
UC Irvine
UC Irvine Previously Published Works

Title
Active Learning of Multiple Source Multiple Destination Topologies

Permalink
https://escholarship.org/uc/item/3jp5j6dx

Journal
IEEE Transactions on Signal Processing, 62(8)

ISSN
1053-587X

Authors
Sattari, Pegah
Kurant, Maciej
Anandkumar, Animashree
et al.

Publication Date
2014-04-15

DOI
10.1109/tsp.2014.2304431

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3jp5j6dx
https://escholarship.org/uc/item/3jp5j6dx#author
https://escholarship.org
http://www.cdlib.org/

ar
X

iv
:1

21
2.

23
10

v2
 [

cs
.N

I]
 1

9
M

ar
 2

01
4

1

Active Learning of Multiple Source Multiple
Destination Topologies

Pegah Sattari,Member, IEEE,Maciej Kurant, Animashree Anandkumar,Member, IEEE,
Athina Markopoulou,Senior Member, IEEE,and Michael Rabbat,Member, IEEE

Abstract—We consider the problem of inferring the topology
of a network with M sources andN receivers (hereafter referred
to as an M -by-N network), by sending probes between the
sources and receivers. Prior work has shown that this problem
can be decomposed into two parts: first, infer smaller subnetwork
components (i.e., 1-by-N ’s or 2-by-2’s) and then merge these
components to identify theM -by-N topology. In this paper, we
focus on the second part, which had previously received less
attention in the literature. In particular, we assume that a 1-
by-N topology is given and that all 2-by-2 components can
be queried and learned using end-to-end probes. The problem
is which 2-by-2’s to query and how to merge them with the
given 1-by-N , so as to exactly identify the2-by-N topology,
and optimize a number of performance metrics, including the
number of queries (which directly translates into measurement
bandwidth), time complexity, and memory usage. We provide a
lower bound, ⌈N

2
⌉, on the number of 2-by-2’s required by any

active learning algorithm and propose two greedy algorithms.
The first algorithm follows the framework of multiple hypoth esis
testing, in particular Generalized Binary Search (GBS), since
our problem is one of active learning, from2-by-2 queries. The
second algorithm is called the Receiver Elimination Algorithm
(REA) and follows a bottom-up approach: at every step, it selects
two receivers, queries the corresponding2-by-2, and merges it
with the given 1-by-N ; it requires exactly N − 1 steps, which
is much less than all

(

N

2

)

possible2-by-2’s. Simulation results
over synthetic and realistic topologies demonstrate that both
algorithms correctly identify the 2-by-N topology and are near-
optimal, but REA is more efficient in practice.

Index Terms—Adaptive Sensing Algorithms, Inference and
Estimation on Graphs, Applications of Statistical Signal Process-
ing Techniques, Sequential Learning, Active Hypothesis Testing,
Network Monitoring, Internet, Tomography.

I. I NTRODUCTION

K NOWLEDGE of network topology is important for
network management, diagnosis, operation, security, and

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

P. Sattari was with the EECS Department, UC Irvine, CA 92697,USA,
when this work was conducted. She is now with Jeda Networks Inc., Newport
Beach, CA 92660, USA. E-mail: psattari@alumni.uci.edu.

M. Kurant was with Calit2, University of California, Irvine, CA 92697,
USA, when this work was conducted. He is now with Google, Zurich,
Switzerland. E-mail: maciej.kurant@gmail.com.

A. Anandkumar and A. Markopoulou are with the EECS Department, UC
Irvine, CA 92697, USA. E-mail: a.anandkumar@uci.edu; athina@uci.edu.

M. Rabbat is with the Department of Electrical and Computer Engineering,
McGill University, Montreal, QC, Canada. E-mail: michael.rabbat@mcgill.ca.

This work has been supported by NSF Award 1028394, AFOSR Award
FA9550-10-1-0310 and AFOSR MURI FA9550-09-0643. The work of M.
Rabbat was funded in part by the Natural Sciences and Engineering Research
Council of Canada.

performance optimization [1–6]. In this paper, we considera
tomographic approach to topology inference, which assumes
no cooperation from intermediate nodes and relies on end-to-
end probes to infer internal network characteristics, including
topology [4]. Typically, multicast or unicast probes are sent
and received between sets of sources and receivers at the
edge of the network, and the topology is inferred based on
the number and order of received probes, or more generally,
using some metric or correlation structure. An important
performance metric is measurement bandwidth overhead: it is
desirable to accurately infer the topology using a small number
of probes.

In this paper, we focus on the problem of multiple-source
multiple-destination topology inference: our goal is to infer
the internal network (M -by-N) topology by sending probes
betweenM sources andN receivers at the edge of the
network. Prior work [1–3] has shown that this problem can
be decomposed into two parts: first, infer smaller subnetwork
components (e.g., multiple 1-by-N ’s or 2-by-2’s) and then
merge them to identify the entireM -by-N topology.

Significant progress has been made over the past years on
the decomposition as well as the first part of the problem,
i.e., inferring smaller components (1-by-N ’s or 2-by-2’s) using
active probes. One body of work developed techniques for in-
ferring 1-by-N (i.e., single-source tree) topologies using end-
to-end measurements [7–15]. Follow-up work [1–3] showed
that anM -by-N topology can be decomposed into and recon-
structed from a number of two-source, two-receiver (2-by-2)
subnetwork components or “quartets”. In [1, 2], a practical
scheme was proposed to distinguish between some quartet
topologies using back-to-back unicast probes. In our recent
work [16, 17], we proposed a method to exactly identify the
topology of a quartet in networks with multicast and network
coding capabilities.

In this paper, we focus on the second part of the problem,
namely selecting and merging smaller subnetwork components
to exactly identify theM -by-N , which has received signifi-
cantly less attention than the first part. Existing approaches
developed for merging the quartets [1, 3] have several limita-
tions, including not being able to exactly identify theM -by-N
topology and/or being inefficient (e.g.,requiring to send probes
over all

(

N

2

)

possible quartets). In this paper, we formulate the
problem as active learning, characterize its complexity, and
follow principled approaches to design efficient algorithms to
solve it. This complexity is important from both theoretical (a
fundamental property of the topology inference problem) and
practical (it determines the measurement bandwidth overhead,

http://arxiv.org/abs/1212.2310v2

2

running time and memory usage) points of view. These costs
can become particularly important when we need to infer
large or dynamic topologies using active measurements, and
an efficient algorithm is required for that.1

More specifically, we start from the problem of2-by-N
topology inference, which is an important special case and
can then be used as a building block for inferring anM -
by-N . Consistently with [1], we assume that a (static)1-
by-N topology is known (e.g., using one of the methods
in [4, 7–15, 23]). Then we query the quartet component
by sending end-to-end probes between the two sources and
the two receivers, and we learn its topology using some of
the methods in [1, 2, 16, 17, 24–28]2. The problem then
becomes one of active learning: “which quartets to query
and how to merge them with the given1-by-N , so as to
exactly identify the2-by-N topology and optimize a number
of performance metrics, including the number of queries (thus
the measurement bandwidth), time complexity, and memory
usage.” Our contributions are as follows:

1) We provide a lower bound of⌈N
2
⌉ on the number of

quartets required byany active learning algorithm in order to
identify the2-by-N . This characterizes the inherent complex-
ity of the problem and also serves as a rough baseline for
assessing the performance of practical algorithms.

2) We formulate the problem within the framework of
multiple hypothesis testing and develop an active learning
algorithm based on Generalized Binary Search (GBS). This
is the natural framework to pose the problem; however, we
evaluate the performance of this algorithm via simulation and
show that the computational complexity is high in practice.

3) As an alternative, we design an efficient Receiver Elim-
ination Algorithm (REA), which follows a greedy bottom-
up approach and provably identifies the2-by-N topology by
querying exactlyN − 1 quartets. From the active probing
perspective, this is attractive since onlyN − 1 queries are
required, which is much lower than all

(

N
2

)

possible quartets
one could query. This directly results in very low measurement
bandwidth, which is the main performance metric in active
monitoring.

