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Abstract—We investigate the fundamental information theo-
retic limits of cache-aided wireless networks, in which edge
nodes (or transmitters) are endowed with caches that can store
popular content, such as multimedia files. This architecture aims
to localize popular multimedia content by proactively pushing
it closer to the edge of the wireless network, thereby alleviating
backhaul load. An information theoretic model of such networks
is presented, that includes the introduction of a new metric,
namely normalized delivery time (NDT), which captures the
worst case time to deliver any requested content to the users. We
present new results on the trade-off between latency, measured
via the NDT, and the cache storage capacity of the edge nodes.In
particular, a novel information theoretic lower bound on NDT is
presented for cache aided networks. The optimality of this bound
is shown for several system parameters.

Index Terms—Caching, 5G, degrees of freedom, latency.

I. I NTRODUCTION

Edge processing is one of the emerging trends in the
evolution of 5G networks [1]. It refers to the utilization of
locally stored content and computing resources at the network
edge, i.e., closer to the users. Such localization is particularly
appealing for both low-latency or location-based applications
as well as multimedia transmissions. A network architecture
with edge processing capability is shown in Fig. 1(a). Here,
edge nodes (ENs), such as base stations or eNodeBs in
LTE, are equipped with local caches which can store popular
content, most notably multimedia files. The local availability
of popular content at the network edge has the potential of
reducing the delivery latency as well as the overhead on
backhaul connections to content servers. As a result, cache
enabled networks have been studied extensively in recent
literature [2]–[7].

In this paper, we investigatecache-aided wireless networks,
where ENs are endowed with caching capability to store
popular content locally. The design of cache-aided wireless
networks involves two key design questions: a)what to cache,
i.e., how should the storage at ENs be utilized, and which
content must be stored; and b)how to efficiently deliverthe
requested content to the users by leveraging the caches at the
ENs. The design ofcaching policiesis typically done at the
long time scale at which users’ preferences are invariant and
can span many transmission intervals, each corresponding to a
set of requests from the users. Hence, the caching policy must

(a)

(b)
Fig. 1. (a) Information-theoretic model for edge caching for M = 2

ENs servingK = 2 users; (b) Trade-off between the introduce metric of
normalized delivery time (NDT),δ∗, and the fractional cache sizeµ with full
CSI at ENs and users.

be agnostic to the demands of the users as well as to the
instantaneous wireless channel conditions. Instead, efficient
delivery of requested content to users in each transmission
interval calls for thedesign of transmission policiesthat
utilize the available wireless channel state information (CSI)
at the ENs and the instantaneous demands of the users. We
first present an information theoretic modeling of cache-aided
wireless networks that succinctly captures its new design
aspects and constraints. We then develop a new performance
measure for such networks termed theNormalized Delivery
Time (NDT), which measures the worst-case latency incurred
by a cache-aided wireless network relative to an ideal system
with unlimited caching capability and interference-free links
to the users. This facilitates a latency centric analysis ofthe
high signal-to-noise ratio (SNR) degrees-of-freedom (DoF)
performance of the system.
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Example 1. To illustrate the NDT performance metric, con-
sider the set-up of Fig. 1(a), in which two ENs, labeled EN1

and EN2 are deployed to serve two users over a shared wireless
channel. We assume that there is a library ofN popular files,
each of sizeL bits, and each EN can cache at mostµNL
bits. In other words,µ ∈ [0, 1] denotes thefractional cache
size, i.e., the ratio between the available per-file storage at
an EN and the total size of all the files. For the example
shown in Fig. 1(a), the information-theoretically optimaltrade-
off between NDTδ∗(µ) and the fractional cache sizeµ is
shown in Fig. 1(b). To explain the operating points on this
curve, first considerµ = 1, i.e., the case when both ENs can
store all files, and full cooperative transmission is possible
from the ENs, i.e., via zero-forcing beamforming for any set
of users’ requests. This yields an NDT ofδ∗(1) = 1, implying
that the latency performance is the same as that of the ideal
interference free system. On the other hand, atµ = 1/2, which
is the smallest cache for enabling the delivery of any set of
requests, the NDT increases toδ∗(1/2) = 3/2, and is achieved
via interference alignment, thus revealing the performance loss
due to decrease in the fractional cache size.

