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Abstract— This paper proposes novel pilot optimization and
channel estimation algorithm for the downlink multiuser mas-
sive multiple input multiple output (MIMO) system with K
decentralized single antenna mobile stations (MSs), and time
division duplex (TDD) channel estimation which is performed by
utilizing N pilot symbols. The proposed algorithm is explained
as follows. First, we formulate the channel estimation problem
as a weighted sum mean square error (WSMSE) minimization
problem containing pilot symbols and introduced variables.
Second, for fixed pilot symbols, the introduced variables are
optimized using minimum mean square error (MMSE) and
generalized Rayleigh quotient methods. Finally, for N = 1 and
N = K settings, the pilot symbols of all MSs are optimized
using semi definite programming (SDP) convex optimization
approach, and for the other settings of N and K, the pilot
symbols of all MSs are optimized by applying simple iterative
algorithm. When N = K, it is shown that the latter iterative
algorithm gives the optimal pilot symbols achieved by the SDP
method. Simulation results confirm that the proposed algorithm
achieves less WSMSE compared to that of the conventional
semi-orthogonal pilot symbol and MMSE channel estimation
algorithm which creates pilot contamination.

Index Terms— Massive MIMO, Pilot contamination, Channel
estimation, MMSE, SDP, Rayleigh quotient.

I. INTRODUCTION

Multiple input multiple output (MIMO) system is a promis-
ing approach for exploiting the spectral efficiency of wireless
channels [1]–[3]. The MIMO system could be either a single
user MIMO or multiuser MIMO.

The single user MIMO system requires expensive multi-
antenna terminals at both the transmitter and receiver sides.
Furthermore, one may not achieve the multiplexing gain of the
single user MIMO channel when the propagation environment
is poorly scattered [4]. In a multiuser MIMO system, the base
station (BS) will serve several decentralized mobile stations
(MSs). For such a system, employing multi-antenna at the BS
and very cheap single antenna terminals at each MS appears
to be the most economical design approach. And, in practice,
as the MSs are sufficiently far apart from each other, the
multiplexing gain of a MIMO channel can be ensured for
multiuser scenario.

The multiuser MIMO system could be either in the uplink
or downlink channel. For the downlink channel, it is recently
shown in [5] that the full advantages of a MIMO system
can be exploited using simple beamforming strategies such as
maximum ratio transmission (MRT) or zero forcing (ZF), just

by deploying very large number of antennas at the BS (i.e.,
Massive MIMO system) [4]. The basic idea is that when the
number of BS antennas are large, the channel vector of any
two MSs will be almost uncorrelated and the instantaneous
channel gain of each MS can be well approximated (with high
probability) from its second order statistics. However, to enjoy
this benefit, the channel vector of each MS needs to be known
(or estimated reliably) at the BS.

For the downlink multiuser MIMO system, channel esti-
mation can be performed either in frequency division duplex
(FDD) or time division duplex (TDD) approaches. In an
FDD approach, first, the BS transmits a pilot sequence to all
MSs. Then, each MS will estimate its own channel. Finally,
the estimated channel is feedback to the BS via feedback
channel. In a conventional channel estimation approach, the
pilot sequences needs to be orthogonal [6]. To achieve this
requirement, the BS requires N symbol periods (which is
significant if N is very large). In the TDD system, first, each
MSs transmits its own pilot symbols to the BS. Then, the
BS will estimate the uplink channel and assign the conjugate
of this estimated channel as its downlink version. Here also,
the conventional orthogonal pilot design method requires K
symbol periods. In a massive MIMO system, as K << M ,
the TDD channel estimation method is the most reasonable
approach [5]. However, when the number of MSs (K) is large,
still allocating K symbol periods for pilot transmission may
not be practically feasible.

When N < K, one possible pilot design approach could
be to reuse the pilots of the first N MSs for the extra K −N
MSs. However, as will be seen later, such pilot reuse approach
will create a so called pilot contamination. When there is a
pilot contamination, the performance of the minimum mean
square error (MMSE) channel estimator and downlink beam-
former degrades drastically [5]1. To alleviate the effect of pilot
contamination, the Eigenvalue decomposition (EVD) based
channel estimation approach is proposed in [7]. However, the
complexity of this channel estimator is large when M is very
large which is the case in massive MIMO.