We compare the two algorithms to each other and to the
lower bound via simulation over both synthetic and realistic
topologies. The results show that both algorithms can exactly
identify the topology and are near-optimal in terms of active
measurement bandwidth. Between the two, the Receiver Elim-
ination Algorithm is found to be very efficient in terms of run-
ning time and memory usage, and is, therefore, recommended
for practical implementation.

The rest of the paper is organized as follows. Section II
summarizes related work. Section III provides the problem

1Examples of networks where up-to-date topology information, and thus
dynamic mapping of the topology, is required include the following: detection
systems that detect Internet faults [18, 19] or prefix hijacks [20] and require
frequent measurements of Internet paths; content distribution networks that
need to continuously monitor the topology in order to selectthe bestcontent
server for user requests [21]; and overlay networks that need to monitor the
topology to select the best overlay routing [22].

2Other techniques may also be developed in the future as this is still an
active research area. However, this is out of the scope of this paper (see
Section III).

statement and terminology. Section IV provides a lower bound
on the number of quartets required by any algorithm. SectionV
proposes a greedy algorithm based on the GBS framework and
evaluates its performance via simulation. Section VI proposes
the greedy REA, analyzes its correctness and performance,
and compares it to GBS in simulation. Section VII discusses
possible extensions. Section VIII concludes the paper.

II. RELATED WORK

There is a large body of prior work on inference of network
topology. The most closely related to this paper are the ones
using active measurements and network tomography.

Tomographic approaches.A survey of network tomog-
raphy can be found in [4]. Tomographic approaches rely
only on end-to-end measurements to infer internal network
characteristics, which may include link-level parameters(such
as loss and delay metrics) or the network topology [29–34]. In
this paper, we focus on inferring the network topology. Most
tomographic approaches rely on probes sent from a single
source in a tree topology [7–15] and feed the number, order, or
a monotonic property of received probes as input to statistical
signal-processing techniques.

In [1–3], the authors formulated the multiple source multiple
destination (M -by-N) tomography problem by sending probes
betweenM sources andN receivers. It was shown that anM -
by-N network can be decomposed into a collection of2-by-2
components, also referred to as quartets [5, 6]. Coordinated
transmission of back-to-back unicast probes from the two
sources and packet arrival order measurements at the two
receivers were used to infer some information about the quartet
topology. Assuming knowledge ofM 1-by-N topologies and
the quartets, it was also shown how to merge a second source’s
1-by-N tree topology with the first one. The resultingM -by-
N topology is not exact, but bounds were provided on the
locations of the points where the two1-by-N trees merge
with each other. This approach also requires a large number
of probes for statistical significance, similar to many other
methods [7–11]. Compared to [1], our work is different in
that (i) we assume perfect knowledge of the quartets, thus
we identify the topology accurately; (ii) we focus on the
efficiency of active learning,i.e., selecting and merging the
quartets, which has not been studied before. To the best of
our knowledge, the only other merging algorithm proposed in
the literature is [1, 3]. However, the merging was not efficient
since all possible quartets were queried exhaustively.

In our prior work [16, 17], we revisited the problem of
topology inference using end-to-end probes in networks where
intermediate nodes are equipped with multicast and network
coding capabilities. We built on [1] and extended it, using
network coding at intermediate nodes to deterministically
distinguish among all possible quartet topologies, which was
not possible before. While in [16, 17], we focused on inferring
the quartets fast and accurately, here we assume that any
quartet can be queried and learned, and focus on efficiently
selecting and merging the quartets to infer the larger topology.
To the best of our knowledge, this work is the first to look at
this aspect of the problem.

3

There also exists a rich body of work onmultiple hypoth-
esis testingfor active learning problems where queries are
selected adaptively. One of the contributions of this paperis
to formulate this problem in that framework and design an
algorithm based on one such active learning scheme, GBS
[35–37], which we describe in detail in Section V.

Topology inference problems have also been studied in the
context ofphylogenetictrees [38, 39]. The work in [6] built on
[39] and proposed robust algorithms for multiple source tree
topology inference. The work in [5] inferred the topology of
sparse random graphs using end-to-end measurements between
a small subset of nodes. However, the quartet structures and
the way we measure them are different in our case due to the
nature of active probing in network tomography (see problem
formulation in Section III).

Traceroute-based approaches.An alternative to tomo-
graphic approaches istraceroute-based techniques, which
rely on cooperation of nodes in the middle of the network,
in order to connect the ids of nodes along paths and recon-
struct the topology [25–28]. These approaches face their own
set of challenges: not all intermediate nodes cooperate by
responding, many of them have multiple network interfaces
(ids), andtraceroute is often turned off for security rea-
sons. Therefore,traceroute-based methods must deal with
missing or incomplete data and alias problems. Regardless,
the point of this paper is not to compare the tomographic
approaches against thetraceroute-based approaches, but
to provide active learning algorithms that can probe/querythe
network in an efficient way. Querying the network can be
achieved via end-to-end probes,traceroute, or even in a
passive way. As long as we can query2-by-2 components, the
active learning approach should be applicable and useful in
minimizing the cost of all such approaches.

Relation to the conference version.This journal paper
builds on our conference paper in [40]. In addition to re-
visions and elaborating on parts of the writing, new ma-
terials/contributions in this paper include the following: the
formulation of the problem in the GBS framework as well
as the performance evaluation of the GBS algorithm via
simulation, and its comparison against REA.

III. PROBLEM STATEMENT

M -by-N Topology to be inferred. Consider anM -by-
N topology as a directed acyclic graph (DAG), betweenM

source nodesS = {S1, ..., SM} andN receiver nodesR =
{R1, ..., RN}. We denote thisM -by-N topology byGS×R.
Note thatGSi×R, i = 1, ...,M , is a 1-by-N tree. Similar to
[1–3], we assume that a predetermined routing policy maps
each source-destination pair to a unique route from the source
to the destination. This implies the following three properties,
first stated in [1]:3

A1 For every sourceSi and every receiverRj , there is a
unique pathPij .

3These assumptions are realistic, the same as in [1–3], and consistent with
the destination-based routing used in the Internet: each router decides the next
hop taken by a packet using a routing table lookup on the destination address.
We further assume that the network does not employ load balancing.

B1,4

B1,2

J4

S1

B1,3

R3 R4

J1

J3

R1 R2

S2 S3 SM

=J2

Fig. 1. An example2-by-4 topology. The solid lines and branching points
Bi,j ’s depict theS1 tree topology,GS1×R. Ji is a joining point, whereP2i

(indicated by the dashed lines) joinsGS1×R. An example quartet is the part
of the network connectingS1, S2 to R1, R2, which is type 1 since bothJ1
andJ2 lie above the branching point ofR1 andR2 in GS1×R, i.e., B1,2 .

A2 Two pathsPij and Pik, j 6= k, branch at abranching
point B, and they never merge again.

A3 Two pathsPik andPjk, i 6= j, merge at ajoining point
J , and they never split again.

We are interested in inferring the logical topology4, defined
by the branching and joining points defined above. We present
most of our discussion in terms ofM = 2, i.e., inferring a2-
by-N topologyGS×R, S = {S1, S2}; anM -by-N topology,
S = {S1, ..., SM}, can then be constructed by merging smaller
structures, as we describe in Section VII.

Example 1:Fig. 1 illustrates an example2-by-N topology
with N = 4. The logical tree topology ofS1 is shown by solid
lines and branching pointsBi,j ’s. EachJi depicts a joining
point, where the path fromS2 to receiverRi (indicated by the
dashed lines) joins theS1 tree. For example, the path from
S2 to R1 joins theS1 tree at a point betweenB1,3 andB1,2,
whereas the path toR4 joins at a point aboveB1,4. �

Quartet Components. In [1], it has been shown that an
M -by-N topology can be decomposed into a collection of
2-by-2 subnetwork components, which, in this paper, we call
quartets, following the terminology in [5, 6]. Each quartet can
be of four possible types, as shown in Fig. 2. We refer to Fig. 2
(a), (b), (c), and (d) as types 1, 2, 3, and 4, respectively. Note
that in type 1, the joining points for both receivers coincide
(J1 ≡ J2) and the branching points for both sources coincide
(B1

1,2 ≡ B2
1,2). However, the other three types (2, 3, and 4),

have two distinct joining points and two distinct branching
points.

