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Abstract—This paper considers the problem of estimating and tracking

channels in a distributed transmission system with Nt transmit nodes
and Nr receive nodes. Since each node in the distributed transmission

system has an independent local oscillator, the effective channel between

each transmit node and each receive node has time-varying phase and fre-
quency offsets which much be tracked and predicted to facilitate coherent

transmission. This paper presents a unified state-space model in which a

single node aggregates all of the observations and tracks all of the channel

states in the system. To quantify the performance of this tracking system,
the steady-state prediction covariance is analyzed. Since the dimension

of the prediction covariance matrix grows proportionally to the product

NtNr , the resulting discrete-time algebraic Riccati equation is difficult
to solve for large systems, e.g., distributed massive MIMO systems. It

is shown, however, that the structure of the dynamic model allows the

steady-state prediction covariance to be efficiently calculated irrespective

of the number of transmit and receive nodes. An asymptotic analysis is
also presented for systems with a large number of transmit and receive

nodes with closed-from results for all of the elements in the asymptotic

prediction covariance as a function of the carrier frequency, oscillator
parameters, and channel measurement period. Numeric results confirm

the analysis and demonstrate the effect of the oscillator parameters on

the ability of the distributed transmission system to achieve coherent

transmission.

Index Terms—oscillator dynamics, distributed communication systems,

coherent transmission, channel prediction, distributed beamforming

I. INTRODUCTION

We consider the distributed multi-input multi-output (MIMO) com-

munication scenario in Fig. 1 where a transmission cluster with Nt

transmit nodes communicates with a receive cluster with Nr receive

nodes. The transmit cluster uses coherent transmission techniques,

e.g., distributed transmit beamforming [1]–[5] and/or distributed

transmit nullforming [6]–[8], to communicate with the receive clus-

ter. The receivers facilitate coherent transmission by estimating the

channels and providing feedback to the transmit cluster.

transmit
nodes

receive
nodes

g(n,m)

Fig. 1. Distributed MIMO system model with Nt transmit nodes and Nr

receive nodes. Each node possesses a single antenna and an independent
oscillator.
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Since each node in the distributed transmission system has an inde-

pendent local oscillator, the effective channel between each transmit

node and each receive node has time-varying phase and frequency

offsets which much be tracked and predicted to facilitate coherent

transmission. Several recent papers have analyzed the performance

of distributed beamforming and distributed nullforming subject to

independent oscillator dynamics [5], [8]–[10]. The early work in this

area made the simplifying assumption that each received individually

tracked tracked its own Nt channels. More recently, the idea of

“unified” tracking has been studied in which a single transmit or

receive node aggregates all of the observations and tracks all NtNr

channels in the system [10]. A system with unified tracking achieves

optimal performance by exploiting the correlations in the states across

receive nodes.

This paper presents a performance analysis of unified channel

tracking for distributed MIMO systems for the case where the

propagation channels g(n,m) are time-invariant (or slowly-varying

with respect to the oscillator dynamics) and the stochastic oscillator

parameters are identical for all of the nodes in the system. Specifi-

cally, we analyze the steady-state prediction covariance of the unified

tracking system since the steady-state prediction covariance is directly

related to the achievable beamforming and nullforming performance

[10], [11]. Since the dimension of the prediction covariance matrix

grows proportionally to the product NtNr , the resulting discrete-

time algebraic Riccati equation is difficult to solve for large systems,

e.g., distributed massive MIMO systems [12], [13]. We show, how-

ever, that the structure of the unified state-space model allows the

steady-state prediction covariance to be efficiently calculated irre-

spective of the number of transmit and receive nodes. We also present

an asymptotic analysis for distributed massive MIMO systems with

Nt → ∞ and Nr = ηNt, and develop closed-from results for all of

the elements in the asymptotic prediction covariance as a function of

the carrier frequency, oscillator parameters, and channel measurement

period. Numeric results confirm the analysis and demonstrate the

effect of the oscillator parameters on the ability of the distributed

transmission system to achieve coherent transmission.

II. SYSTEM MODEL

Each node in the system shown in Fig. 1 is assumed to possess

a single antenna. The nominal transmit frequency in the forward

link from the distributed transmit cluster to the receivers is at ωc.