Related Work: Cache-aided interference channels were first
investigated in a recent work by Maddah Ali and Niesen [8],
[9], who introduced the problem and investigated it forM = 3
ENs andK = 3 users, and presented an upper bound on the
NDT for this specific setting ofM = K = 3. However, no
attempt was made in [8] to develop lower bounds on NDT or
to show the optimality of the scheme.

Main Contributions: To the best of our knowledge, this
paper is the first to develop information theoretic lower bounds
(converse) on latency in cache-aided wireless networks. The
main questions we investigate in this work are the following:
What is the optimal caching-transmission policy as a function
of the fractional cache sizeµ? What is the optimal trade-off
between the system performance (measured in terms of NDT),
and the fractional cache sizeµ? The main contributions of
this paper are as follows:

• We first present an information-theoretic modeling of cache
enabled wireless networks and develop the NDT to measure
the latency performance of such networks. For a class
of practically relevant caching policies, namely uncoded
caching, with full CSI at the ENs, we develop information
theoretic lower bounds on the NDT.

• We show that the presented lower bounds on the NDT
are optimal for the setting ofM = 2 ENs andK = 2
users. Together with the upper bound in [8], we partially
characterize the NDT trade-off forM = 3 ENs and the
K = 3 users. In addition, we show that our lower bounds
are optimal for extremal values ofµ for general problem
parameters.

• Finally, we investigate the impact of CSI availability at the
ENs on the NDT. For the case ofM = 2 ENs andK = 2
users, we illustrate the impact of delayed or no CSI at the
ENs on the resulting NDT.

II. SYSTEM MODEL

We consider aM ×K cache-aided wireless network where
M ENs are connected to a total ofK users. The ENs can
cache content from a library ofN files, F1, . . . , FN , where
each file is of sizeL bits, for someL ∈ N+. Formally, the
files Fn are independent identically distributed (i.i.d.) as:

Fn ∼ Unif{1, 2, . . . , 2L}, ∀n = 1, . . . , N. (1)

Each EN is equipped with a cache in which it can storeµNL
bits, where the fractionµ, with 0 ≤ µ ≤ 1, is referred to
as thefractional cache size. It is required that the collective
cache size of theM ENs be large enough to completely
store the entire library ofN files. In this way, all user
requests can be completely serviced by the ENs. Thus, we
impose the condition thatM × µNL ≥ NL, i.e., µ ≥ 1/M .
Therefore, it suffices to focus on the rangeµ ∈ [1/M, 1]. In
each transmission interval, a user can request any file from
the library and these requests are served by the ENs. The
channel between ENm and userk, in a given transmission
interval is denoted byhkm ∈ C, wherek = 1, . . . ,K and
m = 1, . . . ,M . The coefficients are assumed to be drawn
i.i.d. from a continuous distribution and to be time-invariant
with each transmission interval.
Definition 1 (Policy). A caching, edge transmission, decoding
policy π = (πc, πe, πd) is characterized by the following three
functions.
a) Caching Policyπc: The caching policy is defined by a
function,πm

c (·), at each edge node ENm, m = 1, 2, . . . ,M ,
which maps each file to its cache storage

Sm,n , πm
c (Fn) ∀n = 1, 2, . . . , N. (2)

The mapping is such thatH(Sm,n) ≤ µL in order to satisfy
the cache capacity constraints. The total cache content at ENm

is given by:

Sm = (Sm,1, Sm,2, . . . , Sm,N) . (3)

Note that the caching policyπc allows for arbitrary coding
within each file. However, it does not allow for inter-file
coding and is hence a special case of a more general caching
policy which might allow for arbitrary inter-file coding. Fur-
thermore, the caching policy is kept fixed over multiple
transmission intervals and is thus agnostic to user requests
and to channel coefficientshkm.
b) Edge Transmission Policyπe: During the delivery phase of
each transmission interval, each receiverk can request one of
theN files. We denote byFdk