In order to infer the type of a quartet between two sources
S1, S2 and two receiversRi, Rj , a set of probes must be
sent fromS1, S2 to Ri, Rj . The received probes can then be
processed using techniques such as the ones developed in:
[1, 2] (which distinguish type 1 from types 2, 3, 4 by sending
back-to-back unicast probes); [16, 17] (which distinguish
among all four types exploiting multicast and network coding);
[24] (which can exactly infer the topology of a super-sourceto

4A logical topology is obtained from a physical topology by ignoring nodes
with in-degree = out-degree = 1. Such nodes cannot be identified and network
tomography always focuses on inferring logical topologies.

4

S1
S2

J

B

R2 R1

J1=J2=

B1
1,2=B2

1,2=

(a) type 1

S1

J1

J2

B1
1,2

R2
R1

S2

B2
1,2

(b) type 2

S1

J2

B1
1,2

J1

R2 R1

S2

B2
1,2

(c) type 3

S1

J2 J1

B1
1,2

R2 R1

S2

B2
1,2

(d) type 4

Fig. 2. The four possible types of a quartet (2-by-2 subnetwork component). There are two sourcesS1 andS2 multicasting packetsx1 andx2, respectively,
to two receiversR1 andR2. All links are directed downwards, but arrowheads are omitted to avoid cluttering. The1-by-2 topology ofS1 is a tree composed
of S1, B

1

1,2, R1, R2. Similarly, the1-by-2 tree rooted atS2 is S2, B
2

1,2, R1, R2. J1 and J2 are joining points, where the paths fromS2 to R1 andR2

join/merge withS1 ’s tree topology.

two receivers using network coding);traceroute [25–28]
from the two sources to the two receivers; or other techniques
that may be developed in the future, since this is still an active
research area. We consider the design of these techniques to
be out of the scope of this paper and we focus on their use by
active learning algorithms to perform aquery, i.e., to learn a
quartet type by sending and processing a set of active probes.

Being able to query the type of a quartet enables inference
of anM -by-N topology in two steps, as follows: first infer the
type of each quartet, and then merge these quartets to identify
the original topology. Indeed, knowing the type of the quartet,
we can use Fig. 2 to infer the relative location of joining
and branching points. For example, knowing that the quartet
is of type 1 implies that (i) the two joining points coincide
J1 ≡ J2, (ii) the two branching points coincideB1

1,2 ≡ B2
1,2,

and (iii) the joining point is above the branching point. Similar
inferences can be made from the other types.

Problem Statement.Consistently with [1], we assume that
GS1×R (i.e., the 1-by-N tree topology rooted atS1, which
contains only branching points) is known (e.g.,using one of
the methods in [4, 7–15, 23]). We also assume that the type
of the quartet betweenS1, a new sourceS2, and any two
receivers can be queried and learned, as explained above.

Given (i) GS1×R and (ii) the ability to query the quartet
type betweenS1, S2, and any two receiversRi, Rj , our goal
is to identify all joining points,JN = {J1, J2, ..., JN}, where
the paths fromS2 to each receiver join the tree describing
paths fromS1 to the same set of receivers.5 Identifying a
joining pointJi (for receiverRi) means locatingJi on a single
logical link, between two branching points onGS1×R. E.g.,
in Fig. 1, the path fromS2 to R1 joins theS1 tree at a point
between nodesB1,3 andB1,2; i.e., J1 is located on the link
(B1,3, B1,2).

We achieve this goal via active learning: we start from
the given, static,1-by-N topology GS1×R, and proceed by
updating it in steps. In each step, we select which quartet to
query (i.e.,which two receivers to send probes to, from sources

5Note that we do not need to identify the branching points ofS2 because
the tree topology ofS2, like S1, is given. We are only interested in identifying
where these two tree topologies join/merge with each other,i.e.,we only want
to identify the joining points ofS1 andS2 trees.

S1 andS2)6, and learn its type (after sending and processing
the received probes, we have essentially queried and learned
the type of that quartet). We then merge this quartet with the
known topology so far. We continue until identifying the entire
2-by-N . The goal is to exactly identify the2-by-N topology
while minimizing the number of queries (i.e., set of probes
sent to measure the quartets). This metric is important because
it directly translates into measurement bandwidth. Additional
performance metrics that it is desirable to keep low include:
merging complexity and memory usage.

IV. L OWER BOUND

First, we provide a lower bound on the number of quartets
required by any active learning algorithm to identify the2-by-
N topology. This lower bound clearly depends on the topology
we want to identify and serves as a baseline for assessing the
performance of the proposed algorithms.

Theorem 4.1:Given GS1×R, the number of quartets re-
quired to be queried by any algorithm in order to identify all
the joining points inGS×R, S = {S1, S2}, is at least⌈N

2
⌉.

Before proving the theorem, let us discuss some examples
that illustrate the intuition and that this bound is not tight.

Example 2:Fig. 3(a) shows a2-by-N topology withN = 4,
which requires querying exactlyN

2
= 2 quartets in order to

uniquely identify all the joining points. This is because, in
this particular topology, knowing the types of(R1, R2) and
(R3, R4) is sufficient for identifying all four joining points.
Indeed,(R1, R2) is of type 4, which, according to Fig. 2,
means that bothJ1 and J2 lie below B1,2; also (R3, R4) is
type 4, which means that bothJ3 andJ4 are belowB3,4. Thus,
each joining point is identified on a single logical link. �

Example 3:Fig. 3(b) shows an example whereN
2

= 2
quartets are not sufficient and 3 quartets are required to
identify all the joining points. There exist

(

4

2

)

= 6 possible
quartets in this topology, from which

(

6

2

)

= 15 pairs of quartets
can be selected; one can check that none of the 15 possible
pairs can uniquely identify all the joining points. For example,
let us consider(R1, R2). Since it is of type 1, Fig. 2 indicates
thatJ1 ≡ J2 and both of them lie aboveB1,2. However, there
is more than a single link aboveB1,2; therefore, we continue

6Since we focus onM = 2, i.e., only two sourcesS1 andS2, we represent
the quartets(S1, S2, Ri, Rj) only by the receivers(Ri, Rj) for brevity.

5

B1,2

S1

B1,3

J1

R1 R2

S2

J2

B3,4

R4

J4

B2

J3

R3

(a) Two quartets are sufficient.

B1,2

S1

B1,3

R1 R2

S2

B1,4

R4

J

R3

(b) Three quartets are required.

Fig. 3. Two example2-by-N topologies withN = 4. In (a), N
2

quartets are
sufficient to identify the joining points,i.e., (R1, R2) and (R3, R4). In (b),
more thanN

2
quartets are required,e.g.,(R1, R2), (R1, R3), and(R1, R4).

by considering(R1, R3). It is again of type 1, which means
thatJ1 ≡ J3 is located aboveB1,3. Therefore, we go one step
further and consider(R1, R4). Since this is also of type 1,
J1 ≡ J4 lies aboveB1,4. At this step, we only have a single
link betweenS1 andB1,4 and thus,J1 ≡ J2 ≡ J3 ≡ J4 are
all identified (depicted asJ in Fig. 3(b)). Although there are
other choices of triplets of quartets, in this topology, at least
3 quartets are required. �

From these examples, one can see that the lower bound of
⌈N

2
⌉ is not tight and it is not achievable in every topology.

Theorem 4.1 follows from the following lemma.
Lemma 4.2:In order for an algorithm to identify all joining

points for all the receivers, each receiver needs to appear in
the set of quartets queried by the algorithm at least once.

Proof: Assume that there exists a receiverRi that has not
been queried in any of the quartets. We show that even with
complete knowledge of all other joining points, there existat
least two possible and feasible locations forJi, as follows.