All forward link channels are modeled as narrowband, linear, and

time invariant (LTI). We denote the channel from transmit node n to

receive node m at carrier frequency ωc as g(n,m) ∈ C for transmit

node n = 1, . . . , Nt and receive node m = 1, . . . , Nr . These

LTI propagation channels, in contrast to the time-varying “effective”



channels described below, do not include the effect of carrier phase

offsets between transmit node n and receive node m.

The receivers in the system periodically measure the channels from

the transmit cluster and provide their measurements to a single node

(either a transmit node or a receive node) for unified tracking as

in [10]. Fig. 2 shows the effective narrowband channel model from

transmit node n to receive node m which includes the effects of

propagation and carrier offset. Transmissions n → m are conveyed

on a carrier nominally at ωc generated at transmit node n, incur a

phase shift of ψ(n,m) = ∠g(n,m) over the wireless channel, and are

then downmixed by receive node m using its local carrier nominally

at ωc. At time τ , the effective narrowband channel from transmit

node n to receive node m is modeled as

h(n,m)(τ )=g(n,m)e
j
(

φ
(n)
t (τ)−φ

(m)
r (τ)

)

= |g(n,m)|ejφ
(n,m)(τ)

(1)

where φ(n)

t (τ ) and φ(m)
r (τ ) are the local carrier phase offsets at

transmit node n and receive node m, respectively, at time τ with

respect to an ideal carrier reference, and φ(n,m)(τ ) = φ(n)

t (τ ) −
φ(m)

t (τ ) + ψ(n,m) is the pairwise phase offset after propagation

between transmit node n and receive node m at time τ .

local
carrier

LPF

transmit node n

local
carrier
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∼ ωc∼ ωc
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Fig. 2. Effective narrowband channel model including the effects of
propagation, transmit and receive gains, and carrier offset.

A. Oscillator Dynamics

Every node in the system is assumed to have an independent local

oscillator. These local oscillators have inherent frequency offsets and

behave stochastically, causing phase offset variations in each effective

channel from transmit node n to receive node m even when the

propagation channels g(n,m) are otherwise time invariant. This section

describes a discrete-time dynamic model to characterize the dynamics

of the phase variations in h(n,m)(τ ).
Based on the two-state models in [14], [15], we define the

discrete-time state of the nth transmit node’s carrier as x(n)

t [k] =
[φ(n)

t [k], φ̇(n)

t [k]]⊤ where φ(n)

t [k] corresponds to the carrier phase

offset in radians at transmit node n with respect to an ideal carrier

phase reference. The state update of the nth transmit node’s carrier

is then

x(n)

t [k + 1] = f(T )x(n)

t [k] + u(n)

t [k] with f(T ) =

[

1 T
0 1

]

(2)

where T > 0 is the state update period. The process noise vector

u(n)

t [k]
i.i.d.
∼ N

(

0, Q(n)

t (T )
)

causes the carrier derived from the local

oscillator at transmit node n to deviate from an ideal linear phase

trajectory. The covariance of the discrete-time process noise is derived

from a continuous-time model in [14] and is

Q(n)

t (T ) = ω2
cT

[

α(n)

t + β(n)

t
T2

3
β(n)

t
T
2

β(n)

t
T
2

β(n)

t

]

(3)

where ωc is the nominal common carrier frequency in radians per

second and α(n)

t (units of seconds) and β(n)

t (units of Hertz) are

the process noise parameters corresponding to white frequency noise

and random walk frequency noise, respectively. The process noise

parameters α(n)

t and β(n)

t can be estimated by fitting the theoretical

Allan variance σ2
y(τ ) =

p
(n)
t

τ
+

q
(n)
t τ

3
to experimental measurements

of the Allan variance over a range of τ values. For example, a least

squares fit to the Allan variance specifications for a Rakon RPFO45

oven-controlled oscillator [16] yields α(n)

t = 2.31 × 10−21 and

β(n)

t = 6.80 × 10−23.

The receive nodes in the system also have independent local

oscillators used to generate carriers for downmixing that are governed

by the same dynamics as (2) with state x(m)
r [k], process noise

u(m)
r [k]

i.i.d.
∼ N (0, Q(m)

r (T )), and process noise parameters α(m)
r

and β(m)
r as in (3) for m = 1, . . . , Nr .

