
Structured Outlier Models for
Robust Dictionary Learning

Pedro A. Forero, Scott Shafer, and Josh Harguess
SPAWAR Systems Center Pacific, San Diego, CA 92152, United States

Email: {pedro.a.forero;scott.shafer;joshua.harguess}@navy.mil

Abstract—Robust dictionary learning algorithms seek to learn
a dictionary while being robust to the presence of outliers in
the training set. Often, the elements of the training set have an
underlying structure due to, for example, their spatial relation
or their similarity. When outliers are present as elements of the
training set, they often inherit the underlying structure of the
training set. This work capitalizes on such structure, encoded
as an undirected graph connecting elements of the training set,
and on sparsity-aware outlier modeling tools to develop robust
dictionary learning algorithms. Not only do these algorithms yield
a robust dictionary, but they also identify the outliers in the
training set. Computationally efficient algorithms based on block
coordinate descent and proximal gradient methods are developed.

Index Terms—Dictionary learning, proximal gradient algo-
rithms, Laplacian regularization

I. INTRODUCTION

Succinct representations of high-dimensional data are
paramount to promptly extract actionable information and
reduce the storage and communication requirements related
to sharing and archiving data. A fundamental observation,
first made in the image processing community, is that a
more efficient signal representation is possible if one uses an
overcomplete dictionary learned from the signals themselves
rather than a fixed basis [11], [15]. Given a large number of
signal samples, the dictionary learning (DL) problem aims to
construct a dictionary that can be used to efficiently represent
the data as a linear combination of its columns, also known as
atoms. In this context, a more efficient data representation is
one that uses a smaller number of atoms to achieve the desired
signal reconstruction quality [4].

Usually, the dictionary is learned by fitting the reconstructed
signal to the corresponding sample signal via a regularized
least-squares (LS) criterion [4]. Here, the regularization is used
to encourage a sparse structure in the vectors of regression
coefficients. Naturally, the samples used for learning the
dictionary are assumed to adhere to the nominal process that
caused the signal. However, in many cases it is not possible
to screen all data samples to guarantee that no datum behaves
as an outlier, that is, deviates significantly from the remaining
data [17]. Moreover, outliers alone may be more informative
than the remaining data, in which case one would like to
quickly identify them and possibly remove them from the
dataset. It is known that the LS criterion is sensitive to the
presence of outliers [17]. DL problem formulations based on

This work was funded by the Naval Innovative Science and Engineering
Program at Space and Naval Warfare Systems Center Pacific.

the LS cost inherit such sensitivity and are, thus, sensitive to
outliers, which can bias the dictionary estimate and reduce the
efficiency of DL as data compression tool.

Robust DL approaches leveraging tools developed in the
area of robust statistics have been recently proposed [12], [16].
Instead of using the LS criterion as an error fitting terms,
they use criteria such as the `1-error and the Huber loss to
induce robustness to outliers. Unfortunately, some of these
tools do not lend themselves for constructing efficient solvers,
and in many cases they do not directly identify the outliers.
Robust analysis methods for data capitalizing on modern
signal processing tools have been recently studied by the signal
processing community [9], [5]. These approaches leverage a
data model that captures the presence of outliers, and the fact
that by definition outliers are rare, to develop efficient tools
for identifiying and tapering the effects of outliers. As outlined
by Mateos et al. [10], sparsity-aware outlier models and the
corresponding solvers associated to them can be extended to
develop robust DL algorithms as was done by Chen et al. [3].

When there is a structural relationship among elements
of the training set, outliers can inherit such a structure. For
instance, when training a dictionary using image patches
contaminated by outliers, the spatial structure of the patches
(size and location) induces a similar structure in the outliers.
None of the aforementioned robust DL approaches leverages
outlier structure to enhance their robustness and ability to
identify outliers. Our contribution in this work is to develop
a robust DL framework that capitalizes on sparsity-aware
modeling tools and the predefined structure among outliers.
The specific outlier structure is defined via an undirected graph
subsuming the similarity among elements of the training set.
This information is introduced in the robust DL problem via
a Laplacian regularization term that now couples all outlier
vector representations. A block coordinate descent (BCD)
algorithm coupled with proximal gradient (PG) methods is
developed for training the dictionary and identifying the out-
liers.