Location 1:Ji lies on the last incoming link toRi, i.e., on
the link between the parent ofRi in theS1 tree (which from
now on, we denote byparent(Ri)), andRi. For example in
Fig. 3(a) and Fig. 3(b), assume thatRi = R2; then Location
1 would be the link (B1,2, R2). This is allowed by the routing
assumptions in Section III because (1) there is a unique path
P2i; (2) P2i never merges withP2j , j 6= i; and (3)P2i merges
with P1i at Ji, and they continue together until they reachRi.

Location 2: Define Ji as follows. On pathP1i, start at
parent(Ri) and move up towardsS1, until the first link that
does not fully overlap with anyP2j , j 6= i. PlaceJi on that
link. For example in Fig. 3(a), Location 2 forJ2 would be the
link (B1,3, B1,2); whereas in Fig. 3(b), it would be the link
(S1, B1,4). This location is also allowed by the assumptions
in Section III:
A1 There is a unique pathP2i.
A2 For everyj 6= i, the two pathsP2i andP2j never join

after they branch. Indeed, ifJj is located aboveJi on
P1i, then this is guaranteed by the construction ofJi. In
contrast,Jj cannot be located belowJi on P1i since this
would imply the violation of A2 even before addingJi.

A3 P2i merges withP1i at Ji and they never split.
Thus, both Location 1 and Location 2 are valid forJi, ac-
cording to the routing assumptions, andJi cannot be uniquely
identified. Therefore,Ri needs to be queried at least once.

Theorem 4.1 follows from the following reasoning: each
quartet involves two receivers, and thus, at least⌈N

2
⌉ quartets

are required for each receiver to appear in the set of quartets
queried by the algorithm at least once.

V. A GENERALIZED BINARY SEARCH ALGORITHM

A. Background on GBS

The GBS approach has been proposed for the problem of
determining a binary-valued function through a sequence of
strategically selected queries, as explained in the following
[35]. Consider a finite (potentially very large) collectionof
binary-valued functionsH, called the “hypothesis space”,
defined on a domainX , called the “query space”. Each
h ∈ H is a mapping fromX to {+1,−1}. Let |H| denote
the cardinality ofH, i.e., the total number of hypotheses. The
functionsh ∈ H are assumed to be unique, and one function,
h∗ ∈ H, produces the correct binary labeling.h∗ is assumed
to be fixed but unknown. The goal is to determineh∗ through
as few queries fromX as possible. Therefore, the queries need
to be selected strategically in a sequential manner such that
h∗ is identified as quickly as possible.

It has been shown that the learning problem described above
is NP-complete [41]; a practical heuristic has been proposed
in the form of a greedy algorithm called Generalized Binary
Search (GBS). At each step, GBS selects a query that results
in the most even split of the hypotheses under consideration
into two subsets, responding+1 and−1, respectively, to the
query. The correct response to the query eliminates one of
these two subsets from further consideration. The work in [35]
characterizes the worst-case number of queries required by
GBS in order to identify the correct hypothesish∗. The main
result of [35] indicates that under certain conditions on the
query and hypothesis spaces, the query complexity of GBS
(i.e., the minimum number of queries required by GBS to
identify h∗) is near-optimal,i.e., within a constant factor of
log2 |H|. The constant depends on two parametersc∗ andk,
defined in [35], and it is desirable that they are both as small
as possible.

In this section, we pose our problem in the GBS framework
and use the GBS algorithm because (i) our problem is one of
active learning and lends itself naturally to be posed in the
GBS framework, and (ii) GBS is a principled (although not
optimal) approach with provable correctness and performance
guarantees [35].

B. Merging Logical Topologies in the GBS Framework

In this section, we formulate our problem within the GBS
framework. Consider a set of hypothesesH, where each
hypothesish ∈ H is a configuration that results from placing
each joining pointJi on an arbitrary link in the pathP1i in
theS1 tree. The query spaceX is the set of all queries for all
the quartets, where each queryx ∈ X asks about the type of a
quartet(Ri, Rj). Since in our problem, each such queryx has
4 possible answers (corresponding to the 4 quartet types), we
need to modify our queries to make them consistent with the
binary functions in the standard GBS framework. We assume
that each queryx consists of 4 subqueries, each of which asks

6

Algorithm 1 GBS algorithm for identifying the joining points.
1: Let J = [0, 0, ...,0] be a vector of lengthN , which represents the

locations of the joining points.
2: while ∃ 0 in J do
3: Let wcB = [] represent the worst case benefits for all the quartets.
4: for each receiverRi do
5: for each receiverRj , j > i do
6: LetBi,j be the lowest common ancestor ofRi, Rj in GS1×R

7: Let upi ⊂ P1i be the subset ofP1i located aboveBi,j

8: Let upj ⊂ P1j be the subset ofP1j located aboveBi,j

9: Let dni ⊂ P1i be the subset ofP1i located belowBi,j

10: Let dnj ⊂ P1j be the subset ofP1j located belowBi,j

11: type1 B= |upi|
|P1i||P1j |

12: type2 B=
|upi||dnj |

|P1i||P1j |

13: type3 B=
|dni||upj|

|P1i||P1j |

14: type4 B=
|dni||dnj |

|P1i||P1j |

15: wcB.append(max([type1B, type2 B, type3 B, type4 B]))
16: selectedQuartet=wcB.index(min(wcB))
17: Let selectedQuartetTypebe the type ofselectedQuartet.
18: switch selectedQuartetTypedo
19: casetype 1 :
20: P1i ←− upi
21: P1j ←− upj

22: casetype 2 :
23: P1i ←− upi
24: P1j ←− dnj

25: casetype 3 :
26: P1i ←− dni

27: P1j ←− upj

28: casetype 4 :
29: P1i ←− dni

30: P1j ←− dnj

31: if |P1i| == 1 then
32: Ji = P1i

33: if |P1j | == 1 then
34: Jj = P1j

35: OutputJ .

whether(Ri, Rj) is of a specific type (1, 2, 3, or 4) or not;
i.e.:

x =















Is (Ri, Rj) of type 1?
Is (Ri, Rj) of type 2?
Is (Ri, Rj) of type 3?
Is (Ri, Rj) of type 4?

The answer to each such subquery is binary, which is con-
sistent with the GBS formulation. Of course, not all four
subqueries are always required for a quartet; one would stop
as soon as she gets the first “yes”, which would reveal the
type of the quartet. Note, however, that we count the number
of queries (not subqueries) as the performance metric of the
GBS algorithm.

Our goal is to find the target hypothesish∗, which is the
configuration that results from the correct placement of the
joining points in theS1 topology, using as few queries (i.e.,
the knowledge of as few quartet types) as possible.7

Algorithm 1 describes a greedy strategy based on GBS
for determiningh∗. In the beginning, there are|H| possible
hypotheses. In each step, the algorithm selects the best (i.e.,

7More formally, h∗ answers every query, for any pair of receivers, in
accordance with the true2-by-N topology. Mathematically,h∗ is a mapping
from queries to{+1,−1}, not a topology itself. However, there is a bijection
between all2-by-N logical topologies and the corresponding mappings inH,
and therefore, knowingh∗ is equivalent to knowing the2-by-N topology.

maximally discriminating [35]) quartet to query as follows.
By querying a quartet and learning its type, some information
is obtained about the locations of two joining points. Thus,
the number of feasible hypotheses, which agree with the
constraints imposed by the quartets queried and learned so
far, is reduced by a number, which depends on the topology
in general. We call this number thebenefitof the quartet. The
best quartet to select to query is the one with maximum benefit.
However, the benefit of each quartet becomes known onlyafter
it is queried. Thus, the algorithm considers all four possible
types for every possible quartet, and focuses on the worst case
benefit of that quartet,i.e., the type that gives the minimum
benefit. The best quartet to query is the one with maximum
worst case benefit.

We denote the benefit of each type for a quartet(Ri, Rj) by
type1 B, · · · , type4 B in Alg. 1, and define it as follows. Each
quartet type limits the number of candidate edges whereJi and
Jj can be located on, in the way depicted in Fig. 2. The benefit
of a type for (Ri, Rj) is the ratio of the number of edges
whereJi andJj can potentially be located on after learning
this type, divided by the current number of candidate edges
for the locations ofJi and Jj . The worst case (minimum)
benefit of(Ri, Rj) results from the type for which this ratio
is maximized, and the maximum of these worst case benefits
over all quartets is given by the quartet with minimum ratio.

