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Abstract—In theory, nonlinear adaptive beamforming
techniques which form an extended virtual array from a

sparsely populated physical array offer significantly enhanced
adaptive degrees of freedom towards mitigating environmental

interference as opposed to conventional linear beamformers. A

neglected practical issue however, central to the implementation
of nonlinear beamformers in radar, is an accurate determination

of the data support necessary for computing the adaptive
weights and the adapted array output. This paper investigates

the data support requirements for a new nonlinear beamformer
operating on the streaming output of a multichannel array.

The array exists within a quasi-stationary or slowly varying
environment where more interference sources are present than

array elements.

I. ANALYTICAL BEAMFORMER: KNOWN COVARIANCE

MATRIX AND INTERFERENCE DIRECTIONS

This paper considers the effects of finite sample support on

nonlinear adaptive beamforming as applied to a nested linear

array architecture [1]. Nested linear arrays are sparse arrays

formed by concatenating two or more uniform linear arrays

(ULAs) to create a single array of N elements with increasing

inter-sensor spacing. One example of a two-level nested linear

array is an array of length 12 with 6 elements located at

the positions {0, 1, 2, 3, 7, 11}. The smallest spacing between

the elements of a nested array corresponds to one-half the

wavelength of the highest received frequency to avoid spatial

aliasing.

To describe the adapted output of the ideal nonlinear

beamformer assume that all signal sources are mutually

uncorrelated and arriving from distinct directions. Consider

K interference sources impinging on the array and denote

by xn[p] the output of the nth array element at time

instant p. Let sk[p] be the signal emitted by the kth source

from direction θk . The noise nn[p] is assumed wide-sense

stationary (WSS) with an unknown spatial covariance matrix

and is statistically independent from the interference sources.

Define x[p] = [x1[p], . . . , xN [p]]T , s[p] = [s1[p], . . . , sK[p]]T

and n[p] = [n1[p], . . . , nN [p]]T . The received signal can be

written as

x[p] = As[p] + n[p] (1)

where A = [a(θ1) a(θ2) . . .a(θK )] is the array manifold

matrix. The N -by-1 steering vector a(θ) is

a(θ) =
[

1 ej(2π/λ)r1 sin θ . . . ej(2π/λ)rN−1 sin θ
]T

(2)

where ri denotes the position of the ith sensor which is

assumed to be an integer multiple of λ/2.

In general, the covariance matrix for a nonstationary process

is R(p, l) = E[x[p]x[p− l]H ]. In this paper it is assumed that

the radar environment is WSS on a sufficiently short time scale

and the data covariance matrix for one such interval is defined

as

R = E[x[p]x[p]H] = ASAH + C (3)

where C = E[n[p]n[p]H] and S is a diagonal matrix of signal

powers σ1
2, σ2

2, . . . , σK
2. Vectorizing the covariance matrix

R yields

z = vec(R) = vec(ASAH) + vec(C) (4)

= (A∗ �A)d + vec(C)

where

A∗ �A =
[

a(θ1)
∗
⊗ a(θ1) · · ·a(θK )∗ ⊗ a(θK )

]

(5)

is the Khatri-Rao product of the matrices A∗ and A

and ⊗ represents the Kronecker product. The vector

d = [σ1
2, σ2

2, . . . , σK
2]T . The distinct entries in the columns

of A∗ � A correspond to steering vector components of a

virtual array whose element locations are given by the distinct

values in the set {ri − rj : 1 ≤ i, j ≤ N}. The virtual array

is known as the difference co-array and has length equal to

(N2 − 2)/2 + N for N even. For a two-level nested array

with six elements at positions {0, 1, 2, 3, 7, 11} the difference

co-array is a ULA with 23 elements spaced λ/2 apart. The

adapted output of the nonlinear beamformer is formed by

determining a length N2 weight vector w and computing the

inner product wHz.

A. Derivation of Analytical Beamformer Solution

The desired beamformer satisfies specified null constraints

in the directions θk of interferences and a mainbeam constraint

in the desired pointing direction θ0 while simultaneously

minimizing the integrated sidelobe level of the adapted antenna

pattern. The objective function to be optimized is to minimize

J(w) =

L−1
∑

j=0

|wH(a(θj )
∗
⊗ a(θj))|

2 (6)

such that

GHw =













(a(θ0)
∗
⊗ a(θ0))

H

(a(θ1)
∗
⊗ a(θ1))

H

...

