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Abstract—The arterial system dynamically loads the heart
through changes in arterial compliance. The pressure-volume
relation of arteries is known to be nonlinear, but arterial
compliance is often modeled as a constant value, due to ease of
estimation and interpretation. Incorporating nonlinear arterial
compliance affords insight into the continuous variations of
arterial compliance in a cardiac cycle and its effects on the
heart, as the arterial system is coupled with the left ventricle. We
recently proposed a method for estimating nonlinear compliance
parameters that yielded good results under various vasoactive
states. This study examines the performance of the proposed
method by quantifying the uncertainty of the method in the
presence of noise and propagating the uncertainty through
the system model to analyze its effects on model predictions.
Kernel density estimation used within a bootstrap Monte Carlo
simulation showed the method to be stable for various vasoactive
states.

Keywords—nonlinear compliance, arterial stiffness, modified
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I. INTRODUCTION
Arterial pressure waveforms are manifestations of the cou-

pled interactions between the heart and the arterial system.
The left ventricle ejects its stroke volume into the aorta during
systole when the aortic valve is open and decouples from the
arterial system in diastole when the aortic valve is closed. This
pulsatile nature of the pumping function of the heart is able to
lead to steady perfusion of the body’s organs due to properties
of the arterial system. The complex load presented by the
arterial system that permits the conversion from intermittent
blood ejection to steady organ perfusion can be adequately
represented by a modified 3-element Windkessel model [1],
as judged by the close correspondence of the model’s input
impedance to the measured input impedance of the arterial
system.

Impedance matching of the heart to the arterial system
is important for minimizing wasteful reflections of pressure
and flow waves generated by left ventricle. This coupling
between the two systems permits gaining insight into the
loading effect of the arterial system on the heart by analysis
of arterial properties. Typically, arterial compliance is modeled
as a constant value element, for instance, as an ordinary
ideal capacitor in the Windkessel model shown in Fig. 1,
although it is known that the pressure-volume relation of
arteries is nonlinear [2]; this may be attributed to difficul-
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Fig. 1. Modified windkessel with nonlinear pressure-dependent compliance.

ties in estimating parameters of nonlinear compliance from
limited data. Incorporating nonlinear compliance into arterial
system models permits a view of the continuous compliance
variations throughout a cardiac cycle. The value of this added
description is that due to the “compliance matching” of the
arterial system to the left ventricle, this additional information
provides insight into how the heart copes with various forms of
arterial loading as the compliance of the left ventricle follows
a complementing variation [3]. Furthermore, the differential
effects of pharmacological interventions on passive and active
modifications of the arterial wall can be studied by analyzing
how nonlinear parameters change.

Nonlinear compliance parameters have generally been es-
timated using iterative methods that seek out suitable sets of
parameters in parameter-space that minimize discrepancies be-
tween model-predicted and measured pressure waveforms [4].
Some have proposed methods that estimate the parameters by
deriving pressure-volume curves from aortic flow and pressure
measurements, but found limited success in vasodilation states
and systems with low pressures [5]. We recently proposed a
new method that provides good estimates for normotensive,
vasoconstriction, and vasodilation states representing normal
pressure, high pressure, and low pressure systems, respectively
[6]. The present investigation examines the stability of the
proposed method in the presence of noise and the effects of
uncertainty in parameter estimates on model-predicted wave-
forms.

II. METHODS
A. Experimental

Aortic flow (Qao) with an electromagnetic flow probe
and aortic pressure (Pao) with a catheter-tip pressure trans-
ducer were simultaneously recorded together with lead-II ECG
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Fig. 2. Pressure-volume curve with diastolic portion fitted to Pc(Vc) =
apebpVc . Estimated parameters are shown in parenthesis.

in anesthetized, ventilated mongrel dogs. Both pressure and
flow transducers were calibrated and tested to have adequate
frequency response. Vasoactive states were altered with in-
travenous infusion of methoxamine to induce vasoconstric-
tion, and with nitroprusside to cause vasodilation. Data were
recorded and later digitized at 10 msec intervals for further
analysis. Experimental protocols were approved by the Rut-
gers University Institutional Animal Care and Use Committee
(IACUC).