In order to provide an analytical upper bound on the number
of quartets required by Alg. 1, one can try to use the main
result of [35], which indicates that Alg. 1 requireslog2 |H|
quartets.8 However, we cannot compute|H| exactly in our
problem; we can only provide a loose upper bound on that,
which is N !.9 Therefore, we obtain the upper bound of
logN ! ≈ N logN on the number of quartets required by
Algorithm 1, which is loose, and much larger than the lower
bound. In the next section, we evaluate the performance of
Alg. 1 via simulation to obtain a better estimate of the number
of quartets it requires to query in order to infer different
topologies.

C. Performance Evaluation

1) Simulation Setup:We evaluate Alg. 1 in simulations
over both synthetic topologies (as shown in Fig. 4) and realistic
topologies (as shown in Fig. 5), and we compare it to the
lower bound. The main performance metric of interest is
the number of quartets queried in order to exactly infer the
topology, which directly translates into measurement overhead.
Additional metrics include the running time and the memory
used by the algorithm,i.e., the computational complexity.

For the synthetic topologies, we illustrate only the1-by-N
tree topology ofS1 in Fig. 4. We consider the star topology,
“perfect” and “tall” binary trees (referring to the topologies

8This is the best case, where the constantsc∗ andk in [35] are both as small
as possible. In practice, there is an additional constant factor for log2 |H|.

9The bound is obtained by starting from theS1 tree and considering all
possible placements ofJi on P1i, ∀ i. Fig. 4(c) shows that there areN ×
N× (N −1) · · ·×2 ∼= N ! possible such placements. In practice, the routing
assumptions in Section III impose some constraints on possible Ji locations.
Also, the type of each quartet may rule out some types for the other quartets.
Therefore, the exact|H| depends on the topology and we cannot compute it.

7

R
1

R
N

R
2

R
3

S
1

(a) GS1×R, star topology.

R
1

R
N

R
2

S
1

R
N-1

(b) GS1×R, perfect binary tree.

S
1

R
1 R

N
R

2
R

3

(c) GS1×R, tall binary tree.

R
1

R
3

S
1

R
2 R

N-2
R

N R
N-1

(d) GS1×R, perfect ternary tree.

Fig. 4. Four syntheticGS1×R topologies used to evaluate the performance of Alg. 1 (the GBS approach) in simulations.

S
1

R
6

R
3 R

4
R

5
R

1
R

2 R
7

R
9

R
8 R

10
R

12
R

11
R

13
R

14
R

15
R

16

S
2

(a) A realistic 2-by-16 topology from a US Uni-
versity departmental LAN [3].

S
1

R
14

R
13

R
12 R

6
R

5
R

16 R
15

R
9

R
7

R
8

S
2

R
3 R

4
R

1 R
2

R
10 R

11

(b) A 2-by-16 topology generated from the Exodus
topology [28].

Fig. 5. Two realistic2-by-N topologies used to evaluate the performance of
Alg. 1 (GBS). The solid lines indicate the paths taken by probes fromS1 and
the dashed lines indicate the paths taken by probes fromS2.

depicted in Fig. 4(b) and 4(c), respectively), and perfect
ternary trees, for theGS1×R tree topology. Starting from this
tree, we then create a2-by-N topology, with sourcesS1 and
S2, by choosing the location of each joining pointJi (for
receiverRi) on a single logical link, selected uniformly at
random, onP1i in GS1×R. For eachGS1×R in Fig. 4, we
consider 100 realizations of such random placements (resulting
in different2-by-N topologies) and report the average number
of quartets required for these topologies in the next section.

For the realistic topologies, we show the complete2-by-
N topology in Fig. 5. Fig. 5(a) depicts a US University
departmental LAN with 16 receivers, first used in [3]. Fig. 5(b)
is a 2-by-16 directed acyclic graph (DAG), extracted from
the Exodus topology, which is a large commercial ISP whose
backbone map was inferred by the Rocketfuel project [28].
To generate this topology, we picked randomly two nodes of
Exodus (nodes 5, 36) to be the sources, and selected all sixteen

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

Number of receivers (N)

A
ve

ra
ge

 n
um

be
r

of
 r

eq
ui

re
d

qu
ar

te
ts

Comparison of GBS and REA algorithms in perfect binary trees

REA

GBS

Lower Bound

Fig. 6. Simulation results for the average number of quartets required by
Alg. 1 (GBS) to infer the2-by-N topology whenGS1×R is a perfect binary
tree (Fig. 4(b)) of various sizes,N = 4, ...,128. The results are averaged over
100 realizations of random placements of the joining points. The standard
deviation error bars (not shown) are comparable with the marker size. The
figure also shows the number of quartets required by Alg. 2 (REA) and the
lower bound in comparison to Alg. 1 (GBS).

nodes to which both sources had routes to be the receivers.
We then found the shortest path trees from each source to the
receivers, and considered the overlap between these two trees.

Our experiments are conducted using the Python implemen-
tation of Algorithm 1, which we have made available online
[42]. It takes as input any topology and returns the number of
quartets required by Algorithm 1 to infer that topology. Next,
we summarize the simulation results.

2) Simulation Results (for the Number of Quartets):When
GS1×R is a star topology as depicted in Fig. 4(a), Alg. 1
always identifies the2-by-N topology by querying only⌈N

2
⌉

quartets, which is the lower bound. Therefore, it is optimal.
WhenGS1×R is a perfect binary tree as shown in Fig. 4(b),

Alg. 1 requires different numbers of quartets, betweenN
2

and N , in different 2-by-N topologies. However, as shown
in Fig. 6, on average, Alg. 1 requires∼ N quartets.

Similar results are obtained for tall binary trees (Fig. 4(c))
and perfect ternary trees (Fig. 4(d)). Here, we omit the figures
and only report the results. WhenGS1×R is a tall binary tree,
the number of quartets required by Alg. 1 varies depending on
the quartet types in different2-by-N topologies; however, in
our simulations on tall binary trees withN > 100 receivers,
we observe that in at least80% of the realizations, Alg. 1
requiresN − 1 quartets. This percentage increases up to99%

8

u

v

e
1

e
2 e

3

e
5

e
6

e
7

e
8

w

e
1

e
2 e

3

e
5

e
6

e
7

e
8

e
4

u

v

e
1

e
2 e

3

e
5

e
6

e
7

e
8

Fig. 7. Deletion and contraction of edgee4 in a graph.

in topologies withN < 100 receivers. WhenGS1×R is a
perfect ternary tree, again on average, Alg. 1 requiresN − 1
quartets, while for some topologies, it requires even more than
N quartets.

For the realistic topologies in Fig. 5(a) and Fig. 5(b), Alg.1
identifies both2-by-16 topologies by querying14 (= N − 2)
quartets.

Therefore, in our simulations, we find out that Alg. 1 only
performs as well as one could hope for,i.e., it requires as
few quartets as the lower bound, for flatGS1×R topologies,
such as the star topology in Fig. 4(a). In other topologies,
such as binary/ternary trees or realistic topologies, it requires
many more queries, and each round of querying is extremely
complex: at each step, Alg. 1 needs to calculate the worst case
benefits of all the quartets, in order to pick the best one among
them. In fact, the time complexity of Alg. 1 isO(N3), and its
memory requirement is also high because it requires to keep
track of all the benefits and the worst case benefits for all the
quartets, as well as all the path updates for the location of
each joining point, and so forth.

Since Alg. 1 is not very efficient in practice as described
above, we propose an alternate algorithm in the next section,
which is much simpler and more efficient than the GBS
approach.

VI. T HE RECEIVER ELIMINATION ALGORITHM

In this section, we design another greedy algorithm as an
alternative to the GBS approach, called the Receiver Elimina-
tion Algorithm (REA), which requires more queries than GBS
for some topologies, but each iteration is extremely simple
and fast, and it scales linearly in the number of receivers. In
particular, givenGS1×R and the ability to query the type of
any quartet, REA is able to identify allN joining points where
GS2×R merges withGS1×R, i.e., the entire2-by-N topology,
in N − 1 steps.