Since receive nodes can only measure the relative phase and

frequency of the transmit nodes after propagation, we define the

pairwise offset after propagation as

δ(n,m)[k] =

[

φ(n,m)[k]

φ̇(n,m)[k]

]

= x(n)

t [k] +

[

ψ(n,m)

0

]

− x(m)
r [k].

Note that δ(n,m)[k] is governed by the state update

δ(n,m)[k + 1] = f(T )δ(n,m)[k] + u(n)

t [k]− u(m)
r [k]. (4)

We assume that observations are so short as to only provide useful

phase estimates. An observation of the n → m channel at receive

node m is then y(n,m)[k] = hδ(n,m)[k] + v(n,m)[k] where h = [1, 0]

and v(n,m)[k]
i.i.d.
∼ N (0, r) is the measurement noise which is

assumed to be spatially and temporally i.i.d., and independent of

the process noise.

B. Unified State-Space Model

We assume that a single transmit or receive node aggregates all

of the observations and tracks all of the pairwise offset states in

the system. The 2NtNr-dimensional vector state of pairwise offsets

is defined as δ[k] = [(δ(1)[k])⊤, . . . , (δ(Nr)[k])⊤]⊤ with δ(m)[k] =
[(δ(1,m)[k])⊤, . . . , (δ(Nt,m)[k])⊤]⊤. The state update follows as

δ[k + 1] =







f(T )
. . .

f(T )






δ[k]+







u(1)

t [k]−u(1)
r [k]

...

u(Nt)

t [k]−u(Nr )
r [k]







= F (T )δ[k] +Gu[k] (5)

with the process noise vector u[k] =
[(u(1)

t [k])⊤, . . . , (u(Nt)

t [k])⊤, (u(1)
r [k])⊤, . . . , (u(Nr)

r [k])⊤]⊤ ∈
R

2(Nt+Nr) and

G=







I2Nt J2Nt

.

..
. . .

I2Nt J2Nt






∈ R

2NtNr×2(Nt+Nr) (6)

where In denotes an n × n identity matrix and J2Nt =
−[I2, . . . , I2]

⊤ ∈ R
2Nt×2. The NtNr-dimensional vector observa-

tion is then

y[k] =







h
. . .

h






δ[k] + v[k]

= Hδ[k] + v[k] (7)

where H ∈ R
NtNr×2NtNr and v[k] =

[v(1,1)[k], . . . , v(Nt,Nr)[k]]⊤ ∈ R
NtNr is i.i.d. measurement

noise.



C. Discussion

Note that the state update (5) specifies a dynamic system where

the states are coupled only through the correlated process noise.

The process noise is correlated through all of the receive oscillators

as shown in (6). While the number of states grows according to

the product NtNr , the number of independent oscillators grows

according to the sum Nt+Nr. In fact, if we assume the transmit and

receive nodes have identical and independent process noise statistics

with Q(n)

t (T ) = Q(m)
r (T ) = q, then E

[

u[k]u⊤[k]
]

= INt+Nr ⊗ q
and process noise covariance can be written as

Q = GE
[

u[k]u⊤[k]
]

G⊤

=











































2q q · · ·

q 2q · · ·

.

..
.
..

. . .

q 0

0 q

. . .

· · ·

q 0

0 q

. . .

2q q · · ·

q 2q · · ·

...
...

. . .

· · ·

...
...

. . .











































(8)

= INr ⊗Q0 + 1Nr1
⊤

Nr
⊗Q1

with Q0 = 1Nt1
⊤

Nt
⊗ q and Q1 = INt ⊗ q.

Additionally, using the usual tests, one can straightforwardly verify

that the system specified in (5) and (7) is completely observable but

not stabilizable. Since the system is not stabilizable, most of the

results regarding the existence and uniqueness of a steady-state lim-

iting solution to the prediction covariance of the optimal filter do not

directly apply. In the following section, we numerically demonstrate

that the optimal filter can converge to a stable limiting value and then

formalize the existence of such a solution in Section IV.

III. TRACKING EXAMPLE

In this section, we numerically demonstrate the convergence of

the phase and frequency prediction variance of a Kalman filter

tracker for the unified model specified in (5) and (7) for two

different systems: {Nt, Nr} = {4, 2} and {Nt, Nr} = {32, 16}.