B. Arterial System Model
A modified Windkessel model incorporating nonlinear

pressure-dependent compliance, Fig. 1, was used for this
study [2]. The pressure across and flow through the compliant
element, represented by the variable capacitor, are

Pc(t) = Pao(t)−Qao(t)Z0 (1)

Qc(t) = Qao(t)− Pao(t)−Qao(t)Z0

Rs
. (2)

Peripheral resistance, representing the steady load to the
heart, is calculated as the mean aortic pressure divided by mean
aortic flow,

Rs =
P̄ao

Q̄ao
. (3)

The characteristic impedance of the aorta, representing the
aortic pressure-flow relationship in the absence of reflections,
can be calculated as

Z0 =
Pao(t)− Pdiastole

Qao(t)
(4)

during the first 60-80ms of systole, when reflections are
assumed to be small [7].

Compliance of arteries is defined as arterial volume vari-
ations with respect to varying arterial pressure. Nonlinear
pressure-dependent compliance of this model is exponentially
related to the pressure across the compliant element,

C(Pc) ,
dVc
dPc

= ae−bPc . (5)

A method recently proposed for estimating the parameters
of nonlinear compliance is summarized here [6].
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Fig. 3. Compliance-pressure curve during diastole for a normotensive dog.
Fitted parameters are shown in parenthesis.

Integrating C(Pc) with respect to pressure yields the func-
tional forms of pressure-volume,

Vc(Pc) =
−ae−bPc

b
+K ⇒ Pc(Vc) =

1

b

[
ln

(
a

b(K − Vc)

)]
.

(6)
Mass conservation allows estimation of arterial volume

change relative to end-diastolic volume, Ved, as a function of
flow through the branch containing the compliant element,

∆Vc(t) = Vc(t)−Vc(ted) = Vc(t)−Ved =

∫ t

ted

Qc(τ)dτ. (7)

Each point of ∆Vc can be related in time to a corresponding
Pc, yielding a pressure-volume curve. As the aortic valve is
closed during diastole, decoupling the heart from the arterial
system, fitting (6) to the diastolic portion of the pressure-
volume curve removes cardiac influences [8]. The nonlinear
regression required to estimate the three parameters, {a, b,K},
yields limited convergence in vasodilation states and systems
with low pressure [5].

Assuming that arteries are pre-stressed to diastolic pressure
Pd, the effective origin of their exponential pressure-volume
curve is located at Pd so that Pc can be locally approximated
to a 2-parameter form as

Pc(Vc) ≈ apebpVc = Pde
bpVc . (8)

This approximation allows reduction of the regression problem
to primarily estimating one parameter, bp, which was found to
be tractable in normotensive, vasoconstriction, and vasodilation
states representing normal pressure, high pressure, and low
pressure systems, respectively.

The modulus of volume elasticity, E, defined as the inverse
of volume compliance, is thus approximated as

E ,
dPc

dVc
=

1

C
≈ bpPde

bpVc . (9)

The estimated bp can be used to analytically calculate C =
E−1 using values of ∆Vc calculated from (7). A point-by-point
plot of C against its corresponding Pc in time yields a curve
that can be fitted to (5) for estimates of a and b.

With estimations of the nonlinear compliance parameters,
the predicted aortic pressure from the modified Windkessel
model of Fig. 1 with aortic flow as input can be obtained using



IQR[79.179,79.638]
78.0

78.5

79.0

79.5

80.0

80.5

81.0

a
p

[m
m

H
g]

D6 Normotensive, P (dV ) = ape
bpV

IQR[0.030,0.031]
0.026

0.027

0.028

0.029

0.030

0.031

0.032

0.033

0.034

0.035

b
p

[1
/m

L
]

Fig. 4. Modified boxplot showing distributions of normotensive pressure-
volume parameters obtained from Monte Carlo simulations. Interquartile range
is bounded by the dotted (...) lines. The median is represented by the dashed
(—) lines.

methods from electrical circuit theory to solve for pressure at
the aortic node. Retaining the values of compliance at each
integration step allows production of compliance variation with
time over the cardiac cycle.