(a(θK )
∗
⊗ a(θK ))H













w = b (7)
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where the L angles θj in the summation are sampled on a

discrete grid in the sidelobe region of the antenna pattern.

Define the Hermitian matrix Q to be

Q ≡
L−1
∑

j=0

[a(θj)
∗ ⊗ a(θj)][a(θj)

∗ ⊗ a(θj )]
H (8)

and the optimization program becomes

minimize J(w) = wHQw (9)

such that GHw = b.

The constraint matrix G has linearly independent

columns. Note that the standard analytic solution

wOPT = Q−1G[GHQ−1G]−1b for quadratic functions

with linear constraints is not applicable here because the

marix Q is not full rank since each vector a(θj )
∗
⊗ a(θj)

contains redundant components. In this section an analytic

solution for the program in (9) will be derived using the

method of Lagrange multipliers.

Adjoining the constraints in (9) to the objective function

yields the real-valued Lagrangian,

H(w) = 1
2w

HQw+λ
T
R<e{GHw−b}+λ

T
I =m{GHw−b}.

(10)

The factor of 1/2 is included to simplify the arithmetic.

Minimizing the Lagrangian transforms the original

optimization program with constraints into an unconstrained

minimization. The optimum solution is obtained by taking the

gradient of H(w) with respect to the real and imaginary parts

of w = wR + jwI and then setting the resulting quantities

equal to zero. This step yields,

∂H(w)

∂wR
= 1

2
wHQ + λ

T
R<e{GH} + λ

T
I =m{GH} = 0

(11)

∂H(w)

∂wI
= 1

2 jwHQ− λ
T
R=m{GH} + λ

T
I <e{GH} = 0

Defining the derivative of H(w) with respect to w as [2]

∂H(w)

∂w
=

∂H(w)

∂wR
− j

∂H(w)

∂wI
(12)

and the complex (K + 1) × 1 Lagrange multiplier vector as

λ = λR + jλI yields

Qw = −Gλ. (13)

Next the singular value decomposition (SVD) of Q is

computed. The rank of Q, denoted r, is equal to the length

of the difference co-array associated with the nested array of

physical elements. For example, if the nested array consists of

6 elements, then r = 23.

Q =
[

U1 U2

]

[

Σ 0

0 0

][

VH
1

VH
2

]

. (14)

The matrix sizes are; U1 is N2 × r, U2 is N2 × (N2 − r),
V1 is N2 × r, V2 is N2 × (N2 − r), and Σ is r × r. The

matrix V1V
H
1 is the projection onto N(Q)⊥ = R(QH) and

the matrix V2V
H
2 is the projection onto N(Q) [3]. Here, R

denotes the range space of a matrix, N the null space, and ⊥

the orthogonal complement. Decomposing the weight vector

w into

w = V1V1
Hw + V2V2

Hw (15)

and substituting into (13) produces

V1V
H
1 w = −V1Σ

−1UH
1 Gλ. (16)

Since QV2V
H
2 w = 0, the orthogonal component of w,

V2V
H
2 w, does not contribute to the solution. Consequently,

the optimal weight vector can now be set equal to

wOPT = −V1Σ
−1UH

1 GλOPT (17)

where λOPT is the corresponding optimal Lagrange

multiplier vector. The astute reader will recognize the matrix

V1Σ
−1UH

1 as the pseudoinverse of Q. The vector λOPT is

determined by applying the constraint equation GHw = b.

In most practical applications, the (K + 1) × (K + 1) matrix

GHV1Σ
−1UH

1 G is invertible so the final result becomes

wOPT = V1Σ
−1UH

1 G[GHV1Σ
−1UH

1 G]−1b. (18)

II. PROPOSED CLOSED-LOOP BEAMFORMER STEP 1;

DOA ESTIMATION

This section summarizes an approach described in [4] for

estimating the directions of arrival (DOAs) for environmental

interference sources. Once the directions of the interference

sources are estimated, the adaptive beamformer weights can

be computed using an algorithm proposed in Section III. The

interference sources are assumed to be mutually uncorrelated

and arriving from distinct directions. A target signal is

assumed not present in the received data.

