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Abstract-Most of the existing work on key generation from 
wireless fading channels requires a direct wireless link between 
legitimate users so that they can obtain correlated observations 
from the common wireless link. This paper studies the key 
generation problem in the two-way relay channel, in which 
there is no direct channel between the key generating terminals. 
We propose an effective key generation scheme that achieves a 
substantially larger key rate than that of a direct channel mimic 
approach. Unlike existing schemes, there is no need for the key 
generating terminals to obtain correlated observations in our 
scheme. We then extend our study to the case of a relay with 
multiple antennas. For this scenario, we derive the optimal power 
allocation at the relay that maximizes the key rate achieved using 
our protocol. 

Index Terms-Information-theoretic security, key generation, 
two-way relay channel 

I .  INTRO DUCTION 

The idea of exploiting wireless fading channels for gener­
ating information theoretically secure secret keys has received 
considerable attentions recently [1]-[3]. In this line of work, 
two terminals, namely Alice and Bob, first obtain noisy 
estimates of the common fading channel gain between them, 
and then employ the celebrated key generation via public 
discussion approach [4], [5] to generate secret keys from 
these correlated estimates. In a nutshell, in all these work, 
the common direct channel connecting these two terminals 
provides a valuable common random source required for 
generating secret keys using the approach proposed in [4], 

[5]. 

In certain applications, however, two terminals might be far 
away from each other, and hence there is no direct channel 
between them. The two-way relay channel, in which two 
terminals are connected through a relay, is a basic setup that 
models this scenario. The key generation from two-way relay 
channel problem was considered in [6], which proposed sev­
eral interesting schemes to circumvent the issue that there is no 
direct channel to provide the necessary common randomness. 
The basic idea of these schemes is to create a virtual direct link 
from which these two terminals can obtain channel estimates 
and then apply the approach in [4], [5]. For example, in the 
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amplify forward (AF) scheme discussed in [6], Alice transmits 
a training signal to the relay, which then sends a scaled version 
of the received noisy signal to Bob. From the received signal, 

Bob can obtain an estimate of the product of two channel 
gains: the one from Alice to the relay, and the one from 
the relay to Bob. Similarly, by asking Bob to send a training 
signal and the relay to re-sends its received noisy signal, Alice 
can obtain an estimate of the product of these two channel 
gains. Hence the product of the two channel gains can serve 
as the conunon randomness for the secret key generation, 
since both Alice and Bob successfully obtain estimates of 
it. Although these schemes overcome the issue of no direct 
channel, there are some potential challenges, especially in 
the multiple antennas case. First, when the relay re-sends 
the received signal, which contains the information about the 
channel gain, Eve can also obtain a noisy copy. Hence Eve 
can obtain partial information about the COlmnon randomness 
used for the key generation, which will potentially reduce the 
key rate. Second, it is difficult to evaluate the key rates of 
the schemes proposed in [6] since the probability distribution 
function (pdf) of the estimate of the virtual channel gain (the 
product of two physical channel gains) is complicated and Eve 
has partial information about the conunon randomness used 
for the key generation. Third, multiple antennas in the relay 
are not efficiently used in [6], in particular only one effective 
channel gain of a randomly selected channel is used. 

In this paper, we propose a new scheme for the key 
generation in the two-way relay channel by adopting a scheme 
proposed in our recent work [7]. Instead of trying to mimic a 
direct channel as done in [6], in the proposed scheme, the two 
terminals involved do not need to obtain correlated estimates. 
Instead, the relay first establishes a pairwise key with Alice 
using the physical channel linking it and Alice. Similarly, the 
relay and Bob can establish a pairwise key using the channel 
linking them. Then the relay broadcasts the xor of these two 
pairwise keys to both Alice and Bob. Alice and Bob can then 
decode both keys and pick the one with a smaller size as the 
final key. The advantages of this approach are: 1) Eve does not 
obtain any information about the channel gains used for the 
key generation, hence our scheme obtains a much higher key 
rate; 2) It is very easy to evaluate the key rate of the proposed 
scheme; and 3) Our scheme can be easily extended to multiple 
antenna case, and the key rate scales linearly with the number 
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of antennas. Furthermore, we investigate the optimal power 
allocation problem that maximizes the resulting key rate for 
the multiple antenna case. 

The remainder of the paper is organized as follows. In 
Section II, we introduce the model studied in this paper. 
In Section III, we discuss the proposed scheme in detail. 
Simulation results are presented in Section IV . Concluding 
remarks are given in Section V .  