II. PRELIMINARIES

Consider a training set of M -dimensional real-valued vec-
tors Y := {yn}Nn=1 with cardinality N := |Y|. Let D :=
[d1, . . . ,dQ] ∈ RM×Q denote a dictionary with Q atoms,
where an atom corresponds to a column of D. It is assumed
that each yn can be represented as a linear combination of
atoms from D. Whenever Q > M , D is called overcomplete.

U.S. Government work not protected by U.S. copyright

If D is overcomplete, vectors {dq}Qq=1 are linearly dependent.
Then, the vector of expansion coefficients sn in yn = Dsn is
not unique for any n. By requiring each sn to be sparse, a bal-
ance can be stricken between the quality of the approximation
and the stability of the representation of each yn [4].

Given Y , the goal of the classical DL problem is to find
both D and {sn}Nn=1 as the minimizers of

min
D∈D,{sn}Nn=1

1

2

N∑
n=1

‖yn −Dsn‖22 + η
N∑
n=1

‖sn‖1 (1)

where D := {D ∈ RM×Q : ‖dq‖2 ≤ 1,∀q}, η > 0 is a tuning
parameter, and ‖sn‖1 :=

∑Q
q=1 |sn,q| represents the `1-norm

of sn with sn,q := [sn]q . The `1-norm regularizer encourages
sparsity on the sn’s and η controls the sparsity level of the
resulting sn’s. The constraint on the size of the columns of D
defined in D are necessary to avoid dictionary atoms to grow
unbounded and the corresponding entries of each sn approach
zero.

Problem (1) is non-convex and usually solved via a BCD
approach [4]. The BCD-based solver iteratively updates D
with {sn}Nn=1 fixed, and then updates all {sn}Nn=1 with
D fixed. This BCD solver must solve a constrained LS
optimization problem to update the dictionary, and is thus
sensitive to the presence of outliers in Y [17]. Note that in
the aforementioned BCD solver the updates for the sn’s are
also adversely impacted by outliers both through the outlier-
sensitive D and the optimization criterion used.

III. SPARSE AND STRUCTURED OUTLIER MODELING

In this section, a model for each yn ∈ Y that explicitly
captures the presence of outliers in the training data set Y is
introduced. To this end, each yn ∈ Y is modeled as

yn = Dsn + on + εn, n = 1, . . . , N (2)

where on denotes a deterministic outlier vector, and εn denotes
an inlier noise vector affecting yn. If yn is an outlier, then
on takes a nonzero value and lessens the effect of yn on
D; otherwise, on = 0N , where 0N is an N × 1 vector of
zeros. Solving for the tuple (D, {sn,on}Nn=1) using the set
of equations in (2) entails solving a nonlinear and under-
determined system of P equations with N(M + Q) + MQ
unknowns. Thus, auxiliary information about the structure of
each sn and the {on}Nn=1, and on the proportion of outliers
present in Y becomes essential to obtain an stable estimate for
(D, {sn,on}Nn=1) and avoid overfitting the model in (2).

The structural information about the outliers is summarized
by an auxiliary weighted graph G(V,E). The set V defines
the vertex set, with cardinality |V | = N , where each vertex is
associated with an on. The set E defines the edge set whose
elements define the structure of the on’s and the similarity of
each pair of on’s. The connectivity of G is compactly summa-
rized by the adjacency matrix W ∈ RN×N , where an entry
wn,n′ := [W]n,n′ > 0 if nodes vn, vn′ ∈ V are connected
in G, and wn,n′ = 0 otherwise. The topology of G, and
thus the underlying structure associated with the outliers, is

encapsulated in the Laplacian matrix L := diag(W1N)−W,
where 1N denotes an N × 1 vector of ones and diag(yn) a
diagonal matrix with yn on its main diagonal. Note that G
does not have to be connected.