Define a local covariance matrix valid for a block of L
vector samples as

Rm = E[x[p]x[p]H] for (m − 1)L ≤ p ≤ mL − 1 (19)

= ASmAH + C

where Sm is a diagonal matrix of signal powers

σm1
2, σm2

2, . . . , σmK
2 at frame m. The first step in

the proposed beamformer is to estimate the signal directions

θ1, . . . , θK from a sequence of M local covariance matrices

R1, . . . ,RM without knowledge of the spatial noise

covariance matrix C or the signal covariances Sm. Vectorizing

the local covariance matrix Rm yields

zm = vec(Rm) = (A∗ �A)dm + vec(C) (20)

where the vector dm = [σm1
2, σm2

2, . . . , σmK
2]T . Stacking

M vectors zm into a data matrix Y = [z1, . . . , zM ] yields

Y = (A∗ � A)ΨT + vec(C)1T
M (21)

where Ψ = [d1, . . . ,dM ]T and the M -by-1 vector 1M

consists of M ones. It is assumed that the rank of Ψ is K.

This condition is satisfied in practice if the temporal powers of

the signal sources are slightly varying due to platform motion

or changes in aspect angle. Changes in signal angles of arrival
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are assumed to occur over a longer time scale than temporal

variations in the signal powers primarily due to the distance

between the signal sources and the radar.

Next the deterministic noise term vec(C) is eliminated from

Y by forming the projection matrix

P⊥

1M
= IM − (1/M)1M1M

T . (22)

Multiplying P⊥

1M
and Y produces the noise-free data matrix

YP⊥

1M
= (A∗ �A)(P⊥

1M
Ψ)T . (23)

Since the angles θi are assumed distinct, (A∗ �A) has full

column rank. Computing the SVD yields

YP
⊥

1M
=

[

Us Un

]

[

Σ 0

0 0

][

Vs
H

Vn
H

]

. (24)

The dimensions of Us are N2 × K, Un is N2 × (N2 − K),

Vs is M × K, Vn is M × (N2 − K), and Σ is a K × K
diagonal matrix. Note that by the properties of the SVD,

R⊥(A∗ �A) = R⊥(Us) = R(Un) (25)

and the matrix Pn = UnU
H
n is the projection matrix onto

R⊥(A∗ � A). Since the source and noise subspaces are

orthogonal, the kth source DOA satisfies

r(θk) = Un
H [a(θk)

∗
⊗ a(θk)] = 0, k = 1, . . . , K (26)

and the proposed criterion for estimating each DOA θk

becomes

find θ (27)

such that ||r(θ)||2 = 0.

A. Finite Sample Effects

The effects of finite sample support for linear beamformers

acting on the streaming output of a radar receiver have been

well studied in the literature [5]–[7]. These analyses however

do not adequately address the data support requirements for

nonlinear beamformers. This paper provides some preliminary

results illustrating the effects of finite data support on

nonlinear adaptive processing by considering the performance

of the beamformer proposed in the next section. This

closed-loop beamformer operates in two steps. The first step

uses the estimated DOAs θ̂k of interference to compute an

adaptive weight vector w and the second step forms the

adapted array output wHz.

To begin the analysis, assume that only estimated local

covariance matrices R̂m are available and that the second

order statistics of the received radar signal are slowly varying.

Under this scenario, the available data support becomes very

important since the signal covariance matrix Ŝm implicit in

the estimate R̂m may no longer be strictly diagonal even if

the signal sources are perfectly uncorrelated since the second

order statistics of the received signals are computed from a

finite number of samples.

Define the estimated local covariance matrix R̂m to be

R̂m =
1

L

mL−1
∑

p=(m−1)L

x[p]x[p]H (28)

with ẑm = vec(R̂m). Form a data matrix Ŷ = [ẑ1, . . . , ẑM ]
consisting of M vectorized local covariance matrix estimates

and compute the SVD of the noise-free data matrix as in

ŶP⊥

1M
=

[

Ûs Ûn

]

[

Σ̂ 0

0 ∆̂

][

V̂H
s

V̂H
n

]

(29)

where ∆̂ corresponds to a diagonal submatrix of small scalar

values. Now the criterion for estimating the angles θk becomes

find θ (30)

such that ||ÛH
n [a(θ)∗ ⊗ a(θ)]||2 ≤ ε

where ε represents a detection threshold.