I I .  MO DEL 

Eve 

Fig. 1: Model of two-way relaying system. 

In this section, we introduce the key generation through 
two-way relay model considered in this paper. Fig. 1 shows 
the simplest model of two-way relaying system that consists 
of Alice, Bob, a single antenna relay (the case of multiple­
antenna relay will be discussed in Section III-B) and Eve. 
There exists a wireless channel between every pair of terminals 
in the system except between Alice and Bob. Alice and Bob 
would like to establish a secret key such that Eve has no 
knowledge about the generated key. All legitimate terminals 
can transmit over the wireless channel. We assume that Alice, 

Bob and the relay are half-duplex nodes. 
More specifically, if Alice transmits signal XA in a given 

channel use, the relay and Eve will receive 

YR 
YE 

hARXA + nR ,  
hAEXA + nE , 

(1) 

(2) 

in which hAR is the fading coefficient of the channel from 
Alice to the relay, nR is zero mean Gaussian noise with 
variance (J2 at the relay, hAE is the channel gain between 

Alice and Eve, and nE is the noise at Eve. hAR and nR are 
both random variables and independent of each other. No part 
in the system knows the value of hAR a priori, but all parts 
know its distribution. Noise in all channels is independently 
and identically distributed. 

Similarly, when Bob sends XB, the relay and Eve receive 

YR 
YE 

hBRXB + nR ,  
hBEXB + nE , 

(3) 

(4) 

in which hBR is the fading coefficient of the channel from 
Bob to the relay, hBE is the channel gain between Bob and 
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Eve. When the relay broadcasts x R, the received signals are 

YA 
YB 
YE 

hRAXR + nA ,  
hRBXR + nB ,  
hREXR + nE , 

(5) 

(6) 

(7) 

in which hRA, hRB and hRE are the channel gains from the 
relay to Alice, to Bob and to Eve respectively, while nA and 
nB are zero mean Gaussian noise with variance (J2 at Alice 
and Bob respectively. 

In this paper, we assume that all the channels are reciprocal, 
i.e.,  hAR = hRA (we denote them collectively as hI), hBR = 

hRB (we denote them collectively as h 2), etc. But the scheme 
developed in this paper still works (with a different key) even 
if this assumption does not hold, as long as there is correlation 
between the forward and backward channel. Furthermore, 
we consider an ergodic block fading model for the wireless 
channel, which means that the channel gain remains constant 
for a period of T symbols and changes randomly to another 
independent value after the current period [8]. We assume 
hI rv N(O, d) and h 2 rv N(O, (J� ) . Similarly, our scheme still 
works if the distribution of the random channel gain changes. 

Let XA (xA(l) , ... , xA(M))', XB 
(xB(l) , ... , xB(M))' and XR (xR(l) , ... , xR(M))' 
be the signals transmitted by the terminals in M channel 
uses. Similarly, let Y A, Y Band Y R be signals received by 
the terminals over M channel uses. Since we assume that the 
legitimate users are half duplex, YA(i) = ¢ if xA(i) i= ¢, 
in which ¢ denotes either no transmission or no signal. The 
same thing holds for the relay and Bob. We have a total 
power constraint for the legitimate terminals, namely 

(8) 

In addition to the wireless channels, we assume that there 
is a public channel in which all legitimate users can ex­
change messages. However, all messages exchanged through 
this public channel will be overheard by Eve. We denote 
all messages transmitted in the public channel as F. Both 

Alice and Bob need to generate a key using the information 
transmitted and received from wireless channels and the public 
channel. Let fA and f B be the key generation functions at 

Alice and Bob respectively, namely KA = f A(XA , Y A ,  F) 
and KB = fB(XB , Y B ,  F). A key rate R is said to be 
achievable if, for any E > 0, there exists a scheme such that 

itH(KA) > R - E, 

P{KA i= KB} < E, 

itI(KA;YE ,F) < E, 

it log I!CAI < kH(KA) + E, 

(9) 

(10) 

(11) 

(12) 

with I!CA I being the size of the key's alphabet. Here (10) 

implies that the keys generated at Alice and Bob are the 
same with a high probability (and hence we will use K to 
denote the generated key), (11) implies that the eavesdropper 
learns limited amount of information about the generated key, 
while (12) implies that the key is nearly uniformly generated. 