Let every edgee in GS1×R have a unique name:label(e).
In our algorithm, we use two operations “edge deletion” and
“edge contraction”, depicted in Fig. 7 and defined as follows.

Definition 1: Deletingedge(u, v), entails taking that edge
out of the graph while the end-nodesu andv, and the labels

Algorithm 2 REA starts fromGS1×R, selects the quartets
sequentially, queries their types, and merges them until iden-
tifying all joining pointsJN .
1: Let J be a vector of lengthN of edge labels, which represents the

locations of the joining points.
2: while |R| > 1 do
3: Pick any two receiversRi, Rj in GS1×R, such thatRi andRj are

siblings; denote their parent byP .
4: Query the type of(Ri, Rj).
5: switch (Ri, Rj) do
6: casetype 1 :
7: Ji ≡ Jj
8: DeleteRi and edge(P,Ri).
9: if outdeg(P)==1then

10: Contract(P,Rj) into Rj .

11: casetype 2 :
12: Jj = label((P,Rj))
13: DeleteRj and edge(P,Rj).
14: if outdeg(P)==1then
15: Contract(P,Ri) into Ri.
16: casetype 3 :
17: Ji = label((P,Ri))
18: DeleteRi and edge(P,Ri).
19: if outdeg(P)==1then
20: Contract(P,Rj) into Rj .

21: casetype 4 :
22: Jj = label((P,Rj))
23: DeleteRj and edge(P,Rj).
24: if outdeg(P)==1then
25: Contract(parent(P), P) into P .
26: /*There is one remaining receiver, which we callRz .*/
27: Let Jz = label((parent(Rz), Rz)).
28: OutputJ .

of the remaining edges in the graph remain unchanged.
Definition 2: Contractingedge(u, v) into nodew, consists

of deleting that edge and mergingu andv into a single node
w. The labels of the remaining edges do not change (although
nodes may be renamed tow).

REA is described in Alg. 2. It starts from theS1 tree
(GS1×R) and proceeds by selecting one quartet to query at
each step (i.e., two receiversRi, Rj to send probes to, from
sourcesS1, S2). The two receivers (Ri, Rj) in the selected
quartet are sibling leaves. Based on the type of the selected
quartet, Alg. 2 identifies exactly one joining point in one
step. It then updatesGS1×R by deleting the receiver whose
joining point has been identified and the last incoming edge to
that receiver. That is why we call it the Receiver Elimination
Algorithm. Furthermore, if a node of degree two appears
in GS1×R as a result of this edge deletion, the algorithm
eliminates that node by contracting the corresponding edge.
The algorithm continues iteratively until there is one edgeleft,
i.e.,all joining points are identified. This way, Alg. 2 identifies
all joining points (where paths fromS2 to each receiver join
the S1 tree), one-by-one, proceeding from the bottom to the
root of the tree. Next, we describe an illustrative example.

Example 4:Fig. 8(b)-(e) demonstrate the steps performed by
REA to identify the2-by-N topology shown in Fig. 8(a). The
algorithm starts fromGS1×R shown in Fig. 8(b);e1, ..., e6
are the edge labels on this tree. The algorithm first selects
(R2, R3) and queries its type. Since the answer is type 1, the
algorithm assignsJ2 ≡ J3, and deletesR2 and e5. Since the
degree ofB2,3 becomes 2, the algorithm contractse6 into R3.

9

J2

R1

B1,4

R4

J1

B2,3

R2 R3

=J3

S1 S2

J4

B2

(a) The GS×R topology,
which we want to identify.

e2

e5 e6

e4
e3

e1

R1

B1,4

R4

B2,3

R2 R3

S1

(b) GS1×R (T4). (R2, R3)
is of type 1; thusJ2 ≡ J3.

R1

B1,4

R4

R3

S1

J3

e2 e4
e3

e1

(c) T3. (R1, R3) is of type 4;
thusJ3 is identified one3.

R1

B1,4

R4

S1

J1

e2 e4

e1

(d) T2. (R1, R4) is of type 3;
thusJ1 is identified one2.

R
4

S
1

J
4

=R
z

e
1

(e) T1. Rz = R4; thusJ4 is
identified one1.

Fig. 8. The steps (b), (c), (d), and (e), performed by Alg. 2 (REA) to identify the2-by-N topology in (a). The output of the algorithm isJ = [e2, e3, e3, e1].

In the second step shown in Fig. 8(c), REA selects two
sibling leaves(R1, R3), randomly out of three possible pairs of
siblings, and queries its type. Since it is type 4, the algorithm
identifiesJ3 on e3 (which, together with the previous step,
means thatJ2 is also identified). It also deletesR3 and e3.
There is no contraction in this step asB1,4’s degree is> 2.

In the third step shown in Fig. 8(d),(R1, R4) is selected
and queried; it is of type 3. Therefore, the algorithm identifies
J1 on e2, deletesR1 ande2, and contractse4 into R4. Since
there is only one receiver left, there are no more quartets to
query; thus the algorithm exits the while loop and proceeds to
the last step (line 26). ForRz = R4, the algorithm identifies
J4 on e1, as shown in Fig. 8(e). The identified joining points
agree with the real locations inGS×R topology in Fig. 8(a),
which demonstrates the correctness of the algorithm. �

A. Properties of REA

Let TN = GS1×R denote the logical tree fromS1 to all N
receivers, which we assume to be known. In this section, we
use the notationTN to emphasize that this initial treeGS1×R

containsN receivers. After each iteration through the while
loop in Alg. 2, one receiver is deleted. We writeTk to denote
the tree (rooted atS1) obtained at the end of iteration(N−k),
at which point there arek receivers remaining. LetJk denote
the set of joining points, which still remain to be identified
after iteration(N − k), i.e., one for each remaining receiver.

Proposition 6.1:Let Tk andJk be given. The next iteration
of Alg. 2 (lines3−25) producesTk−1 andJk−1, which satisfy
the following properties:

1) TheS1 topology is still a logical tree, and it hask − 1
receivers (i.e., one receiver and its corresponding edge are
deleted fromTk). Therefore, we denote it byTk−1.

2) One joining point has been identified; therefore, the
algorithm hask − 1 more joining points inJk−1 to identify.

3) All joining points inJk−1 are located on edges inTk−1.
Proof: These properties follow directly from the opera-

tions performed by one step of Alg. 2:
1) In each iteration, a single receiver is eliminated from

the tree. Consequently, the only node that can possibly have
degree two (or out-degree one) after deleting the receiver is its
parent,P . However, after each deletion, Alg. 2 tests to see ifP

has out-degree 1, and if it does, then an additional contraction
is performed so that the resulting tree,Tk−1, is still logical.

2) When(Ri, Rj) is of type 2, 3, or 4, we can see in lines
12, 17, and 22 of the algorithm, respectively, that one joining
point is identified. When(Ri, Rj) is of type 1, line 7 assigns
to Ri, the same joining point asRj ’s. Then, in line 8,Ri is
deleted so that we do not create a loop by assigningJi again
to Jj later. Also,Jj eventually becomes identified, either in
one of the other types (2, 3, or 4) in the while loop, or in the
last line of the algorithm. Thus, we haveJk−1 after one step.

3) Alg. 2 changesTk by 2 processes: edge deletion and edge
contraction. We show that neither deletion nor contractioncan
eliminate an edge inTk that contains a joining point inJk−1.

Deletion: Alg. 2 is constructed such that any edge deleted
from theS1 tree contains either no joining point (if(Ri, Rj)
is of type 1) or exactly one joining point, corresponding to
the receiver being removed along with that edge (if(Ri, Rj)
is of type 2, 3, or 4).

Contraction: An edge is contracted only when it does not
contain any joining point, neither forRi and Rj (see lines
9− 10 for type 1, lines14− 15 for type 2, lines19− 20 for
type 3, and lines24−25 for type 4), nor for any other receivers
(since(Ri, Rj) are sibling leaves, the contracted edge cannot
contain any joining point for any other receiver.10).