The state update interval was set to T = 0.250 seconds and the

carrier frequency was set to ωc = 2π · 900 · 106 radians/sec. The

process noise parameters set to α = 2.31 × 10−21 seconds and

β = 6.80 × 10−23 Hertz according to the Rakon RPFO45 oven-

controlled oscillator parameters in Section II-A. The measurement

noise variance was set to r = (2π · 10/360)2 rad2.

The initial prediction covariance, i.e., P [0] = E
[

δ[0]δ⊤[0]
]

was

determined based on the following assumptions:

1) Initial oscillator phases x(n)

t [0] and x(m)
r [0] are i.i.d. uniformly

distributed on [−π, π].
2) Channel phases ψ(n,m) are i.i.d. uniformly uniformly dis-

tributed on [−π, π].
3) Initial frequency offsets are i.i.d. uniformly distributed on

[−ν, ν] where ν = ppm · 10−6 · 2πfc and where “ppm”

refers to the oscillators’ “parts-per-million” frequency accuracy

specification.

All of these random variables are further assumed to be independent.

The prediction covariance at time k + 1 satisfies [17]

P [k+1] = F
(

P [k]−P [k]H⊤(HP [k]H⊤+R)−1HP [k]
)

F⊤+Q.

Figure 3 plots the (1,1) and (2,2) elements of the prediction co-

variance matrix, corresponding to the phase prediction variance and

frequency prediction variance, respectively, versus the experimentally

determined prediction variances obtained via Monte-Carlo simulation

of the Kalman filter.
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Fig. 3. Phase and frequency prediction variances for a Kalman filter tracker
of the unified state-space model.

These examples show that the phase and frequency prediction

variances of the Kalman filter converge toward their steady-state

predictions which were obtained by solving a discrete-time algebraic

Riccati equation. Moreover, the steady-state phase prediction variance

(which tends to be a good indicator of the potential beamforming or

nullforming performance in distributed MIMO systems [10]) for the

larger system with Nt = 32 and Nr = 16 is somewhat better than

the steady-state phase prediction variance for the smaller system with

Nt = 4 and Nr = 2. The following section formalizes the existence

of the steady-state prediction covariance in the unified tracking model

and develops closed-form expressions for the asymptotic prediction

covariance as Nt → ∞ with Nr = ηNt.

IV. STEADY-STATE PREDICTION COVARIANCE ANALYSIS

In this section, we analyze the steady-state behavior of a Kalman

filter tracker for the unified state δ[k]. In steady-state, the prediction

covariance P of the Kalman filter will satisfy

P = F
[

P − PH⊤(HPH⊤ +R)−1HP
]

F⊤ +Q. (9)

This is a version of the well-known discrete-time algebraic Riccati

equation (DARE) which has a unique symmetric positive semidef-

inite solution when [F,H ] is a detectable pair and [F,Q1/2] is a

stabilizable pair [17]. The system specified in (5) and (7) does not

satisfy these conditions, however, since it can be shown that [F,Q1/2]
is not stabilizable. Nevertheless, it turns out that we can still find a

symmetric positive semidefinite solution to (9) for the unified tracking

model as shown below.

The following theorem establishes that complete observability is

sufficient for there to exist a symmetric positive semidefinite solution

to (9).



Theorem 1. Suppose [F,H ] is completely observable. Then (9) has

a symmetric positive semidefinite solution.

A proof of this theorem will be provided in a expanded journal

paper. Intuitively, one can perform a similarity transformation to put

the system into a “controllability staircase form” [18, p.159]. Part

of the transformed system is then detectable and stabilizable and the

positive semidefinite steady-state prediction covariance for this part of

the transformed system is uniquely determined [17]. The remaining

prediction covariances of the transformed system can be set to zero

and it can be shown that this solution satisfies (9).

For the system specified in (5) and (7), P has dimensions 2NtNr×
2NtNr . It can be computationally difficult to solve (9) for large

Nt and/or large Nr since the dimensions of the similarity transform

become large and the dimension of the resulting reduced-dimensional

DARE still grows without bound as Nt → ∞ and/or Nr → ∞.

Nevertheless, as we will show below, (9) can be efficiently solved

when the F , H , R, and Q matrices have a certain structure.