In the current paper, we propose novel pilot optimization
and channel estimation algorithm for the downlink multiuser
massive MIMO system with K single antenna MSs and

1We would like to mention here that the pilot contamination in [5] is
justified in the context of multi-cell MIMO system. However, the basic idea
of pilot contamination is similar to that of the current paper.
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arbitrary N pilot symbols (i.e., including the practically rel-
evant N < K pilot symbols), and TDD channel estimation
method. The proposed algorithm is explained as follows.
First, we formulate the channel estimation problem as a
weighted sum mean square error (WSMSE) minimization
problem containing pilot symbols and introduced variables.
Second, for fixed pilot symbols, the introduced variables are
optimized using minimum mean square error (MMSE) and
generalized Rayleigh quotient methods. Finally, for N = 1 and
N = K settings, the pilot symbols of all MSs are optimized
using semi definite programming (SDP) convex optimization
approach, and for the other settings of N and K, the pilot
symbols of all MSs are optimized by applying simple iterative
algorithm. When N = K, it is shown that the latter iterative
algorithm gives the optimal pilot symbols achieved by the
SDP method. Simulation results confirm that the proposed
algorithm achieves less WSMSE compared to that of the con-
ventional semi-orthogonal pilot symbol and MMSE channel
estimation algorithm which creates pilot contamination.

This paper is organized as follows: Section II discusses
the signal and massive MIMO channel model. In Section
III, the conventional pilot assignment and channel estimation
algorithm is presented. Our new pilot optimization and channel
estimation algorithm is discussed in Section IV. In Section V,
computer simulations are used to compare the performance of
the proposed algorithm with the existing algorithm. Conclu-
sions are drawn in Section VI.

Notations: In this paper, upper/lower-case boldface letters
denote matrices/column vectors. X(i,j), tr(X), det(X), XH and
E(X) denote the (i, j)th element, trace, determinant, conjugate
transpose and expected value of X, respectively. In is the
identity matrix of size n × n, CM×M and RM×M represent
spaces of M × M matrices with complex and real entries,
respectively. The acronym s.t and i.i.d denote ”subject to”
and ”independent and identically distributed”, respectively.

II. SIGNAL AND CHANNEL MODEL

We consider an uplink multiuser system where the BS
equipped with M antennas is serving K decentralized single
antenna MSs. It is assumed that M >> K (massive MIMO
system). During pilot transmission, the BS will receive the
following signal at symbol time t

yt =
K∑

i=1

hix
H
it + nt (1)

where hi ∈ CM×1 is the channel between the ith MS and
the BS, xH

it is the pilot symbol of the ith MS at period t and
nt ∈ CM×1 is the received noise vector at time slot t.

If we utilize N symbol periods for pilot transmission, the
received signal can be expressed in the following matrix form

Y = HXH +N (2)

where xj = [xj1, xj2, · · · , xjN ]T , X = [x1,x2, · · · ,xK ],
H = [h1,h2, · · · ,hK ] and N = [n1, · · · ,nN ].

The channel is modeled as hk = [hk1, hk2, · · · , hkM ]T

with hkm =
√
g
km

h̃km, ∀m, where
√
g
km

is the distant
dependent path loss and h̃km is the fast fading part. It is

assumed that h̃km is i.i.d random variable with h̃km ∼
CN (0, 1), ∀k,m, E{N(i,j)H(k,m)} = 0, ∀i, j, k,m and each
element of N is also i.i.d zero mean circularly symmetric
complex Gaussian (ZMCSCG) random variable all with unit
variance. Furthermore, as the path loss depends on the distance
between each MS and the BS, it is assumed that

√
g
km

=√
g
k
, ∀m, and

√
g
k
, ∀k are known a priory.

III. CONVENTIONAL PILOT ASSIGNMENT AND MMSE
CHANNEL ESTIMATION METHODS

In this section, we discuss the conventional pilot assign-
ment and MMSE channel estimation algorithm of [6].

When N = K, the overall pilot symbol of all MSs (X)
is designed in such a way that XHX = IK . The BS, then,
decouples the channels of each MS by multiplying the overall
received signal Y by X, i.e.,

Z , YX = H+NX

⇒zk = hk + ñk, k = 1, · · · ,K (3)

where ñk = Nxk and xk is the kth column of X.
Now by introducing an MMSE receiver WH

k for the kth
MS, the estimated channel of the kth MS (ĥk) is expressed as

ĥk = WH
k zk, ∀k. (4)

And Wk is designed such that the mean square error (MSE)
between ĥk and hk is minimized. The MSE of the kth MS is
given by

ξk =E{|ĥk − hk|2}
=E{|WH

k (hk + ñk)− hk|2}
=E{|(WH

k − IM )hk + ñk}
=gk(W

H
k − IM )(WH

k − IM )H + σ2IM . (5)

The optimal Wk is given as

∂ξk
∂WH

k

= 0 ⇒ W⋆
k =

gk
gk + σ2

I.