The following theorem establishes the correctness and com-
plexity of Algorithm 2 (REA).

Theorem 6.2:REA terminates inN steps and correctly
identifies allN joining points after queryingN − 1 quartets.

Proof: The proof is via induction. In the beginning,TN =
GS1×R is a logical tree and according to Corollary 1 in [1],
the joining points are identifiable using sufficient quartets. Our
inductive step is one iteration of the while loop. First, note that
there exist two sibling receivers at every step: it is enough
to pick one of the lowest receivers (i.e., a receiver with the
largest distance from the source); it will always have a sibling
because of the logical tree topology. The algorithm queries
one quartet per step, identifies one joining point per step, and
at the end of the step, it preserves properties 1, 2, and 3. The
while loop terminates inN − 1 iterations and there is one
additional step forRz after the loop (which does not use any
quartet). Therefore, the algorithm terminates inN steps, and
correctly identifies allN joining points by querying exactly
N − 1 quartets.

10Algorithm 2 selectssibling receiversRi andRj at each step. Therefore,
there are only two potential candidates for the joining points that can be
identified at this step:Ji andJj .

10

Discussion.An important observation is that theN − 1
quartets are not known a priori, but are easily selected in a
sequential way, as needed; this makes REA easy to implement
in practice using active probing. Another observation is about
the running time: exactlyN − 1 quartets need to be queried
(by sending sets of probes). This is much less than the

(

N
2

)

possible quartets queried by a brute-force approach [1, 3],but
higher than the lower bound on the number of required quartets
by any algorithm (⌈N

2
⌉, Theorem 4.1). Therefore, REA is not

optimal, but it is simple, efficient, and provably correct. The
next section compares the performance of REA to GBS in
different topologies.

B. Comparison to GBS

In Section V-C, we evaluated the performance of Alg. 1
(GBS) in simulations over both synthetic topologies of Fig.4
and realistic topologies of Fig. 5. In this section, we compare
the performance of Alg. 2 (REA) against Alg. 1 (GBS) and
the lower bound, over the same topologies. The performance
metrics of interest include the number of quartets queried
in order to exactly infer the topology,i.e., the measurement
overhead, as well as the running time and the memory used
by each algorithm.

1) The Number of Quartets:WhenGS1×R is a star topol-
ogy as in Fig. 4(a), we saw in Section V-C that GBS is optimal
and requires only⌈N

2
⌉ quartets. Therefore, it performs better

than REA, which requiresN − 1 quartets.
On the other hand, whenGS1×R is a perfect binary tree as

in Fig. 4(b), we can see in Fig. 6 that on average, REA per-
forms very close to GBS, while GBS is much more complex
than REA. Similar results are obtained for tall binary trees
(Fig. 4(c)) and perfect ternary trees (Fig. 4(d)). As described
in Section V-C, for bothGS1×R topologies, on average, REA
performs close to GBS, and for some topologies, GBS requires
even more thanN quartets.

For the realistic 2-by-16 topologies in Fig. 5(a) and
Fig. 5(b), we saw in Section V-C that GBS requiresN−2 = 14
quartets, while REA requiresN − 1 = 15 quartets.

Therefore, one can see that GBS only requires significantly
fewer quartets than REA for flatGS1×R topologies, such as
the star topology in Fig. 4(a). In other topologies, such as
binary/ternary trees or realistic topologies, REA is preferred
over GBS, because it is much simpler and it identifies the
joining points using the same number of quartets (or even
fewer quartets in large topologies) as GBS (i.e., N − 1).

2) Time and Space Complexity:The time complexity of
REA (O(N)) is significantly lower than that of GBS (O(N3)).
The reason is that at each step, REA only needs to select a
pair of sibling receivers (any of them will do); while GBS
calculates the worst case benefits of all the quartets, in order
to pick the best one among them, which takes much longer. As
an example, for a single realization of our simulations when
GS1×R is a perfect binary tree with128 receivers, the running
time of REA is only< 1 second, while that of GBS is19
seconds. This is a big difference when we consider a large
number of realizations as described in Section V-C.

The memory requirement of REA is also much lower than
that of GBS. The reason is that REA only requires to store

the (modified version of the) graph at each step; while GBS
requires to keep track of all the benefits and the worst case
benefits for all the quartets, all the path updates for the location
of each joining point, and so forth.

VII. E XTENSIONS

In this section, we briefly outline the possible extensions to
the active learning algorithms we have discussed so far.

A. Extension toM -by-N Topologies

So far, we have focused on inferring a2-by-N topology,
which is a special but important case.M -by-N topologies can
be inferred by merging the tree topologies of the remaining
M − 2 sources to this2-by-N topology, one source at a time.
Assume that we have inferred ak-by-N topology,2 ≤ k < M .
To add the(k+1)th source, we need to identify each joining
point of the new source,Sk+1, and any one of thek sources
in the current topology,Si, 1 ≤ i ≤ k, for each receiver, on
a single logical link in thek-by-N topology (defined by all
the branching points). Therefore, we need to apply REA (or
GBS) toSk+1 and any one (in the best case) or all (in the worst
case) of the currentk sources. Therefore, for example using
REA, the number of quartets required to identify theM -by-N
topology is between(M − 1)(N − 1) and

(

M

2

)

(N − 1).

B. Extension to Noisy Case

So far, we have considered the noiseless scenario, where
the answer to each query is the correct quartet type. One can
extend the algorithms to deal with noisy queries, using the
two approaches proposed in [35]. The first one is a simple
solution that applies to both GBS and REA; it repeats the query
multiple times and considers the majority vote as the answer
to that query. The second approach is more sophisticated and
fits naturally in the GBS framework.11 It assigns weights to
each hypothesis using a probability distribution. The initial
weighting is uniform, but it gets updated after each query.
The update naturally boosts the probability measure of the
hypotheses that agree with the answer to the query. At the
end, the hypothesis with the largest weight is selected. We can
adopt this approach for the GBS algorithm by incorporating
the probability measures in the path updates and in computing
the benefits. Using this approach, GBS can handle the noisy
queries more naturally than REA. The query complexity and
the probability of error for both approaches have been analyzed
in [35].

VIII. C ONCLUSION

Although active topology inference is a well-studied prob-
lem, to the best of our knowledge, this paper is the first to focus
on efficient merging algorithms. We formulate the problem as
multiple hypothesis testing and develop an active learningal-
gorithm based on GBS. We also propose an efficient Receiver
Elimination Algorithm that queries onlyN−1 quartets, which
is much less than the

(

N

2

)

possible quartets. Furthermore,

11A similar solution for REA would be to perform the deletions and
contractions probabilistically.

11

comparing it to the GBS algorithm in simulations, we find
out that the simple REA is near-optimal, and comparable to
the GBS approach in terms of the number of queries (thus
measurement bandwidth), while having much lower time and
space complexity. Therefore, it is preferable for all practical
purposes.

REFERENCES

[1] M. Rabbat, M. Coates, and R. Nowak, “Multiple source
internet tomography,”IEEE JSAC, vol. 24, no. 12, pp.
2221–2234, Dec. 2006.

[2] M. Rabbat, R. Nowak, and M. Coates, “Multiple source,
multiple destination network tomography,” inProc. of
IEEE Infocom, Hong Kong, March 2004.

[3] M. Coates, M. Rabbat, and R. Nowak, “Merging logical
topologies using end-to-end measurements,” inProc. of
ACM IMC, Miami, FL, Oct. 2003.

[4] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu,
“Network tomography: Recent developments,”Statistical
Science, vol. 19, no. 3, pp. 499–517, 2004.

[5] A. Anandkumar, A. Hassidim, and J. Kelner, “Topology
discovery of sparse random graphs with few partici-
pants,” inProc. of ACM Sigmetrics, San Jose, CA, June
2011.

[6] A. Krishnamurthy and A. Singh, “Robust multi-source
network tomography using selective probes,” inProc. of
IEEE Infocom, Orlando, FL, March 2012.