We first establish some notation and a useful preliminary result.

For any matrices A and B with the same dimension, we denote

Γn(A,B) = In ⊗ A+ 1n1
⊤

n ⊗B

=











A+B B · · · B
B A+B
..
.

. . .

B A+B











. (10)

Note that Q in (8) can be written as Q = ΓNr (Q0, Q1) using this

notation.

Denoting the distinct eigenvalues of a square matrix C as λ(C),
the following lemma relates the eigenvalues of Γn(A,B) to the

eigenvalues of A and A+ nB when A and B are square matrices.

Lemma 1. Given A ∈ R
s×s and B ∈ R

s×s and Γn(A,B) defined

in (10). Then λ(A) ∪ λ(A+ nB) = λ(Γn(A,B)).

A proof of this lemma is provided in Appendix A. Note that

Lemma 1 implies that if Γn(A,B) is positive semidefinite, then both

A and A + nB are positive semidefinite. This result is used in the

proof of the following Theorem.

Theorem 2. If there exists a positive semidefinite solution to (9) and

F = Γn(F0, 0) with F0 ∈ R
s×s,

H = Γn(H0, 0) with H0 ∈ R
t×s,

R = Γn(R0, R1) with R0 ∈ R
t×t

and R1 ∈ R
t×t, and

Q = Γn(Q0, Q1) with Q0 ∈ R
s×s

and Q1 ∈ R
s×s

then P = Γn(P0, P1) with positive semidefinite P0 ∈ R
s×s satisfying

P0 = F0

[

P0 − P0H
⊤

0 (H0P0H
⊤

0 +R0)
−1H0P0

]

F⊤

0 +Q0 (11)

and positive semidefinite P̄ = n−1P0 + P1 ∈ R
s×s satisfying

P̄ = F0

[

P̄ − P̄H⊤

0

(

H0P̄H
⊤

0 + R̄
)−1

H0P̄

]

F⊤

0 + Q̄ (12)

with R̄ := n−1R0 +R1 and Q̄ := n−1Q0 +Q1.

A proof of Theorem 2 will be provided in an expanded journal

paper. Note that Lemma 1 ensures that both P0 and P̄ are positive

semidefinite. Intuitively, the approach in the proof of Lemma 1 can

be followed to transform the system into n independent subsystems

each of which can be solved separately.

Observe that the unified oscillator tracking system in Section II-B

satisfies the requirements of Theorem 2 with n = Nr . The utility of

this theorem is that the 2NtNr ×2NtNr DARE in (9) can be solved

by computing two smaller 2Nt × 2Nt DAREs. While the dimension

of these DAREs also grows without bound as Nt → ∞, it turns out

that we can further simplify the solution of (9) by observing that we

have the additional structure

F0 = ΓNt(f, 0)

H0 = ΓNt(h, 0)

R0 = ΓNt(r, 0)

R1 = 0

Q0 = ΓNt(0, q)

Q1 = ΓNt(q, 0)

with f = f(T ) ∈ R
2×2, h ∈ R

1×2, r ∈ R, and q =∈ R
2×2 all

defined in Section II-B. Hence, Theorem 2 can be recursively applied

to the oscillator tracking system to say that P = Γn(P0, P1) with

P0 = ΓNt(p00, p01)

P1 = ΓNt(p10, p11)

where p00, p01, p10, and p11 are all 2 × 2 matrices. This result

implies that, irrespective of the number of transmit and receive nodes,

the 2NtNr × 2NtNr prediction covariance in (9) can be efficiently

computed for the unified oscillator tracking scenario by solving four

2× 2 DAREs.

We can show that one of these 2×2 DAREs is trivial to solve in our

unified oscillator tracking scenario. Recursively applying Theorem 2,

we can write

p00 = f

[

p00 − p00h
⊤

(

hp00h
⊤ + r

)−1

hp00

]

f⊤ + 0.

The unique solution to this DARE is p00 = 0, which implies that

P0 = ΓNt(0, p01) = 1Nt1
⊤

Nt
⊗ p01. The following section develops

closed-form expressions for p10, p01, and p11 in the asymptotic

regime where Nt → ∞ and Nr = ηNt.