Usually DL seeks sparse expansion coefficient vectors
{sn}Nn=1. Moreover, outliers by definition are rare and,
thus, few of them are assumed to be present in Y . The
sparse presence of outliers in (2) can be quantified through
the support of the vector [‖o1‖2, . . . , ‖oN‖2]. Let O :=
[o1, . . . ,oN] ∈ RM×N denote a matrix of outlier vectors,
S := [s1, . . . , sN] ∈ RQ×N a matrix of expansion coeffi-
cient vectors, and ‖O‖2,p := ‖[‖o1‖2, . . . , ‖oN‖2]‖p, where
‖on‖p := (

∑M
m=1 |om,n|p)1/p represents the `p-norm of on

with om,n := [on]m and p ∈ [1,∞). An estimator for
(D,S,O) that captures the spatial structure of the outliers
is given by the solution of

min
D∈D,S,O

1

2

N∑
n=1

‖yn −Dsn − on‖22 + η
N∑
n=1

‖sn‖1

+ λ‖O‖2,1 +
µ

2
Tr(OLO′) (3)

where Tr(·) denotes the matrix trace operator, η > 0 is a tuning
parameter that controls the sparsity of the sn’s λ > 0 a tuning
parameter that controls the number vectors in Y identified as
outliers, and µ > 0 a tuning parameter that controls how
much emphasis is placed on the structural relation among
outliers. The group Lasso regularizer in (3) encourages entire
on vectors to be set to zero. The Laplacian regularization term
in (3) can be explicitly written as

Tr(OLO′) =
1

2

M∑
m=1

[
N∑
n=1

N∑
n′=1

wn,n′(om,n − om,n′)2

]
. (4)

From (4), it follows that the Laplacian regularization term in
(3) encourages on’s to be similar to each other if they are
connected in G.

In general, (3) is a non convex optimization problem which
is difficult to solve. Nevertheless and as argued in the ensuing
section, when optimizing with respect to any one of D, S,
and O with the other two fixed, the resulting optimization
problems can be solved efficiently.

Remark 1 (Extensions to other robust DL formulations):
DL-alternate formulations that rely on a constrained version
of (3), where the `0-“norm” is used in lieu of the `1-norm, and
bestow structure on the dictionary’s atoms are commonly used
[4], [15]. There are no general rules for choosing between any
of these DL formulations and the selection often depends on
the specific problem at hand. Our outlier model in (2) and
the Laplacian regularizer in (4) can be used to develop robust
versions of these DL approaches. The resulting robust and
structure DL approaches are able to capture the underlying
structure of the outliers after appropriately modifying the
algorithmic framework outlined next.

IV. SOLVERS BASED ON BCD AND PG
In this section, a solver for (3) based on BCD is developed.

This solver capitalizes on the observation that efficient solvers

Algorithm 1 BCD algorithm for dictionary update in (6a)

Require: Y and tuple (D̂(k−1), Ŝ(k−1), Ô(k−1)).
1: Let D(υ) := [d

(υ)
1 , . . . ,d

(υ)
Q] and ŝ(k−1)

q,n := [Ŝ(k−1)]q,n.
2: Use υ as BCD iteration index and set D(0) = D̂(k−1).
3: for υ = 1, 2, . . . ,Υ do
4: for q = 1, . . . , Q do
5: Update each atom in D(υ) as

r(υ,k−1)
q,n = yn − o(k−1)

n −
Q∑
q′=1
q′ 6=q

ŝ
(k−1)
q′,n d

(υ−1)
q′ (5a)

u(υ)
q =

[
N∑
n=1

(
ŝ(k−1)
q,n

)2
]−1 [N∑

n=1

ŝ(k−1)
q,n r(υ,k−1)

q,n

]
(5b)

d(υ)
q =

u
(υ)
q

min{1, ‖u(υ)
q ‖2}

(5c)

6: end for
7: end for
8: return D̂(k) = D(Υ).

can be realized for updating either D, S, or O when the other
two optimization variables are fixed. In fact, (3) is convex with
respect to D and O individually. With f(D,S,O) denoting
the objective function in (3), the proposed BCD algorithm
minimizes f(D,S,O) with respect to each optimization block,
namely D, S, and O, one at a time. Let k denote the BCD-
iteration index. Our robust DL algorithm is summarized by
the following iterations

D̂(k) = arg min
D∈D

f(D, Ŝ(k−1), Ô(k−1)) (6a)

Ŝ(k) = arg min
S

f(D̂(k),S, Ô(k−1)) (6b)

Ô(k) = arg min
O

f(D̂(k), Ŝ(k),O) (6c)

where D̂(k), Ŝ(k), and Ô(k) denote estimates for D, S, and
O at iteration k, respectively.