When K = 2N (i.e., N < K scenario), the overall pilot
symbols X can be designed as X = [U,U], where U ∈
CN×N with UHU = IN . With this settings2, like in the above
case, the BS will right multiply the received signal Y by X
to get

Z , YX = H+NX

⇒ zk = hk + hk+N + ñk, k = 1, · · · , N
= hk + hK−k + ñk, k = N + 1, · · · ,K. (6)

As we can see from this expression, the channel vector of the
kth MS is coupled with the channel vector of the (N + k)
or (K − k)th MS. According to [5], this phenomena is called
pilot contamination. When there is pilot contamination, the
performance of the conventional MMSE channel estimation
degrades drastically.

2Note that one can apply this pilot symbol design approach for any other
settings of K and N .



IV. PROPOSED PILOT OPTIMIZATION AND CHANNEL
ESTIMATION ALGORITHM

In this section, we discuss our pilot optimization and
channel estimation algorithm. To this end, we introduce the
variables uk and Wk, and express the estimated channel of
the kth MS as

ĥk = WH
k Yuk, ∀k (7)

where Wk ∈ CM×M and uk ∈ CN×1 are the variables
that will be determined in the sequel. Under these introduced
variables, the MSE between ĥk and hk is given by

ξk =E{|ĥk − hk|2}

=E{|WH
k (

K∑

i=1

hix
H
i +N)uk − hk|2}

=uH
k (

K∑

i=1

gixix
H
i + σ2IN )uk(W

H
k Wk) + gkIM

− (gkx
H
k uk)W

H
k − (gku

H
k xk)Wk.

It follows

ξk =tr{ξk}

=uH
k (

K∑

i=1

gixix
H
i + σ2IN )uktr{(WH

k Wk)}+ gkIM

− (gkx
H
k uk)tr{WH

k } − (gku
H
k xk)tr{Wk}.

As we can see from this expression, the MSE of each MS
depends on its path loss. And in practice, we would like the
channels of all MSs to be estimated reliably almost with the
same accuracy. Due to this reason, we consider a WSMSE
problem as our objective function, where the MSE weight of
each MS is set to the inverse of its path loss. This optimization
problem is mathematically formulated as

min
xk,uk,Wk

K∑

k=1

1

gk
ξk

s.t xH
k xk ≤ Pk (8)

where Pk is the maximum transmission power at each MS.
For fixed uk and xk, ∀k, we can optimize Wk by the

MMSE method as

Wk =
gkx

H
k uk∑K

i=1 gix
H
i ukuH

k xi + σ2uH
k uk

IM . (9)

Substituting this Wk back to ξk, we get the minimum MSE
ξ̃k as

ξ̃k =M

(
gk − uH

k (g2kxkx
H
k )uk

uH
k (

∑K
i=1 gixixH

i + σ2IN )uk

)
. (10)

From this expression, one can notice that uk can be optimized
independently by solving the following problem

min
uk

ξ̃k = max
uk

uH
k (g2kxkx

H
k )uk

uH
k (

∑K
i=1 gixixH

i + σ2IN )uk

, ∀k. (11)

Now by defining ũk , A1/2uk with A =
∑K

i=1 gixix
H
i +

σ2I, we can reformulate the above problem as

max
ũk

ũH
k A−1/2(g2kxkx

H
k )A−1/2ũk

ũH
k ũk

.

This problem is the well known Rayleigh quotient optimiza-
tion problem and its optimal solution is given by [8], [9]

ũ⋆
k = A−1/2gkxk ⇒ u⋆

k = A−1/2ũ⋆
k = A−1gkxk. (12)

Plugging this u⋆
k in (10) yields

˜̃
ξk =Mgk −Mg2kx

H
k A−1xk. (13)

By defining Vk , xkx
H
k , H̃k , √

g
k
IN , V =

blkdiag(V1, · · · ,VK) and H̃ = [H̃1, · · · H̃K ], we can ex-
press

∑K
k=1

1
gk

˜̃
ξk as

˜̃
ξw =

K∑

k=1

1

gk

˜̃
ξk

=

K∑

k=1

M(1− gkx
H
k A−1xk)

=
K∑

k=1

M −Mtr{(H̃VH̃H + σ2I)−1H̃VH̃H}.

If we apply matrix inversion lemma [10], we can rewrite
(H̃VH̃H + σ2I)−1H̃VH̃H as

(H̃VH̃H + σ2I)−1H̃VH̃H = I− σ2(H̃VH̃H + σ2I)−1.