[7] S. Ratnasamy and S. McCanne, “Inference of multicast
routing trees and bottleneck bandwidths using end-to-end
measurements,” inProc. of IEEE Infocom, New York,
NY, March 1999, pp. 353–360.

[8] N. Duffield, J. Horowitz, and F. L. Presti, “Adaptive
multicast topology inference,” inProc. of IEEE Infocom,
Anchorage, AK, April 2001.

[9] N. Duffield, J. Horowitz, F. Presti, and D. Towsley,
“Multicast topology inference from measured end-to-end
loss,” IEEE Transactions on Information Theory, vol. 48,
no. 1, pp. 26–45, Jan. 2002.

[10] M. Coates, R. Castro, M. Gadhiok, R. King, Y. Tsang,
and R. Nowak, “Maximum likelihood network topology
identification from edge-based unicast measurements,” in
Proc. of ACM Sigmetrics, Marina Del Rey, CA, June
2002.

[11] N. G. Duffield and F. L. Presti, “Network tomography
from measured end-to-end delay covariance,”IEEE/ACM
Transactions on Networking, vol. 12, no. 6, pp. 978–992,
Dec. 2004.

[12] B. Eriksson, G. Dasarathy, P. Barford, and R. Nowak,
“Toward the practical use of network tomography for
internet topology discovery,” inProc. of IEEE Infocom,
San Diego, CA, March 2010.

[13] J. Ni, H. Xie, S. Tatikonda, and Y. R. Yang, “Efficient
and dynamic routing topology inference from end-to-end
measurements,”IEEE/ACM Transactions on Networking,
vol. 18, no. 1, Feb. 2010.

[14] J. Ni and S. Tatikonda, “Network tomography based
on additive metrics,”IEEE Transactions on Information
Theory, vol. 57, no. 12, pp. 7798–7809, Dec. 2011.

[15] M. Choi, V. Tan, A. Anandkumar, and A. Willsky,
“Learning latent tree graphical models,”Journal of Ma-
chine Learning Research, vol. 12, pp. 1771–1812, May
2011.

[16] P. Sattari, A. Markopoulou, and C. Fragouli, “Multi-
ple source multiple destination topology inference using
network coding,” inProc. of NetCod, EPFL, Lausanne,
Switzerland, June 2009.

[17] P. Sattari, C. Fragouli, and A. Markopoulou, “Active
topology inference using network coding,”Elsevier PHY-
COM, Special Issue on Network Coding and its Applica-
tions to Wireless Communications, vol. 6, pp. 142–163,
March 2013.

[18] I. Cunha, R. Teixeira, N. Feamster, and C. Diot, “Mea-
surement methods for fast and accurate blackhole identi-
fication with binary tomography,” inProc. of ACM IMC,
Chicago, Illinois, Nov. 2009.

[19] E. Katz-Bassett, H. Madhyastha, J. P. John, A. Krishna-
murthy, D. Wetherall, and T. Anderson, “Studying black
holes in the internet with hubble,” inProc. of USENIX
NSDI, San Francisco, CA, April 2008.

[20] Z. Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, and R. Bush,
“ispy: Detecting ip prefix hijacking on my own,” inProc.
of ACM SIGCOMM, Seattle, WA, August 2008.

[21] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman,
and B. Weihl, “Globally distributed content delivery,”
IEEE Internet Computing, vol. 6, no. 5, pp. 50–58, 2002.

[22] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Mor-
ris, “Resilient overlay networks,”SIGOPS Operating
Systems Review, vol. 35, no. 5, pp. 131–145, Dec. 2001.

[23] C. Fragouli, A. Markopoulou, and S. Diggavi, “Topology
inference using network coding,” inProc. of Allerton
Conference, Monticello, IL, Sept. 2006.

[24] G. Sharma, S. Jaggi, and B. Dey, “Network tomography
via network coding,” inProc. of Information Theory and
Applications (ITA) Workshop, San Diego, CA, Feb. 2008.

[25] B. Huffaker, D. Plummer, D. Moore, and K. Claffy,
“Topology discovery by active probing,” inProc. of
SAINT, Nara, Japan, Jan. 2002.

[26] B. Cheswick, H. Burch, and S. Branigan, “Mapping and
visualizing the internet,” inProc. of USENIX Annual
Technical Conference (ATC), San Diego, CA, June 2000.

[27] R. Govindan and H. Tangmunarunkit, “Heuristics for
internet map discovery,” inProc. of IEEE Infocom, Tel-
Aviv, Israel, March 2000.

[28] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp
topologies with rocketfuel,” inProc. of ACM Sigcomm,
Pittsburgh, PA, Aug. 2002.

[29] M.-F. Shih and A. O. Hero, “Hierarchical inference of
unicast network topologies based on end-to-end measure-
ments,”IEEE Transactions on Signal Processing, vol. 55,
no. 5, pp. 1708–1718, 2007.

[30] Y. Tsang, M. Coates, and R. D. Nowak, “Network delay
tomography,”IEEE Transactions on Signal Processing,
vol. 51, no. 8, pp. 2125–2136, 2003.

[31] M.-F. Shih and A. O. Hero, “Unicast-based inference of
network link delay distributions with finite mixture mod-
els,” IEEE Transactions on Signal Processing, vol. 51,

12

no. 8, pp. 2219–2228, 2003.
[32] K. Deng, Y. Li, W. Zhu, Z. Geng, and J. S. Liu, “On

delay tomography: Fast algorithms and spatially depen-
dent models,”IEEE Transactions on Signal Processing,
vol. 60, no. 11, pp. 5685–5697, 2012.

[33] G. Liang and B. Yu, “Maximum pseudo likelihood esti-
mation in network tomography,”IEEE Transactions on
Signal Processing, vol. 51, no. 8, pp. 2043–2053, 2003.

[34] A. Chen, J. Cao, and T. Bu, “Network tomography: Iden-
tifiability and fourier domain estimation,”IEEE Trans-
actions on Signal Processing, vol. 58, no. 12, pp. 6029–
6039, 2010.

[35] R. D. Nowak, “The geometry of generalized binary
search,” IEEE Transactions on Information Theory,
vol. 57, no. 12, pp. 7893–7906, Dec. 2011.

[36] S. Dasgupta, “Coarse sample complexity bounds for ac-
tive learning,” inProc. of Neural Information Processing
Systems (NIPS), Vancouver, B.C., Canada, Dec. 2005.

[37] R. Castro and R. Nowak, “Minimax bounds for active
learning,” IEEE Transactions on Information Theory,
vol. 54, no. 5, pp. 2339–2353, May 2008.

[38] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison,
Biological Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids. Cambridge University
Press, 1999.

[39] J. Pearl and M. Tarsi, “Structuring causal trees,”Journal
of Complexity, 1986.

[40] P. Sattari, M. Kurant, A. Anandkumar, A. Markopoulou,
and M. Rabbat, “Active learning of multiple source
multiple destination topologies,” inProc. of IEEE CISS,
Johns Hopkins University, Baltimore, MD, March 2013.

[41] L. Hyafil and R. L. Rivest, “Constructing optimal binary
decision trees is np-complete,”Information Processing
Letters, vol. 5, no. 1, pp. 15–17, May 1976.

[42] P. Sattari, “Python implementations
of the gbs and rea algorithms,”
http://odysseas.calit2.uci.edu/doku.php/public:pegah-software,
July 2012.

http://odysseas.calit2.uci.edu/doku.php/public:pegah-software

	I Introduction
	II Related Work
	III Problem Statement
	IV Lower Bound
	V A Generalized Binary Search Algorithm
	V-A Background on GBS
	V-B Merging Logical Topologies in the GBS Framework
	V-C Performance Evaluation
	V-C1 Simulation Setup
	V-C2 Simulation Results (for the Number of Quartets)

	VI The Receiver Elimination Algorithm
	VI-A Properties of REA
	VI-B Comparison to GBS
	VI-B1 The Number of Quartets
	VI-B2 Time and Space Complexity

	VII Extensions
	VII-A Extension to M-by-N Topologies
	VII-B Extension to Noisy Case

	VIII Conclusion