Updating D(k) in (6a) is done via a BCD algorithm iterating
over the columns of D. Per BCD iteration, each atom of D
is updated with all other atoms fixed by solving the resulting
unconstrained LS optimization problem. This BCD algorithm
is summarized as Algorithm 1. Note that for (5b) to be well-
defined, each atom in D̂(k−1) must be used by at least one sn.
In practice, every unused atom of the dictionary is updated to
a randomly chosen element of Y in before running Algorithm
1 and (5b) is skipped for such an atom when updating the
dictionary. If there are no unused atoms, Algorithm 1 is
guaranteed to achieve the minimum of the cost in (6a) [2,
Prop. 2.7.1].

The update in (6b) decouples per column of S. The resulting
set of optimization problem are convex and correspond to
the Lagrangian version of the least-absolute shrinkage and
selection operator [14]. These optimization problem can be

Algorithm 2 PG algorithm for solving (6c)

Require: Y , (D̂(k), Ŝ(k), Ô(k−1)), and µ, λ,Λ > 0.
1: Let O(τ) := [o

(τ)
1 , . . . ,o

(τ)
N].

2: Use τ as PG iteration index and set O(1) = Ô(k−1).
3: for τ = 1, 2, . . . , T do
4: for n = 1, . . . , N do
5: Compute ωn(O(τ)) via (7a).
6: Compute hn(O(τ)) via (7b).
7: Update o

(τ)
n via (9).

8: end for
9: end for

10: return Ô(k) = O(T).

efficiently solved via, e.g, BCD or the alternating direction
method of multipliers [2], [4]. The update in (6c) entails
solving a convex optimization problem. However, tackling
(6c) in its current form leads to solvers whose computational
complexity can be high due to the coupling across on’s caused
by the Laplacian regularizer.

We propose to solve (6c) via a PG algorithm [1]. Although
the resulting solver for (6c) is iterative in nature, it features fast
convergence when compared to other first order optimization
methods such as gradient descent and BCD. Moreover, the
updates are decomposable across each on. Hence, they can be
parallelized. The PG algorithm for updating (6c) at iteration
k relies on

ωn(O(τ)) :=−(yn − D̂(k)ŝ(k)
n −o(τ)

n)+µO(τ)an (7a)

h(k)
n (O(τ)) := o(τ)

n − ω(k)
n (O(τ))/Λ (7b)

g(k)(O;O(τ−1)):=
N∑
n=1

[
1

2

∥∥∥on−h(k)
n (O(τ−1))

∥∥∥2

2
+
λ

Λ
‖on‖2

]
(7c)

where τ denotes the proximal method iteration index,
ωn(O(τ)) denotes the gradient of the differentiable part of
f with respect to on evaluated at O(τ), an the n-th column of
L, and Λ the Lipschitz constant for the gradient (with respect
to O) of the differentiable part of f , which corresponds to
the largest singular value of I + µL. Our iterative update for
computing (6c) is summarized as

O(τ) = arg min
O

g(k)(O;O(τ−1)). (8)

This update is separable across on’s. Computing each o
(τ)
n is

then done in closed form as

o(τ)
n = h(k)

n (O(τ−1))

(
1− λ

Λ‖h(k)
n (O(τ−1))‖2

)
+

(9)

where (·)+ := max{0, ·}. Note that 1/Λ in (9) can be
understood as the step size α of the PG algorithm [13, Sec.
4.2]. From this vantage point, it has been shown that the PG
algorithm is guaranteed to converge for any α ∈ (0, 1/Λ]. It
is also possible to choose α at each PG iteration via a line
search (see [13] and reference therein).

Figure 1. Images from the UCSD Anomaly Detection Dataset used to train the
dictionary. Each image was partitioned to multiple blocks and their relative
position with respect to each other was used to define an auxiliary graph
whose structure is captured by the Laplacian matrix L0. This spatial structure
is illustrated for the n-th block (the one corresponding to yn) on the left side
of the figure. The Laplacian matrix that captures the structure of the entire
dataset Y is illustrated on the right side of the figure, where 0 denotes a
551 × 551 matrix of zeros. The portion of L enclosed by the red triangle
underscores the fact that L does not capture block structures across images.