III. PROPOSED CLOSED-LOOP BEAMFORMER STEP 2;

PROJECTED GRADIENT ITERATIONS

To avoid the matrix inversion computations required in the

analytical solution (18) an iterative algorithm is sometimes

preferred. Given an initial weight vector w0 that satisifes

the desired null and mainbeam consraints, the optimization

program in (9) can be solved iteratively by projecting the

gradient of J(w) onto the orthogonal complement of the

constraint subspace [8]. In other words,

wk+1 = wk − µ∇⊥J(wk) (31)

where µ is a small step-size parameter that ensures

convergence and

∇⊥J(wk) = P⊥∇J(wk). (32)

The matrix P⊥ = I −GH(GGH)−1G is the projection

matrix onto the orthogonal complement of the constraint

subspace. Note that for

J(wk) = 1
2wk

HQwk, (33)

∇J(wk) = Qwk.

A. Initial Condition A

One method for computing an initial weight vector w0 after

the interference directions have been estimated is to solve a

system of equations. For example, if the mainbeam is pointed

towards θ0 and K jammers arrive from the directions θ̂k for

k = 1, . . . , K, then w should be chosen as the solution to

Lw =















(a(θ0)
∗
⊗ a(θ0))

H

(a(θ̂1)
∗

⊗ a(θ̂1))
H

...

(a(θ̂K )
∗

⊗ a(θ̂K ))H















w =













1

0

...

0













= b. (34)

The system of equations in (34) is under-determined if

K < N2, in which case infinitely many solutions are possible.
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The unique minimum norm solution is given by

wmin = LH(LLH)−1b. (35)

B. Initial Condition B

This section describes another procedure for initializing

the iterated beamformer with a vector w0 that satisfies

the desired null and mainbeam constraints. Note that the

K null constraints at θ̂1, . . . , θ̂K are satisfied if and only

if w ∈ R⊥(A∗ �A), the orthogonal complement of the

interference subspace. Recall that A∗ � A does not contain

a(θ0)
∗ ⊗ a(θ0). Thus, there exists a vector v such that

w = Ûnv (36)

and (a(θ0)
∗ ⊗ a(θ0))

Hw 6= 0. This implies that

LÛnv = b (37)

for some v. Let fH = (a(θ0)
∗ ⊗ a(θ0))

HÛn. Then,













fH

0H

...

0H













v = b (38)

which implies that

w =
P̂n(a(θ0)

∗ ⊗ a(θ0))

(a(θ0)∗ ⊗ a(θ0))HP̂n(a(θ0)∗ ⊗ a(θ0))
(39)

where P̂n = ÛnÛ
H
n . A similar linear beamformer solution is

described in [9] but derived using a very different approach

based on polynomials.

C. Polak-Ribiere Conjugate Gradient Algorithm

An alternative iterative algorithm which forms

Polak-Ribiere conjugate directions from the projected

gradient may increase the convergence rate. This algorithm is

listed below. Figure 1 illustrates adapted beampatterns created

using the conjugate gradient algorithm with initial condition

(B) for a two-level nested array. For this case, the data matrix

Ψ was constructed as

Ψ = [d1, . . . ,d1]
T + νD (40)

where ν = 10−2 and D consists of random entries uniformly

distributed in the interval (0, 1). The random matrix νD

is meant to model a slowly changing radar environment

and guarantees that the rank of Ψ equals K. The vector

d1 =
[

3 10 20 15 5 30 25 5 12
]T

contains

the interference powers (shown in dB) for jammers located

at {−53◦,−40◦,−26◦,−20◦,−10◦, 10◦, 15◦, 33◦, 47◦}. The

step size constant λj = 10−4 for all iterations. The mainbeam

is steered to 0◦.