, the file demanded by thek-th
user, wheredk ∈ {1, 2, . . . , N}. The demand vector is denoted
by D , (d1, d2, . . . , dK) ∈ {1, 2, . . . , N}K . Knowing the
demand vectorD, the global CSI

H =
{
hkm : k=1,...,K

m=1,...,M

}
, (4)

denoting the channel coefficient between every user and EN,
and having access only to its local cache content,Sm, the
edge-node ENm uses an edge transmission policy,πm

e (·),
which encodes the cache content,Sm, to output a codeword

(Xm[t])
T (D,H)

t=1 = πm
e (Sm,D,H) , (5)

which is transmitted over the wireless channel. Here,T (D,H)
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is the duration or block-length, of the edge transmission policy
based on a demand vectorD and the channel realizationH. An
average power constraint ofP is imposed on each codeword,
i.e.

E
[(
Xm[t]− E[Xm[t]]

)2]
≤ P ∀t. (6)

We assume that full CSI is available at all ENs and users. The
issue of performance losses incurred due to degraded CSI is
briefly addressed in Section III-B.
c) Decoding Policyπd: Each userk ∈ {1, 2, . . . ,K}, receives

a channel output(Yk[t])
T (D,H)

t=1 , given by

Yk[t] =
M∑

m=1

hkmXm[t] + nk[t] ∀t, (7)

where the noisenk[t] ∼ N (0, 1) is a zero mean, unit variance
Gaussian random variable which is i.i.d. across time and users.
Each user has a decoding policyπd(·), which maps these

channel outputs,(Yk[t])
T (D,H)

t=1 , the receiver demandsD and
the channel realizationH to the estimate

F̂dk
, πk

d

(
(Yk[t])

T (D,H)

t=1 ,D,H
)

(8)

of the requested fileFdk
. The caching, edge transmission and

decoding policies together form a policyπ = (πm
c , πm

e , πk
d)

for the cache-aided wireless network. The probability of error
of the policyπ is defined as

Pe = max
D

max
k∈{1,2,...,K}

P

(
F̂dk

6= Fdk

)
. (9)

A policy is said to be feasible if, for almost all realizationsH
of the channel, i.e., with probability1, we havePe → 0 when
L → ∞.

Definition 2. (Delivery time per bit) Theaverage achievable
delivery time per bitfor a given feasible policy is defined as

∆(µ, P ) = max
D

lim sup
L→∞

EH

[
T (D,H)

]

L
, (10)

where the expectation is over the channel realizationsH.

While ∆(µ, P ) generally depends on the power levelP ,
as well as onµ, we next define a more tractable metric that
reflects the latency performance in the high SNR regime.

Definition 3. (NDT) For any achievable∆(µ, P ), the nor-
malized delivery time(NDT), is defined as

δ(µ) = lim
P→∞

∆(µ, P )

1/ logP
. (11)

Moreover, for a givenµ, the minimum NDT is defined as

δ∗(µ) = inf {δ(µ) : δ(µ) is achievable} . (12)

Remark 1. The delivery time per bit∆(µ, P ) is normalized
by the term1/ logP . This is the delivery time per bit in
the high SNR regime for an ideal baseline system with no
interference and unlimited caching, in which each user can be
served by a dedicated EN which has locally stored all the files.
An NDT of δ∗ indicates that the worst-case time required to
serve any possible requestD, is δ∗ times larger than the time
needed by this ideal baseline system.

Remark 2. We observe that the NDT in (12) is propor-

tional to the inverse of the more conventional degrees of
freedom (DoF) metric DoF(µ) defined in [8], [9], namely
δ∗(µ) = K/DoF(µ). In this paper, we opted for definition
(12), rather than resorting to the DoF metric, as we believe
that it more clearly reflects the operational meaning in terms
of delivery latency. We also recall that [8], [9] adopted the
metric 1/DoF(µ) based on the observation that the latter is a
convex function ofµ, unlike the function DoF(µ). Finally, we
note that the NDT can be extended to more general scenarios
for which a direct functional dependence with the DoF cannot
be established [10].

