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Abstract— This paper proposes simple moment based spec-
trum sensing algorithm for cognitive radio networks in a flat
fading channel. It is assumed that the transmitted signal samples
are binary (quadrature) phase-shift keying BPSK (QPSK), M-
ary quadrature amplitude modulation (QAM) or continuous
uniformly distributed random variables and the noise samples
are independent and identically distributed circularly symmetric
complex Gaussian random variables all with unknown (imper-
fect) variance. Under these assumptions, we propose a simple
test statistics employing a ratio of fourth and second moments.
For this statistics, we provide analytical expressions for both
probability of false alarm (Pf ) and probability of detection (Pd)
in an additive white Gaussian noise (AWGN) channel. We confirm
the theoretical expressions by computer simulation. Furthermore,
under noise variance uncertainty, simulation results demonstrate
that the proposed moment based detector gives better detection
performance compared to that of energy detector in AWGN and
Rayleigh fading channels.

Index Terms— Cognitive Radio, Spectrum sensing, Moment,
Noise variance uncertainty.

I. I NTRODUCTION

The current wireless communication networks adapt fixed
spectrum access strategy. The Federal Communications Com-
mission have found that the fixed spectrum access strategy
utilizes the available frequency bands inefficiently [1], [2]. A
promising approach of addressing this problem is to deploy a
cognitive radio (CR) network. One of the key characteristics
of a CR network is its ability to discern the nature of the
surrounding radio environment. This is performed by the
spectrum sensing (signal detection) part of a CR network.

The most common spectrum sensing algorithms for CR
networks are matched filter, energy and cyclostationary based
algorithms. If the characteristics of the primary user suchas
modulation scheme, pulse shaping filter and packet format are
known perfectly, matched filter is the optimal signal detection
method as it maximizes the received Signal-to-Noise Ratio
(SNR). In practice, this information can be known a priori.
The main drawback of matched filter detector is that it needs
dedicated receiver to detect each signal characteristics of a pri-
mary user [3]. Energy detector does not need any information
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about the primary user and it is simple to implement. However,
energy detector is very sensitive to noise variance uncertainty,
and there is an SNR wall below which energy detector is
not able to guarantee a certain detection performance [3]–[5].
Cyclostationary based detection method is robust against noise
variance uncertainty and it can reject the effect of adjacent
channel interference. However, the computational complexity
of this detection method is very high, and large number of
samples are required to exploit the cyclostationarity nature of
the received samples [5], [6]. On the other hand, this method
is not robust against cyclic frequency offset which can occur
due to clock mismatch between the transmitter and receiver
[7]. In [8], Eigenvalue-based spectrum sensing algorithm has
been proposed. This algorithm is robust against noise variance
uncertainty. However, the computational complexity of this
method is very high.

In a conventional digital communication system, the trans-
mitted signal samples are taken from a given constellation.
This constellation may be binary (quadrature) phase-shiftkey-
ing BPSK (QPSK) or M-ary quadrature amplitude modulation
(QAM). In all constellations, each component (either real or
imaginary) of a sample takes a value in between[−b, b], b > 0,
where b depends on the SNR of the received signal. For
these reasons, we assume that the transmitted signal samples
are BPSK, QPSK, M-ary QAM or continuous uniformly
distributed random variables1. We also assume that the noise
samples are independent and identically distributed (i.i.d)
circularly symmetric complex Gaussian (ZMCSCG) random
variables all with unknown (imperfect) variance. Under these
assumptions, we show that the ratio of the fourth absolute
moment and the square of second absolute moment give2 and
< 2, in noise only and signal plus noise cases, respectively.
Due to this, we propose a test statistics as2 minus the ratio
of the fourth absolute moment and the square of second
absolute moment. For this test statistics, we provide analytical
expressions for both probability of false alarm (Pf ) and
probability of detection (Pd) in an additive white Gaussian
noise (AWGN) channel environment. As thePf expression

1We would like to mention here that in the case of Orthogonal Frequency
Division Multiplexing (OFDM) signals, the scenario mentioned in this para-
graph can be exploited by considering the fourier transformof the received
samples.

ar
X

iv
:1

31
1.

