multiple hypothesis testing and develop an active learaing
Gs,xr IS a perfect binary tree with28 receivers, the running orithm based on GBS. We also propose an efficient Receiver
time of REA is only< 1 second, while that of GBS i$9 g : prop

. S . Elimination Algorithm that queries onlyv — 1 quartets, which
seconds. This is a big difference when we consider a large 9 d ¥-1q

N .
number of realizations as described in Seclion]V-C. L much less than the{Q) possible quartets. Furthermore,

The memory reqUirement of REA is also much lower thaniia gimilar solution for REA would be to perform the deletionsda
that of GBS. The reason is that REA only requires to stotentractions probabilistically.
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comparing it to the GBS algorithm in simulations, we find15] M. Choi, V. Tan, A. Anandkumar, and A. Willsky,
out that the simple REA is near-optimal, and comparable to
the GBS approach in terms of the number of queries (thus
measurement bandwidth), while having much lower time and
space complexity. Therefore, it is preferable for all picadt [16]
purposes.
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