III. KEY GENERATION ALGORIT HMS 

A. Single Antenna Case 
Algorithm 1 shows the proposed key generation scheme, 

which is adapted from our recent work [7]. The time frame of 
Algorithm 1 is shown in Fig. 2. We divide each fading block 
into three slots each with duration To = T /3. Supposing Alice 
sends training sequence with power PA, Bob with power PB 
and the relay with power PR, then the energy of each training 
sequence is IISAI12 

= TO PA = T PA/3 ,IISBI12 
= To PB = 

T PB/3 and IISRI12 
= To P = T PR/3, and the total power 

constraint (8) reduces to 
1 
3( PA + PB + PR) ::; PT· 

Algorithm 1: Key Generation Algorithm for One Antenna 
Step 1: Channel Estimation: 

1) Alice sends a known sequence SA with power PA 
through channel hI to the relay. The relay receives 
Y�) from which it obtains estimate hI,R. 

Eve also receives faded trammg sequences. But since the 
channel fadings to her are independent of hI [8], the received 
signals are independent of the above correlated estimates. 
Using the result from [4], the relay and Alice can establish 
a pairwise key KI with a rate: 

(17) 

Note that scalar hI A and hI R are two correlated Gaussian 
variables with zero �ean, and �hat variances Var(hI,A) = O"J+ ,,2 2 ,,2 V ( h- ) 2 ,,2 2 " 
IISRI12 = 0"1 + TOPR' ar I,R = 0"1 + IisAI12 = 0"1 + TOPA· 
These facts will be useful for deriving explicit expression of 
mutual information in (17) since I(hI,A; hI,R) = -tlog(l­
pi) where PI is the correlation coefficient between hI A and 
- ' h l, R -

Similarly, for channel h2, through sending training se­
quences to each other, the relay and Bob obtain estimates h2 R 

- ' and h2,B respectively. They can then establish a common key 
K2 with rate 

(18) 

When the relay broadcasts KI EB K2 in the public channel 
2) Bob sends a known sequence S B with power PB 

through channel h2 to the relay. The relay receives 
y(2) from which it obtains estimate h2 R. to both Alice and Bob, the system can be viewed as a one-

3) Th� relay broadcasts a known sequence'SR with power time pad [9] wher� the longer key is used to perfectly protect 
P t Al· d B  b Al· . Y f h· h the shorter key. Ahce and Bob can know both KI and K2 by R 0 Ice an o .  Ice receives A rom w IC . . . . 

h bt · t· t h- B b . Y f the XOR operatIOn on the received KI EB K2 sIgnal. Eve wIll s e 0 ams es Ima e 1 A; 0 receives B rom 
h· h h bt · t·' t h- also obtain KI EB K2, but she learns nothing about the shorter w IC e o ams es Ima e 2 B. , key from K 1 EB K 2 since it is protected by the longer key via Step 2: Key Agreement: the one-time pad operation. As a result, Alice and Bob both 

1) Alice and the relay agree on a pairwise key KI using choose the shorter key as the common secret key. Hence the 
the correlated estimation pair (hI,R ,  hI,A). key rate is: 

2) Bob and the relay agree on a pairwise key K2 using 
the correlated estimation pair (h2,R ,h2,B). (19) 

3) The relay broadcasts KI EB K2. Then Alice and Bob 
can obtain both KI and K2. They choose the one with Following similar arguments in [3], one can easily show that 
a smaller size as the common secret key. Eve obtains a limited amount of the key information. 

Fig. 2: Time frame for one antenna. 

For channel hI, at the end of the training phase, the relay 
and Alice receive 

(13) 

(14) 

respectively. From these observations, the relay and Alice 
obtain the following estimates 

S� (1) S� (1) hI,R 
IISAI12 Y R = hI + IISAI12

N R
' 

(15) 

S' S' 
IIS�12 Y A = hI + IIS:112

NA. (16) 
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B. Multiple Antennas Case with Optimal Power Allocation 
The aforementioned key generation algorithm for one an­

tenna can be easily extended to the multiple antennas case. 
Supposing there are N antennas at the relay, similar to the 
one antenna case, we assume that the channel gain between 
the i-th antenna and Alice conforms to N(O, O"I i) distribution, 
the channel gain between the i-th antenna and Bob conforms 
to N(O, O"§ i) distribution, i = 1, ... , N, and the noise in 
each chann'el is Gaussian with zero mean and variance 0"2 . 
We summarize our protocol in Algorithm 2. 