64
54

v1
  [

st
at

.A
P]

  2
5 

N
ov

 2
01

3



of the proposed detector is not dependent on the actual noise
variance, the proposed detector is robust against noise variance
uncertainty. We also confirm the theoretical expressions by
computer simulations. Furthermore, we demonstrate by com-
puter simulations that the proposed moment based detector
gives better detection performance compared to that of the
well known energy detector in AWGN and Rayleigh fading
channels.

This paper is organized as follows: Section II discusses the
hypothesis test problem. In Section III, some preliminary re-
sults on moments for random variables are discussed. Section
IV presents the proposed moment based detector. In Section V,
computer simulations are used to compare the performance of
the proposed moment based detector to that of energy detector.
Conclusions are presented in Section VI.

II. PROBLEM FORMULATION

Let s = {s[n]}Nn=1 denote the transmitted discrete time
baseband signal vector. If we assume an AWGN channel, the
observed baseband signal has the following form [9]

y[n] =

{
s[n] + w[n], H1

w[n], n = 1, · · · , N H0
(1)

wheres[n], w[n] andN are thenth transmitted signal sample,
nth noise sample and number of samples, respectively. The
noise samples{w[n]}Nn=1 are assumed to be i.i.d ZMCSCG
random variables2. The variance of each component ofw[n]
is assumed to beσ2 which is unknown or known imperfectly.
The aim of a CR spectrum sensing is to detect the presence
or absence of the transmitted signal samples{s[n]}Nn=1.

III. PRELIMINARY

Thekth moment of a random variableX is defined as [10]

Mk = E{Xk} =

{ ∑
x x

kp(x), For discrete X∫∞
−∞ xkp(x)dx, For continuous X

(2)

whereE{.} andp(.) denote expectation and probability den-
sity function, respectively.

For a discrete uniform random variableX with P possible
values in[−b, b], thekth moment is thus given by

Mk =
bk(−1)k

P (P − 1)k

P−1∑

i=0

(P − 2i− 1)k. (3)

For a continuous uniform random variableX ∼ U [−b, b],
applying (2) gives

Mk =

{
bk

k+1 , For even k

0, For odd k.
(4)

For a continuous Gaussian random variableX ∼ N (0, σ2),
applying (2) yields

Mk =

{
1× 3× · · · × (k − 1)σk, For even k
0, For odd k.

(5)

2In the case of nonzero mean received signal samples{y[n]}Nn=1, one can
remove the mean from the received samples.

IV. A BSOLUTE MOMENT BASED DETECTOR

The kth absolute moment of a random variableX is
defined asMaxk , E{|X|k}. By employing (3) - (5), one
can get the following second and fourth absolute moments

May2 =E{|y[n]|2}
=2σ2(β + 1), Any s[n]

May4 =E{|y[n]|4} (6)

=σ4(4β2 + 16β + 8), s[n] = BPSK, QPSK

=σ4(
132

25
β2 + 16β + 8), s[n] = 16 QAM (P = 4)

=σ4(
116

21
β2 + 16β + 8), s[n] = 64 QAM (P = 8)

=σ4(
28

5
β2 + 16β + 8), s[n] = CU

whereβ = E{|s[n]|2}
E{|w[n]|2} is the SNR of the received signal sam-

ples and CU stands for continuous uniform random variable.
As can be seen from this equation, the fourth moment gap
between an M-ary and a CU random variable signal decreases
as M increases. Thus, without loss of generality, one can apply
the results of a continuous uniform random variable for higher
modulation orders (for example 512 QAM signals). Hence,
the above expressions can represent the second and fourth
moments of practically relevant signal constellations. The ratio
T , −May4

M2
ay2

is computed as

T =− May4

M2
ay2

(7)

=− 2, Noise only

=− 2 +

(
β

β + 1

)2

, s[n] = BPSK, QPSK

=− 2 +
17

25

(
β

β + 1

)2

, s[n] = 16 QAM

=− 2 +
13

21

(
β

β + 1

)2

, s[n] = 64 QAM

=− 2 +
3

5

(
β

β + 1

)2

, s[n] = CU.

However, sinceMay2 andMay4 are not known a priori, we
employ their estimated values which can be computed as

M̂ayk =
1

N

N∑

n=1

|y[n]|k, k = 2, 4. (8)

And the estimatedT becomes

T̂ = −M̂ay4

M̂2
ay2

. (9)

Thus, the binary hypothesis test of (1) turns to examining
whetherT̂ = −2 or T̂ > −2. To get the exact test statistics,
Pd and Pf expressions, we examine the following Theorem
[11].

