Loading [a11y]/accessibility-menu.js
Low complexity scheduling algorithms for wireless networks with full duplex state exchange | IEEE Conference Publication | IEEE Xplore

Low complexity scheduling algorithms for wireless networks with full duplex state exchange


Abstract:

In a peer-to-peer wireless network, efficient distributed scheduling algorithms generally require all active nodes to acquire the state information of their respective ne...Show More

Abstract:

In a peer-to-peer wireless network, efficient distributed scheduling algorithms generally require all active nodes to acquire the state information of their respective neighbors, e.g., their queue lengths. However, information exchange between nodes is challenging in the absence of a collision-free schedule, mainly due to the half duplex design of today's radios. This paper studies medium access control (MAC) with the help of a physical layer technique that allows all nodes to efficiently exchange state messages with one-hop neighbors at the same time. Low-complexity distributed scheduling algorithms using simultaneous message exchange are proposed for two interference models. One of the algorithms is shown to produce schedules realizable by the greedy maximal scheduling algorithm under the node-exclusive interference model. Simulations demonstrate that both algorithms outperform some popular distributed random access schemes.
Date of Conference: 19-21 March 2014
Date Added to IEEE Xplore: 12 May 2014
Electronic ISBN:978-1-4799-3001-2
Conference Location: Princeton, NJ, USA

References

References is not available for this document.