The PG algorithm for solving (6c) is summarized as Algo-
rithm 2. Each iteration of this PG algorithm can be computed
in O(MNQ + MN2) run time, where the quadratic depen-
dency on N stems from the second term in (7a) that defines
an operation to be performed for each n. The computational
complexity of Algorithm 2 can be reduced after noticing that
O(τ) is a sparse matrix and often L is a sparse matrix as
well. In this case, specialized sparse matrix multiplication
algorithms can be used to reduce the run time of (7a) for
each n. The PG method outlined by Algorithm 2 converges
to the solution of (6c) and features a worst-case convergence
rate of O(1/τ) [1], [13].

Remark 2 (Improved convergence rate for the PG itera-
tions): Recent works have shown that it is possible to enhance
the suboptimal convergence rate of the PG algorithms while
maintaining their computational simplicity [1], [13]. From that
vantage point, it becomes possible to develop an accelerated
PG (APG) algorithm for solving (6c) which features worst-
case convergence rate of O(1/τ2) to the solution of (6c), see
[1] and references therein. The resulting APG solver requires
a copy of both O(τ) and O(τ−1). Maintaining a copy of
O(τ−1) does not add excessive data storage requirements since
O(τ−1) is column-wise sparse. Similarly to the PG algorithm,
each iteration of the APG algorithm can be computed in
O(MNQ + MN2) run time and benefits from specialized
sparse matrix multiplication algorithms for updating each ωn.

V. NUMERICAL EXAMPLES

In this section the numerical performance of the robust
DL algorithm defined in (6) is illustrated via numerical tests
on two real datasets. For these tests all algorithms were
implemented in Python 2.7. Numerical tests were performed
on the University of California San Diego (UCSD) Anomaly
Detection Dataset [8] and on the Resampled United States
Postal Service (USPS) dataset [6].

(a) Iterations of Algorithm 2. (b) BCD iterations in (6).

Figure 2. Illustration of the evolution of the cost in (3) during the execution of
(6c) via Algorithm 2 (a), and during the execution of the robust DL algorithm
defined by (6) (b). Subfig. a: evolution of the cost in (3) when updating O via
Algorithm 2. These curves were obtained for an early BCD iteration of (6)
and various choices of step size α. Note that the converge rate of Algorithm
2 was not significantly impacted by the choice of µ. Subfig. b: evolution of
the cost in (3) during the execution of the BCD algorithm in (6) for various
values of the dictionary size Q.

A. UCSD Anomaly Detection Dataset

The UCSD Anomaly Detection Dataset dataset features
video of a pedestrian walkway acquired with an stationary
camera and a fixed background. Several works have used this
dataset for testing anomaly detection algorithms in crowded
scenes by capitalizing on both temporal and spatial structure.
[8], [7]. With few exceptions, most portions of the video
contain only pedestrians moving along the walkway. Abnormal
events include the presence of bikers, skates and small carts.
Three images from this dataset were used for this test, see
Fig. 1. Each image was chosen so that the crowd density
in the image was low. Note that no artificial anomalies were
introduced in these images.

Each image was resized from 158×258 pixels to 152×252
and then partitioned into 8 × 8 pixel blocks. The resulting
N = 1, 653 blocks (551 per image), were used to construct
Y ⊂ RM , with M = 64. Each 64-dimensional yn ∈ Y was
constructed by vertically stacking the columns of each block.
No further preprocessing was performed on the elements of
the training set. In order to capture the spatial structure among
blocks per image, an auxiliary graph with N0 = 551 nodes was
constructed as follows. Each yn was assigned to a node of the
graph. The edges for each node were chosen so that each yn is
connected to its spatial neighboring blocks only, as shown in
Fig. 1, and their corresponding weights were set to unity. Thus,
in the resulting graph the degree of each node is either 3 for
corner blocks, 5 for border blocks that are not corners, and 8
for all other ones. The connectivity of the graph is summarized
by the Laplacian matrix L0. Finally, L was defined as a block
diagonal matrix containing three copies of L0 on its main
block diagonal (see Fig. 1). Note that L does not capture
block structures across images. With the current form of L
and different from [8], [7], our method does not rely on any
form of temporal information. Such temporal information can,
however, be included on the off-diagonal entries of L.