Theorem 1: Given a real valued function̂T = − M̂ay4

M̂2
ay2

, the

asymptotic distribution of
√
N(T̂ − T ) is

√
N(T̂ − T ) ∼ N (0, σ̃2) (10)



whereσ̃2 = vΦvT ,

v =

[
∂T̂

∂M̂ay2

,
∂T̂

∂M̂ay4

]

M̂ay2=May2,M̂a4=May4

=

[
2
May4

M3
ay2

,− 1

M2
ay2

]
(11)

and Φ is the asymptotic covariance matrix of a multivari-
ate random variable

√
N([M̂a2, M̂a4]

T - [Ma2,Ma4]
T ) ∼

N (0,Φ).
Proof: SeeTheorem3. 3. A on page 122 of [11].

By applying multivariate central limit theorem [12], it can
be shown thatΦ(1,1) = May4 − M2

ay2, Φ(1,2) = Φ(2,1) =
May6 −May2May4 andΦ(2,2) = May8 −M2

ay4. Substituting
Φ into (10) gives

σ̃2 =
4M2

ay4Φ(1,1) − 4May4May2Φ(1,2) +M2
ay2Φ(2,2)

M6
ay2

(12)

=
4M3

ay4 +M2
ay2May8 − 4May2May4May6 −M2

ay2M
2
ay4

M6
ay2

.

After several steps, one can get the following variances

σ̃2 = 4, (13)

=
8β4 + 32β3 + 40β2 + κ

(β + 1)6
,

=
0.234β6 + 2.765β5 + 17.114β4 + 42.24β3 + 46.4β2 + κ

(β + 1)6
,

=
0.26β6 + 3.51β5 + 19.49β4 + 44.8β3 + 47.62β2 + κ

(β + 1)6
,

=
0.325β6 + 3.977β5 + 20.503β4 + 45.715β3 + 48β2 + κ

(β + 1)6
,

whereκ = 24β + 4 and the first, second, third, fourth and
fifth equalities are for Noise only, BPSK (QPSK), 16 QAM,
64 QAM and CU random variable scenarios, respectively.

Thus, asT = −2 underH0 hypothesis, we propose the
following test statistics

Ts =
√
N(T̂ + 2). (14)

Using the test statistics (14), we decide{y[n]}Nn=1 of (1) as
H0 if Ts < λ and asH1 if Ts ≥ λ, whereλ is a threshold
value that is chosen to guarantee a certain performance. In
general,λ is selected such that (14) can guarantee either a
constantPd or Pf .

Mathematically,Pf (λ) is expressed as

Pf (λ) =Pr{Ts > λ|H0}. (15)

UnderH0 hypothesis, asTs ∼ N (0, 4), Pf becomes

Pf =

∫ ∞

λ

1√
2πσ̃2

exp−
x2

2σ̃2 dx = Q

(
λ√
σ̃2

)
= Q

(
λ

2

)

(16)

whereQ(.) is the Q-function which is defined as [13]

Q(λ) =
1√
2π

∫ ∞

λ

exp−
x2

2 dx.

Mathematically,Pd(λ) is expressed as

Pd(λ) =Pr{Ts > λ|H1} (17)

UnderH1 hypothesis,Ts ∼ N (µ, σ̃2) whereµ =
√
N(T+2).

As a result3

Pd(λ) =

∫ ∞

λ

1√
2πσ̃2

exp−
(x−µ)2

2σ̃2 dx = Q

(
λ− µ√

σ̃2

)
. (18)

From this expression, one can understand that for a givenβ >
0 (i.e., SNR) andλ, increasingN increasesPd. This is due to
the fact thatQ(.) is a decreasing function. Thus, the proposed
moment based detector is consistent. Moreover, asµ andσ are
not the same in all modulation schemes, thePd of different
modulation schemes may not be equal.

We would like to mention here that similar approach
has been proposed in [14] to detect constant amplitude sig-
nals. Therefore, the current work can be considered as a
generalized version of [14]. However, as such generalization
needs derivations of several parameters to get the variances
(13) for different modulation schemes, our work is not a
straightforward extension of [14].