C. Uncertainty Model
Pressure-volume curves generated with (7) will inevitably

contain noise from experimental measurements of aortic flow
and pressure (measurement noise). As models are inherently
simplifications of reality, model-predicted values may not
exactly match experimentally measured values (model noise),
which will also include errors from numerical integration.
Consequently, the i-th residual, ε̂i, from fitting (8) to the
pressure-volume curve will contain both measurement and
model noise, here modeled as

ε̂i = Pci − P̂ci = Nmeasi +Nmodi
. (10)

Kernel density estimation (KDE), a non-parametric density
estimation technique, was used to obtain a smooth estimate
of the probability density function (pdf) of ε̂. This is to
avoid imposing a particular (e.g. normal) distribution on noise
terms, allowing for a more flexible analysis of uncertainty
by bootstrapping the residuals for Monte Carlo assessment of
uncertainty. Gaussian kernels with bandwidth selected using
Scott’s Rule was used in the KDE process [9]. A Monte Carlo

TABLE I. SIGNAL-TO-NOISE RATIOS FOR ESTIMATED
PRESSURE-VOLUME AND COMPLIANCE-PRESSURE PARAMETERS.

Normotensive Hypertensive Vasodilated

ap(mmHg) 233.8 147.1 263.1

bp(1/mL) 24.49 14.10 23.36

a(mL/mmHg) 29.83 14.41 25.06

b(1/mmHg) 28.40 13.26 24.42

procedure was implemented to generate N = 1000 virtual
pressure-volume curves by adding noise sampled from the pdf
of ε̂ to an initial fit of (8) for the pressure-volume curve,

P̂c(V̂c) = Pd0
ebp0 V̂c + ε̂p(V̂c), (11)
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Fig. 5. Modified boxplot for hypertensive pressure-volume parameters.
Interquartile range is bounded by the dotted (...) lines. The median is
represented by the dashed (—) lines.

where {Pd0 , bp0} is the set of parameters from the initial fit,
ε̂p(V̂c) is a point sampled from the pdf representing the noise,
and P̂c(V̂c) is a point on the generated virtual pressure-volume
curve. Each of the virtual curves was then fitted to (8) and the
resulting N estimates of {P̂d, b̂p} were stored in an array for
analysis.

The initial pressure-volume parameter set {Pd0 , bp0} was
then used to generate a C vs. Pc plot as previously described,
and the resulting curve was fitted to the nonlinear pressure-
dependent compliance form of (5) to obtain an initial nonlinear
compliance parameter set {a0, b0}. Residuals from the fit of
the compliance-pressure curve are similarly modeled to be the
result of measurement and model noise,

Ĉ(P̂c) = a0e
−b0P̂c + ε̂c(P̂c). (12)

The same KDE and Monte Carlo procedures were used to
estimate the pdf of the residuals from the initial fit, sample
noise from the estimated noise pdf, and generate virtual
compliance-pressure curves to obtain an array of N sets of
nonlinear compliance parameters {â, b̂}.

Signal-to-noise ratio is defined as

SNR =
µ

σ
, (13)

where µ and σ are the mean and standard deviation, respec-
tively, of a particular parameter (e.g. bp). This definition was
used as a measure of dispersion and stability on estimates
of the parameters. A KDE of each array of parameters was
performed to analyze how the estimated parameters were
distributed in the presence of uncertainty.

Uncertainty in the nonlinear compliance parameter esti-
mation was propagated through the arterial system model by
using the N sets of {a, b} to generate N model-predicted aortic
pressure and compliance waveforms.

III. RESULTS
Representative pressure-volume and compliance-pressure

curves used for estimation of nonlinear arterial compliance
estimations are shown in Figs. 2 and 3. The coefficient of
determination, R2, for both fits is 0.972 and the plots show
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Fig. 6. Modified boxplot for vasodilated pressure-volume parameters. In-
terquartile range is bounded by the dotted (...) lines. The median is represented
by the dashed (—) lines.

good agreement between the data and proposed model. It
can be seen that ap for this condition is 79.436 mmHg,
which corresponds to the diastolic pressure of this particular
cardiac cycle. The estimation for bp, representing the volume-
dependence of pressure, is 0.030 mL−1. Use of (9) generates
the compliance-pressure curve in Fig. 3. a and b are estimated
to be 0.989 mL/mmHg and 0.011 mmHg−1, respectively.

KDE of the residuals from pressure-volume and
compliance-pressure fits were used in the Monte Carlo
procedure to produce a distribution of parameters. Figs. 4-6
show modified boxplots of the estimated pressure-volume
parameters; the sides of the boxplots are formed by KDE of
the pressure-volume parameters, which show the distributions
resembling a normal distribution. The dotted lines within the
boxplots encompass the interquartile range of the distributions.
Normotensive and vasodilated states had interquartile range
of 0.001 for bp, whereas hypertensive had an interquartile
range of 0.003.