The time frame of our key generation algorithm for a relay 
with multiple antennas is shown in Fig. 3. The length of each 
training sequence To is now set to be T/(N + 2). Denoting 
the transmission power of training sequence of Alice as PA, 

Bob as PB, and antenna i in the relay as Pi , i = 1, ... ,N, 
the total power constraint (8) is now 

N � 
2 
(PA + PB + t, Pi) ::; PT· (20) 



Algorithm 2: Key Generation for Two-Way Relay with 
Multiple Antennas 

Step 1: Channel Estimation: 
1) Alice broadcasts a known sequence SA with power PA 

to all antennas in the relay, from which each antenna 
obtains an estimate hA,i,R, i = 1, ... , N. Here the 
subscript A represents the estimate regarding channel 

in which l(hA,i,A; hA,i,R) can be expressed explicitly as 

gain at Alice's side, i represents the antenna index and l(hB,I,B; hB,I,R) has a similar expression, which can be 
R means that this estimate is obtained by the relay. obtained by replacing PA by PB, and ar i by a§ i' 

2) Bob broadcasts a known sequence S B with power PB The total power constraint (20) can be' rewritt�n as 
to all antennas in the relay, from which each antenna 
obtains an estimate hB,i,R. The notation is defined in 
the same way as above. 

N 
L Pi :s; (N + 2)PT - PA - PB £ P. (24) 

3) For each i = 1, ... ,N, the relay broadcasts a known 
sequence SR,i with power Pi from antenna i to Alice 
and Bob, from which Alice and Bob obtains estimates 
hA,i,A and hB,i,B, respectively. 

i=1 

Given PA and PB, under the above requirement that the sum 
N 

of transmission powers L Pi of the relay be under a specified 
i=l 

value P,  the key rate (21) depends on the power used for each Step 2: Key Agreement: antenna. In the following, we will maximize the key rate by 
optimizing the power allocated to each antenna. In particular, 
we have the following optimization problem: 

1) Alice and the relay agree on COlmnon keys KA, /s 
according to the pairs of estimates (hA,i,A, hA,i,R), 
i = 1, ... ,N, using the same method described in 

Algorithm l. maximize min{h,I2} 

2) Bob and the relay agree on common_keys /fB, /S subject to f Pi :s; P, Pi � 0, i = 1, ... ,N. according to the pairs of estimates (hB,i,B, hB,i,R), i=l 

(25) 

i = 1, ... ,N. To simplify the notation, in the following derivation and 
3) The relay concatenates KA, /s into results, we will ignore the constant 1/2 before each mutual KA = (KA,I, KA, 2 , . . .  , KA, N) and KB, /s into information term. 

KB = (KB,l, KB,2, . . .  , KB,N) and broadcasts The objective function in (25) contains a min operation KA EEl KB to Alice and Bob. From KA and KB, Alice which makes it challenging. To solve this max-min optimiza� and Bob choose the one with the smaller size as the tion problem, we transform (25) into an equivalent optimiza-final common secret key. tion problem [10]: 

maximize 
subject to 

z 
z:S; h,z:S; 12, 

N 
L Pi :s; P, 
i=l 
Z � 0, Pi � 0, i = 1, ... , N. 

(26) 

Fig. 3: Time frame for two-way relay with multiple antennas. 

The Lagrangian of problem (26) is 

£=Z + Al(h-z) + A2(I2-Z) + A3 (p- t, Pi) ' (27) 

Accordingly, the key rate for Algorithm 2 is 

where 

N 
h = L l(hA,i,A; hA,i,R), 

i=l 
N 

12 = L l(hB,i,B; hB,i,R), 
i=1 

(21) 

(22) 

(23) 
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Then the KKT conditions are 
a£ 

< 0 
az -

, z � 0, 
a£ 

z 
az 

= 0, (28) 

a£ 
< 0 

a£ 
(29) 

aPi - , Pi � 0, Pi 
aPi 

= 0, 

z :s; h, Al � 0, Al(Z -h) = 0, (30) 

z :s; 12, A2 � 0, A2(Z -12) = 0, (31) 

N 
A3 (t, Pi - p) L Pi :s; P, A3 � 0, = O. (32) 

i=1 

Since the objective function is linear and therefore concave, 
h, 12 is concave so z -h, z -12 is convex, and the constraint 



N 
L Pi :s: P is also linear, the necessary KKT conditions are 
i=1 
sufficient. 

By analyzing these KKT conditions, we know that Al +A2 = N 
1 and L Pi = P. In the following, we discuss different cases 

i=1 
of values of Al and A2 . 