V. SIMULATION RESULTS

In this section, we provide simulation results for the
proposed moment based and energy detectors. All results of
this section are obtained by averaging 10000 experiments.

A. Verification of theoretical expressions

In this subsection, we verify the theoreticalPd and Pf

expressions of the moment based detector (14) for different
modulation types under an AWGN channel environment. For
this simulation, we assume that the noise variance is known
perfectly4. As can be seen from Fig. 1, the theoreticalPd

andPf matches with that of the simulation for all modulation
schemes. Furthermore, for fixedPf , Pd decreases as the mod-
ulation order increases. This is due to the fact thatµ decreases
as the modulation order increases and at the simulated SNR
(i.e., -10dB), σ̃2 of all modulation schemes are almost the
same (see (13)).

B. Comparison of moment and energy based detectors

In this subsection, we compare the performance of the
energy and moment based detectors for pulse shaped transmit-
ted signals under noise variance uncertainty. The comparison
is performed in both AWGN and Rayleigh fading channels
by settingPf = 0.1 and N = 216. It is assumed that the
transmitter and receiver employ a square root raised cosine
filter with roll-off factor 0.2. The over-sampling factor and
filter length are set toS = 4 andL = 4S + 1, respectively.
According to [4], in an uncertain noise variance signal detec-
tion algorithm, the actual noise variance can be modeled as a
bounded interval of[ 1ǫσ

2 ǫσ2] for someǫ = 10∆σ2/10 > 1,
where the uncertainty∆σ2 is expressed in dB. We assume that

3As we can see from (7), one can getµ = 0 andµ > 0 underH0 and
H1 hypothesis, respectively.

4Here perfect noise variance is required just to getPd (depends on SNR).
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Fig. 1. Theoretical and simulatedPd andPf of the proposed moment based
detector in AWGN channel for (a) QPSK and 16 QAM, (b) 64 QAM and CU
signals.

this bound follows a uniform distribution, i.e.,U [ 1ǫσ2 ǫσ2].
The SNR is defined asSNR , σ2

s/σ
2, where σ2

s is the
variance of{s[n]}Nn=1. The noise variance is the same for
one observation (since it has a short duration) and follow a
uniform distribution during several observations. Moreover,
in a Rayleigh fading channel, the channel is constant for
one observation and follows a Rayleigh distribution during
several observations. For better exposition, QPSK and 16
QAM signals are considered.

Fig. 2 and Fig. 3 show the performance of energy and
moment based detectors under noise variance uncertainty with
synchronous and asynchronous (i.e., with bit synchronization
errors) receiver scenarios. From these figures, we can observe
that the proposed moment based detector achieves better
detection performance compared to that of energy detector for
all scenarios. Moreover, the proposed detector achieves the
best performance when the transmitter and receiver are syn-
chronized perfectly. As expected, the performance of moment
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Fig. 2. Comparison of the proposed moment based (Mom) and energy
(Energy) detectors under noise variance uncertainty in AWGNchannel (a)
Perfectly synchronized receiver, (b) Asynchronous receiver (i.e., with bit
synchronization errors)

based detector decreases as the modulation order increasesin
both AWGN and Rayleigh fading channels. And the perfor-
mance of energy detector is not affected by bit synchronization
errors [15].

VI. CONCLUSIONS

This paper proposes simple moment based spectrum sens-
ing algorithm for cognitive radio networks in flat fading chan-
nels. We assume that the transmitted signal samples are BPSK,
QPSK, M-ary QAM or continuous uniformly distributed ran-
dom variables and the noise samples are independent and
identically distributed circularly symmetric complex Gaussian
random variables all with unknown (imperfect) variance. Un-
der these assumptions, we propose a simple test statistics
employing a ratio of fourth and second moments. For this test
statistics, we provide analytical expressions for bothPf andPd

in an AWGN channel environment. Furthermore, under noise
variance uncertainty, we demonstrate by computer simulation
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Fig. 3. Comparison of the proposed moment based (Mom) and energy (En-
ergy) detectors under noise variance uncertainty in Rayleigh fading channel
(a) Perfectly synchronized receiver, (b) Asynchronous receiver (i.e., with bit
synchronization errors)

results that the proposed moment based detector gives better
detection performance compared to that of the well known
energy detector in AWGN and Rayleigh fading channels.
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