Fig. 2a shows the evolution of the cost function in (3) as the
PG algorithm iterates for solving (6c). For illustration purposes

(a) (b) (c)

(d) (e) (f)

Figure 3. Illustration of blocks identified as outliers. Subfigs. (a), (b), and (c) were obtained by setting (λ, µ) = (37.5, 0). In this case, 191 blocks
(approximately 12% of the training blocks) were identified as outliers and on average 57% of the entries of each sn were set to zero. Subfigs. (d), (e), and
(f) were obtained by setting (λ, µ) = (36.0, 10). In this case, 207 blocks (approximately 12.5% of the training blocks) were identified as outliers and on
average 55% of the entries of each sn were set to zero.

only, we used a modified version of Algorithm 2 where a
tunable step size α was used in lieu of the factor 1/Λ. The
PG algorithm is guaranteed to converge for any α ∈ (0, 1/Λ]
[13]. However, the best convergence rate is achieved by setting
α = 1/Λ as in Algorithm 2. In practice it was observed
that during the first iteration of the BCD algorithm the PG
algorithm took less than 20 iterations. As the BCD iterations
progressed, the average number of PG iterations required for
convergence decreased to around 3 - 5. Fig. 2b illustrates the
convergence rate of the BCD algorithm defined by the updates
in (6) for various values of Q.

Fig. 3 shows the blocks identified as outliers in the images
shown in Fig. 1. For this experiment, a dictionary with Q = 64
atoms was used. Parameter η was set to η = 3.7 so that on
average 36 nonzero entries were chosen for each sn. Interest-
ingly, some of the blocks identified as outliers correspond to
the portions of the images displaying pedestrians and the ser-
vice cart. It was observed that setting µ > 0 encouraged outlier
blocks to be chosen according to the structure defined by the
L. For instance, in Fig. 3e the outlier blocks corresponding to
some of the pedestrians seem to follow more rigidly the spatial
structure defined for the elements of Y . Finally, several blocks
corresponding to the foliage in the background are picked up
as outliers. This can in part be due to the texture richness
inherent to foliage and other natural texture images. Using a
dictionary with Q > 64 and temporal information in L can
help alleviate the sensitivity of our method to the background
texture diversity.

B. USPS Dataset

The USPS resampled data set is a randomly shuffled version
of the USPS handwritten numeral digital data, which had
many more training digits than testing digits. This dataset
includes 4,696 16 × 16 training digits, which are stored as
256-dimensional column vectors whose entries range over the
interval [−1, 1]. In this test, N = 1, 000 digits were used for
training and artificial anomalies were introduced by coloring a
fraction of randomly chosen digits. If a digit is deemed as an
anomaly, its numeral is colored red and a blue stripe is placed
over the center of the image. Otherwise, the digit is left as a
grayscale image. In order to emulate the RGB model for each
digit, three copies of each training digit were created, one for
each channel of the RGB color model. Per digit, each RGB-
color-channel image was vectorized and vertically stacked to
form a 768× 1 training vector yn ∈ Y .

The goal of this test was to find the injected anomalies along
with other “odd” looking digits in Y . The size of the dictionary
was set to Q = 100 and it was initialized with randomly
chosen elements form Y . The spatial structure of the digits
was captured via an auxiliary graph with N = 1, 000 nodes.
For each node, the Cosine similarities between its image
and all other images corresponding to all other nodes were
computed. Per node n, a set of K weighted edges was added
to the graph, where the chosen edges corresponded to the
node pairs {(n,m)}m6=n with the K-largest similarity score.
In this experiment, the constrained DL formulation that uses
the `0-“norm” was used in lieu of (3) [15]. Thus, the solvers
used for (6a) and (6b) were modified accordingly. Specifically,

Figure 4. Precision-Recall curves obtained by the robust DL algorithm on
the USPS dataset with manually-injected color anomalies. Dashed light-gray
lines denote the isolevel lines for various F-score levels, which is defined as
the harmonic mean of the precision and recall scores, indexed by f .

orthogonal matching pursuit (OMP) was used to solve (6b) and
the constrained set D was dropped from (6a). The desired set
of nonzero coefficients used by OMP was set to S0 = 40.