V. ASYMPTOTIC PREDICTION COVARIANCE ANALYSIS

Recall that P̄ = N−1
r P0 + P1, Q̄ = N−1

r Q0 + Q1, and R̄ =
N−1

r R0 + R1. As Nr → ∞, we have P̄ → P1, Q̄ → Q1, and

R̄ → R1 = 0. Hence, (12) becomes

P1 = F0

[

P1 − P1H
⊤

0

(

H0P1H
⊤

0

)−1

H0P1

]

F⊤

0 +Q1. (13)

Since Q1 = INt ⊗ q, F0 = INt ⊗f , and H0 = INt ⊗h are all block

diagonal matrices, it is straightforward to see that the asymptotic

value of P1 is also block diagonal. In other words, P1 → INt ⊗
p10 and p11 → 0. Hence, to determine P1 for large Nr , it is only

necessary to solve the 2× 2 DARE

p10 = f

[

p10 − p10h
⊤

(

hp10h
⊤

)−1

hp10

]

f⊤ + q. (14)

Now consider P0 = 1Nt1
⊤

Nt
⊗p01. Defining p̄01 = N−1

t p00+p01,

we have that p̄01 = p01 since, as shown previously, p00 = 0 for any

Nt and Nr . Theorem 2 implies that p01 satisfies

p01 = f

[

p01 − p01h
⊤

(

hp01h
⊤ +N−1

r r
)−1

hp01

]

f⊤ + q

which, in the limit as Nr → ∞, becomes identical to (14). Hence,

in the asymptotic regime where Nt → ∞ and Nr = ηNt, we have



p01 = p10 = p with p satisfying the 2× 2 DARE

p = f

[

p− ph⊤

(

hph⊤

)−1

hp

]

f⊤ + q. (15)

In other words, it is only necessary to solve a single 2 × 2 DARE

to fully characterize the 2NtNr × 2NtNr asymptotic prediction

covariance matrix P .

Summarizing these results, we have p00 = 0, p11 → 0, p01 → p,

and p10 → p as Nt → ∞ with Nr = ηNt. Hence,

P0 → 1Nt1
⊤

Nt
⊗ p (16)

P1 → INt ⊗ p (17)

and the asymptotic prediction covariance P = Γn(P0, P1) takes the

same form as (8) with q replaced by p.

We now compute closed-form expressions for the elements of p.

We denote

p =

[

p(1, 1) p(1, 2)
p(2, 1) p(2, 2)

]

and, from (3) under the assumption of identical process noise statistics

at each receive node, set

q = ω2
cT

[

α+ β T2

3
β T

2

β T
2

β

]

.

Some straightforward algebra on (15) yields

p(1, 2) = p(2, 1) = ω2
cT

2β

(

γ +
1

2

)

with γ :=
√

1
12

+ α
T2β

. The remaining elements of p follow as

p(1, 1) = ω2
cT

3β

(

γ +
1

2

)2

p(2, 2) = ω2
cTβ (γ + 1)

Note that the asymptotic prediction covariance is not a function of

η = Nr

Nt
. The asymptotic prediction covariance is only a function of

the process noise parameters α and β as well as the carrier frequency

ωc and the update period T . The parameter η only affects the rate

at which the elements of the prediction covariance matrix approach

their asymptotic values.

VI. NUMERICAL RESULTS

This section presents numerical results confirming the asymptotic

analysis in Section V. Since there are only 12 unique elements in the

prediction covariance matrix P irrespective of the number of transmit

and receive nodes, Table I lists the 12 relevant elements of P , their

meanings, and their asymptotic values.

Fig. 4 plots elements of the prediction covariance matrix P versus

the number of transmit nodes Nt with Nr = ηNt and η = 0.2. The

simulation parameters are otherwise identical to those in Section III.

These results confirm the asymptotic analysis in Section V and show

that asymptotic results can be accurate predictions of many of the

elements of the prediction covariance matrix even for small values

of Nt and Nr .

Fig. 5 plots the asymptotic phase standard deviation (in degrees)

versus oscillator parameters α and β for T = 0.250 seconds

and ωc = 2π · 900 · 106 radians/sec. Specifically, this plot shows
360
2π

·
√

p(1, 1) over a range of typical oscillator parameters with

“good XO” and “poor XO” oscillator parameters fitted to a table of

typical Allan variances from [19]. These results show that a system

using the Rakon oven-controlled oscillators with T = 0.250 seconds

TABLE I
UNIQUE ELEMENTS OF THE PREDICTION COVARIANCE MATRIX P WITH

n′ 6= n AND m′ 6= m.