1) Case 1: If Al i- 0 and A2 = 0, then h :s: h so 
min { II, h} = II and therefore the original optimization 
problem (25) reduces to 

maximize II N 
subject to L Pi = P, 

i=1 
Pi ;::: 0, i = I, ... , N. 

(33) 

This is an optimization problem with nonnegativity con­
straints. Again we can employ KKT conditions to solve it. 
Similar to (26), h is concave with regard to Pi, i = I, ... , N, 
and the constraint is linear so here KKT conditions are 
sufficient too. It can be verified that its solution satisfies KKT 
conditions (28-32) of the problem (26), so it is also the solution 
of (26). The optimal solution is 

Pi= 
(-PA+JP1+� 

_
+-)

+ 

(34) 
2 (J l,iTO 

i = I, ... , N, where the function (x)+ = max{O, x},. 
If we know the number N' of Pi'S that are strictly positive, 

we have 

(35) 

(36) 

for those i satisfying Pi > O. 
2) Case 2: If Al = 0 and A2 i- 0, then it is certain 12 :s: II 

and the original optimization problem (25) turns to 
maximize 12 N 
subject to L Pi = P, 

i=1 
Pi ;::: 0, i = 1, ... , N. 

(37) 

Similar to Case 1, we can solve this optimization problem 
under nonnegativity constraints by KKT. Specifically, the 
optimal points P/s are 

P; � ( - PB + vI:� + � 
(38) 

or, for those strictly positive Pi'S 

(39) 

where N' is the number of P/s having positive optimal values. 
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3) Case 3: If Al i- 0 and A2 i- 0 at the same time, it 
follows h = 12, and the original optimization problem (25) 

becomes 
maximize 
subject to 

h 
h = 12, N 
LPi=P. 
i=1 

(40) 

This is an optimization problem with equality constraints 
and we can use Lagrange multiplier method to handle it. But 
due to the complexity of formulas involved, there is no closed­
form solution to (40). One needs to resort to a numerical 
method to solve it. 

Note that these three cases are not mutually exclusive. 
Therefore, after obtaining the solutions to these three cases, 
we should compare the resulting values of key rate for each 
case and pick out the largest one as the final optimal key rate. 
In addition, we should check necessary conditions h :s: 12 
for Case 1 and 12 :s: h for Case 2. If any one of them does 
not hold, the corresponding optimal points obtained are invalid 
and should be discarded. 

IV. SIMULATION RESULTS 

In this section, we present various simulation results to 
illustrate the analytical results derived in this paper. In this 
example, we assume that there are N = 5 antennas in the 
two-way relay. The variances (Jr,i and (J§,i' i = 1, ... , N, 
used in the simulation are listed in the TABLE I. Other 

Antenna # 
0.4 

0.28 

2 
0.3 
3.8 

3 
2 
3 

4 
1 
2 

5 
0.5 
5.5 

TABLE I: Values of O'r ,i and O'i ,i' i = 1, . . .  ,N used in generating 
Fig.4 

parameters used in the simulation are: the variance of the 
channel noise 0'2 = 1; the transmission powers of Alice and 

Bob are PA = PE = PT (therefore, the relay's total power N 
P = L Pi = N PT); the channel coherence time T = 14. 

i=1 
Note that in this case, we have To = N�2 = 2. Fig. 4 shows 
the key rate Rco,N defined in (21) for the case of optimal 
power allocation described in Section III-B and the case of 
equal power allocation. The optimal power distribution when 
the relay's total power P = N PT = 13.5 is listed in TABLE 
II. For the ease of comparison, simulation results for the equal 
power distribution are also included in the table. Since the 
results of Case 2 violate 12 :s: h, it is discarded; so the optimal 
key rate is achieved for Case 1, i.e. 4.9681/ (2T) = 0.1774 
nat. 

From Fig. 4, we can see that for a low PT, the gain 
due to the power optimization is considerable. But when 
PT is large, the improvement brought by the power opti­
mization is limited, which is also reflected in TABLE II. 
This phenomenon can be explained by examining (35). When 
PT is large, the differences of Pi due to different values 
of (J2/((JLTo) become insignificant. As a consequence, the 



Fig. 4: Key rates of our algorithms vs. PT. 