The distribution of estimated compliance parameters are
shown in the modified boxplots of Figs. 7-9. All distribu-
tions resemble a normal distribution. Interquartile ranges show
narrow ranges for estimated compliance parameters in all the
vasoactive states. Signal-to-noise ratios are shown in Table I.
Vasodilated and normotensive states displayed higher signal-
to-noise ratios than the hypertensive state, for all estimated
parameters.

When all sets of nonlinear compliance parameters from the
Monte Carlo simulations were propagated through the arterial
system model, the most prominent effects were on the systolic
peaks, as seen in Figs. 10-12. The shaded green areas of
the pressure and compliance time-series represent the Monte
Carlo 95% confidence intervals based upon uncertainties of
compliance parameters and the thick green line represents the
median. Comparing the confidence intervals of the compliance
plots across vasoactive states show no overlap. The vasodi-
lated state shows greatest magnitude of variation throughout
a cardiac cycle whereas the hypertensive state shows least
amount of variation (i.e. the hypertensive arteries appear
stiff). In all vasoactive states, the 95% confidence interval for
model-predicted aortic pressure adequately captures the actual
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Fig. 7. Modified boxplot showing distributions of normotensive compliance-
pressure parameters obtained from Monte Carlo simulations. Interquartile
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measured pressure; the median aortic pressure curve matches
very closely to the curve of the measured pressure.

IV. DISCUSSION
The narrow ranges for parameter estimates in the presence

of noise, as shown in the various modified boxplots of Figs.
4-9, provide support that in the presence of measurement and
model noise, as well as under various vasoactive states, the
proposed method converges to a stable set of parameters.
Signal-to-noise ratios were used to quantitatively compare
dispersions of parameter estimates across vasoactive states.
Since the method presented in [5] failed to obtain good esti-
mates in normotensive and vasodilated states, it was interesting
to observe from the signal-to-noise ratios that our proposed
method showed higher ratios in those two states as compared
to the hypertensive state. This suggests that the robustness of
our method across vasoactive states may be attributed to the
reduced-order nature of our method.

It can be seen that the signal-to-noise ratio for the pressure-
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volume parameter bp is directly related to the ratios for both
compliance-pressure parameters. That is, under a particular
vasoactive state, the magnitude of the signal-to-noise of the
pressure-volume parameter bp appears to dictate the level
of uncertainty in nonlinear compliance parameters. Since the
parameter ap is easily known a priori with our method as it is
equal to diastolic pressure of the cardiac cycle under study, and
the burden of the method primarily rests upon stable estimates
of bp, it is of interest to further investigate the performance
of our method in the presence of reflected waves that more
heavily distort the diastolic portion of the pressure waveform.
The advantage of using Monte Carlo simulations that involve
bootstrapping the residuals of the proposed estimation method
is that the process allows use of the proposed estimator itself
to quantify its own uncertainty, instead of making assumptions
of normally distributed errors.

Propagating the uncertainty in compliance parameters
causes widening of the confidence interval around the systolic
peak of the model-predicted aortic pressure waveforms. This
is consistent with the fact that arterial compliance, as the
dynamic load to the heart, alters pulse pressure, whereas
peripheral resistance, as the steady load to the heart, causes
shifts in the mean arterial pressure. It is encouraging to see
that in the presence of noise and the uncertainties in parameter
estimates of our method, the 95% confidence intervals of
the predicted pressure waveform captures the experimentally
measured waveform.

V. CONCLUSION
This investigation sought to quantify the uncertainties in es-

timations of nonlinear arterial compliance parameters without
imposing a particular distribution for the errors of our proposed
method. Use of kernel density estimation in a bootstrapping
Monte Carlo procedure allowed such analysis and provided
evidence on the stability of our method, both in converging
to a narrow set of parameters and in producing waveforms
that closely match measured data. As the pressure waveforms
used in this study did not contain significant distortions of
the diastolic region, it is worth investigating the performance
of the proposed parameter estimation method under additional
physiological conditions that may contain such distortions.
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Fig. 10. Comparison of normotensive measured and model-predicted aortic
pressure and compliance waveforms after propagating uncertainties in non-
linear arterial compliance parameters. Thick green lines represent the median
predicted waveforms while the shaded green regions indicate the Monte Carlo
95% confidence intervals.
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Fig. 11. Propagated uncertainties for hypertensive state. Thick green lines
represent the median predicted waveforms while the shaded green regions
indicate the Monte Carlo 95% confidence intervals.
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