Therefore, problem (8) can be equivalently formulated as

min
Vk

tr{(
K∑

k=1

gkVk + σ2IN )−1}

s.t tr{Vk} ≤ Pk,

Vk < 0, Rank(Vk) = 1, ∀k (14)

where (.) < 0 denotes a PSD constraint. When N = 1 the
rank constraint is always satisfied. And this solution is global
optimal solution. Furthermore, when N = K, the optimal
solution of the above problem can be obtained in closed form
by applying the well known Majorization theory of [11] and
is given by the conventional orthogonal pilot.

Now how can we solve this problem when 1 < N < K
(i.e., the most practically relevant scenario). If we relax the
rank constraint of this problem, we will get a standard convex
SDP problem which can be solved efficiently with interior
point methods with polynomial time complexity [8]. However,
the drawback of this convex reformulation is that the optimal
Vk is always a scaled diagonal matrix which is full rank.
And we are not aware of any method to get the desired rank
1 solution from the solution of the above problem. Therefore,
the critical issue will be how to get a rank one solution for
the aforementioned settings of N and K. In the following,
we provide simple iterative algorithm that will give rank one
solution for the above problem.



By employing matrix inversion lemma, we can re-express
(
∑K

k=1 gkVk + σ2IN )−1 as [10]

(

K∑

i=1

giVi + σ2IN )−1 =(Qk + gkxkx
H
k )−1

=Q−1
k − gkQ

−1
k xkx

H
k Q−1

k

1 + gkxH
k Q−1

k xk

⇒ tr{(
K∑

i=1

giVi + σ2IN )−1} =tr{Q−1
k } − gkx

H
k Q−2

k xk

1 + gkxH
k Q−1

k xk

where Qk =
∑K

i=1,i6=k gixix
H
i + σ2IN .

Keeping Qk constant, xk can be optimized by solving the
following problem

max
xk

gkx
H
k Q−2

k xk

1 + gkxH
k Q−1

k xk

, s.t xH
k xk ≤ Pk. (15)

Since the objective function of this problem increases as xH
k xk

increases, at optimality xH
k xk = Pk is satisfied. This problem

can thus be reformulated as

max
xk

gkx
H
k Q−2

k xk

xH
k ( 1

Pk
IN + gkQ

−1
k )xk

. (16)

The optimal solution of this problem can be obtained like in
problem (11) and is given as xk = γkF

−1/2
k x̃, where x̃ is the

eigenvector corresponding to the maximum eigenvalue of the
matrix gkF

−1/2
k Q−2

k F
−1/2
k with Fk = gkQ

−1
k + 1

Pk
IN and γk

is selected such that xH
k xk = Pk is ensured.

The proposed pilot symbol design and channel estimation
algorithm is summarized in Algorithm I.

Algorithm I
Input parameters: Set N , K, σ2 and gk, ∀k.

⋄ Initialize n = 0 and xn
k , ∀k.

Repeat
⋄ Using xn

k , ∀k, solve (16) for k = 1, · · · ,K sequentially
and update xn

k , ∀k by the new xk, ∀k.
⋄ Increase n by 1 (i.e., n=n+1).

Until convergence
⋄ Compute uk and Wk with (12) and (9), respectively.
⋄ Using these uk and Wk, compute the estimated channel

ĥk with (7).
Convergence analysis: At each iteration, as the objec-
tive function of (16) (i.e., equivalent to (14)) is non-
decreasing, this iterative algorithm is always convergent.
Computational complexity: As will be clear later in the
simulation section, this algorithm converges in n < 2
iterations. Thus, the main computational cost of this algo-
rithm arises from solving the Rayleigh quotient problem
(16) which requires the computation of the eigenvalue
decomposition of an N × N matrix. And in practice as
N << K << M , the complexity of this algorithm is
almost the same as the conventional pilot symbol and
channel estimation algorithm discussed in Section III.

When K = N , it can be easily seen that this iterative
algorithm will give the optimal solution of the SDP problem
(14) when the initial xk, ∀k satisfies XHX = IK .

We would like to point out that the above pilot optimization
and channel estimation algorithm can be applied for any M ,
N and K. However, as discussed in [5] the effect of pilot
contamination (i.e., pilot reuse) is worse for massive MIMO
systems. For this reason, we believe that the current algorithm
is more relevant for massive MIMO systems than that of the
conventional MIMO systems.