P (i, j) Meaning and asymptotic value

P (1, 1) Phase variance cov(φ(n,m), φ(n,m)) → 2p(1, 1)

P (1, 2) Phase/freq covariance cov(φ(n,m)φ̇(n,m)) → 2p(1, 2)

P (2, 2) Frequency variance cov(φ̇(n,m), φ̇(n,m)) → 2p(2, 2)

P (3, 1) Phase covariance cov(φ(n,m), φ(n′,m)) → p(1, 1)

P (3, 2) Phase/freq covariance cov(φ(n,m)φ̇(n′,m)) → p(1, 2)

P (4, 2) Frequency variance cov(φ̇(n,m), φ̇(n′,m)) → p(2, 2)

P (2Nt + 1, 1) Phase covariance cov(φ(n,m), φ(n,m′)) → p(1, 1)

P (2Nt + 1, 2) Phase/freq covariance cov(φ(n,m)φ̇(n,m′)) → p(1, 2)

P (2Nt + 2, 2) Frequency variance cov(φ̇(n,m), φ̇(n,m′)) → p(2, 2)

P (2Nt + 3, 1) Phase covariance cov(φ(n,m), φ(n′,m′)) → 0

P (2Nt + 3, 2) Phase/freq covariance cov(φ(n,m)φ̇(n′,m′)) → 0

P (2Nt + 4, 2) Frequency variance cov(φ̇(n,m), φ̇(n′,m′)) → 0
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Fig. 4. Relevant elements of the prediction covariance matrix versus the
number of transmit nodes Nt with Nr = ηNt and η = 0.2

and ωc = 2π · 900 · 106 radians/sec will have an asymptotic

phase prediction standard deviation of less than 10 degrees, which

is more than adequate to achieve good coherent beamforming gains

but may be insufficient to achieve deep nulls [10]. The “poor XO”

has an asymptotic phase prediction standard deviation so large that

coherent distributed transmission is impossible. To achieve coherent

transmission with the “poor XO”, the carrier frequency ωc and/or the

measurement interval T must be reduced.

VII. CONCLUSION

This paper analyzed the steady-state prediction covariance of a

distributed MIMO system with unified channel tracking and stochas-

tic oscillator dynamics. We showed that a steady-state solution to the

discrete-time algebraic Riccati equation exists and the structure of the

unified tracking model was exploited to develop efficient solutions for

the discrete-time algebraic Riccati equation with low computational

complexity not depending on the number of transmit or receive

nodes. An asymptotic analysis was also presented for large networks

with closed-from results for all of the elements in the asymptotic

prediction covariance matrix. Numeric results confirmed the analysis

and demonstrated the effect of the oscillator parameters on the ability

of the system to achieve coherent transmission.
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Fig. 5. Asymptotic phase standard deviation (in degrees) versus oscillator
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APPENDIX A

PROOF OF LEMMA 1

First consider the matrix Γn(0, 1) = 1n1
⊤
n . This matrix has an

eigenvalue at zero with algebraic multiplicity n−1 and an eigenvalue

at n corresponding to the eigenvector 1n. Since Γn(0, 1) is real and

symmetric, it is diagonalizable and there exists an invertible T such

that

T−1Γn(0, 1)T = diag(0, · · · , 0, n). (18)

Now let Ts = T ⊗ Is. We can write

T−1
s Γn(A,B)Ts = (T ⊗ Is)

−1(In ⊗ A+ 1n1
⊤

n ⊗B)(T ⊗ Is)

= (T−1 ⊗ A+ T−11n1
⊤

n ⊗B)(T ⊗ Is)

= In ⊗ A+ (T−11n1
⊤

n T )⊗B

= In ⊗ A+ (diag(0, · · · , 0, n))⊗B

= blockdiag(A, · · · , A,A+ nB)

where the second to last equality used (18). Since similarity transfor-

mations do not change the eigenvalues, this final result implies that

λ(A) ∪ λ(A+ nB) = λ(Γn(A,B)).
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