Various percentages of anomalous images ranging from 1%
to 40% were injected into the training set. The parameters λ, µ,
and K were tuned so as to try to find all the artificially-added
anomalous digits. Fig. 4 shows Precision-Recall curves for the
various percentages of injected anomalies. These curves show
that precision scores are higher for a broad range of recall
scores when a smaller percentage of anomalies are injected.
An example of the anomalies detected is shown in Fig. 5. In
this case, 100 images were colored (10% anomalies injected)
and 78 were correctly identified yielding a precision score of
78.00% and recall score of 60.94%.

VI. CONCLUSIONS

In this paper, a robust DL algorithm that leveraged known
structure among the elements of the training set was de-
veloped. The training set structure was summarized by an
auxiliary graph whose connectivity was defined according to
how similar elements of the training set were. A BCD solver
was developed for learning the dictionary and identifying the
outliers. Numerical tests on two real datasets were used to il-
lustrate the performance of the proposed robust DL algorithm.

REFERENCES

[1] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[2] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 2nd ed.,
1999.

[3] Z. Chen and Y. Wu, “Robust dictionary learning by error source
decomposition,” in Proc. of IEEE International Conference on Computer
Vision, Dec. 1-8, Sydney, Australia 2013, pp. 2216–2223.

[4] M. Elad, Sparse and Redundant Representations: From Theory to
Applications in Signal and Image Processing. New York: Springer,
2010.

Figure 5. Anomalies detected on the artificially-modified Resampled USPS
dataset using the robust DL algorithm with parameters λ = 1.025, µ = 480,
and K = 100. Artificially injected anomalies are shown in color.

[5] P. A. Forero and G. B. Giannakis, “Sparsity-exploiting robust multidi-
mensional scaling,” IEEE Transactions on Signal Processing, vol. 60,
no. 8, pp. 4118–4134, Aug. 2012.

[6] J. J. Hull, “A database for handwritten text recognition research,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 16,
no. 5, pp. 550–554, May 1994.

[7] W. Li, V. Mahadevan, and N. Vasconcelos, “Anomaly detection and
localization in crowded scenes,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 36, no. 1, pp. 18–32, Jan. 2014.

[8] V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos, “Anomaly
detection in crowded scenes,” in Proc. of IEEE Conference on Computer
Vision and Pattern Recognition, Jun. 13-18, San Francisco, CA, United
States 2010, pp. 1975–1981.

[9] G. Mateos and G. B. Giannakis, “Robust nonparametric regression via
sparsity control with application to load curve data cleansing,” IEEE
Transactions on Signal Processing, vol. 60, no. 4, pp. 1571–1584, Apr.
2012.

[10] ——, “Robust PCA as bilinear decomposition with outlier-sparsity
regularization,” IEEE Transactions on Signal Processing, vol. 60, no. 10,
pp. 5176–5190, Oct. 2012.

[11] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete
basis set: A strategy employed by V1?” Vision Research, vol. 37, no. 23,
pp. 3311 –3325, 1997.

[12] Q. Pan, D. Kong, C. Ding, and B. Luo, “Robust non-negative dictionary
learning,” in Proc of 28th AAAI Conference on Artificial Intelligence,
Jul. 27- 31, 2014, Quebec, Canada 2014.

[13] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optimiza-
tion, vol. 1, pp. 123–231, 2013.

[14] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society. Series B (Methodological), vol. 58,
no. 1, pp. 267–288, 1996.

[15] I. Tošić and P. Frossard, “Dictionary learning,” IEEE Signal Process.
Mag., vol. 28, no. 2, pp. 27–38, Mar. 2011.

[16] N. Wang, J. Wang, and D.-Y. Yeung, “Online robust non-negative
dictionary learning for visual tracking,” in Proc. of IEEE International
Conference on Computer Vision, Dec. 1-8, Sydney, Australia 2013, pp.
657–664.

[17] A. M. Zoubir, V. Koivunen, Y. Chakhchoukh, and M. Muma, “Robust
estimation in signal processing: A tutorial-style treatment of fundamental
concepts,” IEEE Signal Processing Magazine, vol. 29, no. 4, pp. 61–80,
Jul. 2012.