V. SIMULATION RESULTS

In this section, we provide simulation results. All of our
results are obtained by averaging 20000 channel realizations
and the WSMSEs are the normalized WSMSE (i.e., achieved
WSMSE of (8) divided by KM ). For this simulation, we
consider a downlink multiuser massive MIMO system with
M = 128, K = 32, Pk = 1mw, ∀k, the path losses are
normalized to 1 (i.e., 0 < gk < 1, ∀k) and the signal to noise
ratio (SNR) is defined as Pav

σ2 , where Pav = 1
K

∑K
k=1 Pk. We

also compare the performance of the proposed algorithm (i.e.,
Section IV) with that of the existing algorithm discussed in
Section III.

Unless stated otherwise, we set the overall pilot symbol
X as the first K columns of the matrix X̄ for the existing
algorithm, and we use this X as an initialized pilot symbols
for the proposed algorithm, where X̄ = [U U] (i.e., with
pilot reuse) and U is the normalized discrete Fourier transform
(DFT) matrix of size N .

G =




0.0450 0.7400 0.8191 0.2608
0.7040 0.2965 0.0823 0.8754
0.0775 0.7410 0.1251 0.4437
0.5925 0.6363 0.5327 0.2087
0.6737 0.2419 0.7205 0.4000
0.3940 0.4115 0.1497 0.8782
0.0218 0.9238 0.6326 0.0669
0.6327 0.7537 0.7697 0.0697




. (17)

A. Effect of SNR
In this simulation, we examine the effect of SNR on

the performance of the proposed and existing algorithms.
To this end, we set N = 16 and gk, ∀k are taken from
a uniform random variable in between 0 and 1 which are
given in (17) (i.e., vectorization of G). With these settings,
we plot the achieved normalized WSMSE as a function of
SNR. As can be seen from Fig. 1, the performance of the
proposed algorithm outperforms the existing algorithm for all
SNR regions. Furthermore, for both algorithms, the normalized
WSMSE decreases as the SNR increases which is expected.

B. Effect of the number of pilot symbols N

In this simulation, we examine the effect of N on the
performance of the proposed and existing algorithms. Fig.
2 shows the normalized WSMSE of the proposed and the
existing algorithm for different settings of N and SNR when
gk, ∀k are as in (17) (i.e., vectorization of G). This figure also
shows that the proposed algorithm achieves less normalized
WSMSE compared to that of the existing one for all SNR
regions when N < K. And as expected, both algorithms
achieve the same normalized WSMSE when N = K, and
their WSMSE decreases as N increases.
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C. Convergence speed of the proposed algorithm

In this subsection, we study the convergence speed of
the proposed algorithm. In this regard, we set N = 16
and use 3 initialization matrices. The first is like in Fig.
1, the second is the truncated DFT matrix of size K and
the third initialization is a random matrix taken from the
complex Gaussian distribution with appropriate scaling. For
these initializations, we plot the convergence behavior of the
proposed algorithm in Fig. 3. As can be seen from this figure,
faster convergence speed is achieved when the initialization
is performed as a truncated version of the DFT matrix of
size K. Nevertheless, for all initialization matrices, we have
achieved the same normalized WSMSE in few iterations (i.e.,
n = 40

K < 2 outer iteration is required for all initializations).
We would like to mention here that we have observed

similar convergence behavior for other settings of gk, ∀k, σ2,
N and K.

VI. CONCLUSIONS

In this paper, we propose novel pilot optimization and
channel estimation algorithm for a multiuser massive MIMO
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Fig. 3. Convergence speed of the proposed algorithm when N = 16 and
K = 32 [n = Iteration no

K
≈ 40

32
< 2]. (a) SNR = 0dB. (b) SNR = 3dB.

system with K single antenna MSs, arbitrary N pilot symbols
and TDD channel estimation method. The proposed algorithm
is explained as follows. First, we formulate the channel estima-
tion problem as a WSMSE minimization problem containing
pilot symbols and introduced variables. Second, for fixed pilot
symbols, the introduced variables are optimized using MMSE
and generalized Rayleigh quotient methods. Finally, for N = 1
and N = K settings, the pilot symbols are optimized using
SDP convex optimization approach, and for the other settings
of N and K, the pilot symbols are optimized by applying
simple iterative algorithm. When N = K, it is shown that
the latter iterative algorithm gives the optimal pilot symbols
achieved by the SDP method. Simulation results confirm that
the proposed algorithm achieves less WSMSE compared to
that of the conventional semi-orthogonal pilot symbol and
MMSE channel estimation algorithm which creates pilot con-
tamination.
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