Observe that Fig. 1 illustrates the progression of the adapted

beampattern over 100 iterations of the algorithm. The curve

labeled w0 is the adapted beampattern using the initial weight

vector defined in (39). The curve labeled w100 is the adapted

beampattern after 100 iterations and the red curve corresponds

to the analytical beamformer computed using (18). The circle

at 0◦ represents the gain of the uniformly weighted nested

array (equal to 7.78 dBi). As intended, the w100 curve shows

a significant reduction in the ambient sidelobe level (at the

expense of a wider mainbeam). In this case, an interesting

result is that the initial weight vector w0 is the same with

either initializing procedure (A) or (B). In general however,

for larger values of ν , w0 will be different for each initial

condition.

Algorithm 1. Conjugate Gradient Algorithm to Compute Weight Vector

Require: Initial weight vector w0 that satisfies constraints.

1: h0 = −∇⊥J(w0)
2: g0 = h0

3: For each iteration j = 0, 1, . . . compute a step size λj

using any line optimization routine. Alternatively, set λj

to a small value that ensures convergence.

4: wj+1 = wj + λjhj

5: gj+1 = −∇⊥J(wj+1)

6: µj =
(gj+1 − gj)

T
gj+1

‖gj‖2

7: hj+1 = gj+1 + µjhj

8: j = j + 1
9: Go to 3

IV. SIMULATED RESULTS

A. Simulation Framework

Simulated results are based on a radar that utilizes a

two-level nested linear array antenna with an independent

receiver channel behind each array element. The processing

for each array element channel assumes the received signal

is perfectly downconverted to baseband. It is then sampled

by an analog-to-digital converter (ADC) and convolved with

a matched filter. The matched filter output from each array

element sampled at the target range bin is used to form an

array steering vector corresponding to each received pulse. The

received waveform is a linear chirp with a pulse width of 3.2

µsec and a swept bandwidth of 10 MHz. The ADC sampling

rate is 40 MHz and the initial phase of the received chirp at

each array element is set equal to the interelement phase shift

given by (2). The energy of each radar pulse is normalized

such that the waveform ambiguity function evaluated at the

origin (corresponding to zero target delay and zero target

Doppler shift) is equal to unity.

B. Effect of Sample Support on DOA Estimation

Figure 2 illustrates the effect of finite sample support on

DOA estimation performance. DOA estimation was performed

using data samples before pulse compression. The plot shows

the DOA search function defined in (30) for different values

of L in (28) and the number M of vectorized local covariance

matrix estimates. Figure 2 demonstrates that increasing the

total number of data snapshots improves the accuracy of

DOA estimates by making the nulls in the DOA search

function deeper and more precise. The jammer locations were

NRL/PP/5340-15-0002
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specified at {−53◦,−40◦,−26◦,−20◦, 15◦, 33◦, 47◦} and the

jamming-to-noise ratio (JNR) for each jammer was randomly

chosen between 0 and 30 dB after every interval of 40 pulses.

Figure 3 is a close-up of the DOA search function in the

vicinity of 15◦.

C. Effect of Sample Support on Adapted Array Output

For these results, the adaptive weight vector w was

assumed to be known apriori and the vectorized estimated

covariance matrix ẑ includes a target signal. Figure 4 illustrates

10log10|w
H ẑ| for the case where the single pulse, target

signal-to-noise ratio (SNR) at a single array element is 13

dB. The black curve corresponds to the adapted output when

only the target signal is present without noise. The plot shows

that with just a single data snapshot the adapted output is

very noisy. However, by using L = 100 pulses to form ẑ, the

adapted output more closely follows the desired beampattern.

Figure 5 illustrates similar results for a single snapshot (L = 1)

with the the target SNR equal to 30 dB.

Figures 6 and 7 illustrate the case where a single jammer

is present at −53◦. The total input JNR is 15 dB. Figures
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8 and 9 illustrate the case where 7 jammers are located

at {−53◦,−40◦,−26◦,−20◦, 15◦, 33◦, 47◦} and the JNR of

each jammer is {20, 15, 5, 30, 25, 5, 12} dB respectively. The

total JNR at each array element is now 31.75 dB.

V. CONCLUSION

This paper considers the impact of sample support size on

nonlinear adaptive beamforming in radar. A new nonlinear

beamformer is proposed which operates on the streaming

output of a multichannel array. Simulation results suggest

that the nulling performance of a closed-loop nonlinear

beamformer is especially sensitive to sample size at low SNRs.
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