Equal Power 
Case 1 Case 2 Case 3 

Distribution 
PI 2.7 2.3833 1.3993 13.2422 
P2 2.7 1.9667 3.0534 0 
P3 2.7 3.3833 3.0183 0.2578 
P4 2.7 3.1333 2.9350 0 
P5 2.7 2.6333 3.0941 0 
II 4.9346 4.9681 4.9027 1.6046 
12 9.5963 9.5598 9.6575 1.6046 

TABLE II: Simulation results when the total power for relay P = 

13.5 

resulting mutual information would be close to those produced 
with equal power distribution. The same argument applies if T 
is sufficiently large in which cr2 /(crI iTo) becomes very small, 
making the differences of Pi unnoti�eable. 

In the following, we compare the key rate of our algorithms 
with that of the AF with AN algorithm in [6] that deals with 
the multiple antennas case. The key rates of AF with AN algo­
rithm is computed based on the k-nearest neighbor distances 
method in [11]. The variances of the fading coefficients of all 
channels are listed in TABLE III. Other simulation parameters 
are cr2 

= 0.01, T 308 (To = 44), PA PE = PT. Fig. 

Antenna # 
0.004 
0.026 

2 
0.015 
0.015 

3 
0.02 
0.01 

4 
0.01 
0.02 

5 
0.025 
0.005 

TABLE III: Values ai ,i and a� ,i' i = 1, ... , N used in generating 
Fig. 5 

5 illustrates the simulation results. This figure shows that our 
algorithm for the two-way relay with multiple antennas greatly 
outperforms the AF with AN algorithm, primarily because our 
scheme fully exploits the random channels associated with all 
antennas while the latter makes use of only one randomly 
selected antenna in the relay. In addition, our algorithm 
takes advantages of long training sequences which efficiently 
suppress the harmful effects of channel noise. 
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Pr 

Fig. 5: Key rates vs. PT in the sequence version. 

V. CONCLUSION 

We have considered the key generation problem in the two­
way relay wireless channel in which there is no direct link 
between Alice and Bob. We have proposed an effective key 
generation scheme that achieves a substantially larger key rate 
than that of a direct channel mimic approach. Unlike existing 
schemes, there is no need for the key generating terminals to 
obtain correlated observations in our scheme. We have also 
extended the study to the case in which the relay has multiple 
antennas. We have characterized the optimal power allocation 
scheme at the relay that maximizes the key rate of the proposed 
scheme. 

REFERENCES 

[1] R. Wilson, D. Tse, and R. Scholtz, "Channel identification: Secret 
sharing using reciprocity in UWB channels," IEEE Trans. Inform. 
Forensics and Security, vol. 2, pp. 364-375, Sep. 2007. 

[2] c. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, and N. B. Mandayam, 
"Information-theoretically secret key generation for fading wireless 
channels," IEEE Trans. Inform. Forensics and Security, vol. 5, pp. 240-
254, Jun. 2010. 

[3] L. Lai, Y. Liang, and H. V. Poor, "A unified frame work for key 
agreement over wireless fading channels," IEEE Trans. Inform. Forensics 
and Security, vol. 7, pp. 480-490, Apr. 2012. 

[4] R. Ahlswede and 1. Csiszar, "Common randomness in information theory 
and cryptography - Part I: Secret sharing," IEEE Trans. Inform. Theory, 
vol. 39, pp. 1121-1132, Jul. 1993. 

[5] U. M. Maurer, "Secret key agreement by public discussion from common 
information," IEEE Trans. Inform. Theory, vol. 39, pp. 733-742, May 
1993. 

[6] T. Shimizu, H. Iwai, and H. Sasaoka, "Physical-layer secret key agree­
ment in two-way wireless relaying," IEEE Trans. Inform. Forensics and 
Security, vol. 6, pp. 650-660, Sep. 2011. 

[7] L. Lai, Y. Liang, and W. Du, "Cooperative key generation in wireless 
network," IEEE Journal on Selected Areas in Communications, vol. 30, 
pp. 1578-1588, Sep. 2012. 

[8] D. Tse and P. Viswanath, F undamentals of Wireless Communication. 
Cambridge University Press, May 2005. 

[9] c. E. Shannon, "Communication theory of secrecy systems," Bell System 
Technical Journal, vol. 28, pp. 656-715, Oct. 1949. 

[l0] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge 
University Press, seventh printing with corrections 2009 ed., 2004. 

[11] A. Kraskov, H. Stogbauer, and P. Grassberger, "Estimating mutual 
information," Phys. Rev. E, vol. 69, p. 066138, Jun. 2004. 