Remark 3. Following the same arguments in [8], [9], it can be
seen that the minimum NDT,δ∗(µ), is a convex function ofµ.
In fact, consider any two caching policiesπ1, requiring storage
µ1, andπ2, requiring storageµ2. Given a system with storage
µ = αµ1 +(1−α)µ2, for anyα ∈ [0, 1], the system can then
operate according to policyπ1 using anα-fraction of the cache
and of time on the channel to the users, and with policyπ2

for the remaining part of the cache and of time, achieving an
NDT of δ∗(µ) ≤ αδ∗(µ1)+(1−α)δ∗(µ2). Thus, the convexity
of δ∗(µ) follows from the possibility of implementing the
outlined cache-sharing and time-sharing scheme.

III. M AIN RESULTS AND DISCUSSION

In this work, we aim to provide fundamental limits for the
NDT of an M × K cache-aided wireless network. To this
end, an information theoretic lower-bound on the NDT of
the system is presented in the following section under the
assumption of perfect CSI at ENs and users. Section III-B,
instead, briefly discusses the impact of imperfect CSI at the
ENs.

A. Lower Bounds on NDT with Perfect CSI at the ENs

In this section, we consider cache-aided wireless networks
where perfect CSI is present at the ENs and users. The
following Theorem presents an information-theoretic lower
bound on the NDT.

Theorem 1. For a cache-aided wireless network withM ENs,
each with a fractional cache sizeµ ∈ [1/M, 1], K users and
a library of N ≥ K files and with perfect CSI at both ENs
and users, the NDT is lower bounded as

δ∗(µ) ≥ max
ℓ∈1,...,min{M,K}

K − (M − ℓ)+(K − ℓ)+µ

ℓ
, (13)

where the function(x)+ is defined as(x)+ = max{0, x}.

To the best of the authors’ knowledge, Theorem 1 provides
the first converse for theM×K cache-aided wireless network.
The proof of Theorem 1 is presented in Appendix A. To
provide further insight into the lower bound in Theorem 1, we
present here, a short proof sketch. As shown in Appendix A,
the channel outputs ofℓ users, along with the cache contents of
(M − ℓ)+ ENs is sufficient in the high-SNR regime to decode
anyK requested files. By bounding the joint entropy of these
random variables and utilizing the cache storage, caching pol-
icy and decodability constraints, one obtains the lower bound

3



on the optimal NDTδ∗(µ). Varying the parameterℓ leads
to the family of lower bounds in Theorem 1. Based on this
lower bound, we next expound on the optimal characterization
of δ∗(µ) for some cache-aided wireless networks.

Corollary 1. For a cache-aided wireless network withM ENs,
each with a fractional cache sizeµ ∈ [1/M, 1], K users and
a library of N ≥ K files, we have

δ∗(µ) =
M +K − 1

M
for µ = 1/M, (14)

which can be achieved by leveraging interference alignment
techniques for aM ×K X-channel. Further, we have

δ∗(µ) =
K

min{M,K}
for µ = 1, (15)

which can be achieved by using zero-forcing beamforming for
a M ×K broadcast channel.

Proof: To prove the corollary, we show that a policy
with a NDT matching the lower bound in Theorem 1 can
be identified for bothµ = 1/M andµ = 1.
NDT at µ = 1/M : For µ = 1/M , we substituteℓ = 1 in (13)
to get

δ∗(1/M) ≥ K −
(M − 1)(K − 1)

M
=

M +K − 1

M
. (16)

To obtain an upper bound on NDT, we consider the following
policy. For µ = 1/M , each file can be split intoM non-
overlapping fragmentsFn = (Fn,1, Fn,2, . . . , Fn,M ), each of
sizeL/M bits. The fragmentFn,m is stored in the cache of
ENm for n = 1, . . . , N [8]. Thus, the cache storage for each
EN is NL/M bits and the total amount of data stored in the
caches of all ENs isNL bits. Next, when a file is requested by
any userk, each of the ENs have a fragmentFdk,m to transmit
to the user. TheM ×K system then becomes an X-channel
for which, a reliable sum-rate of MK

M+K−1 log(P ), neglecting
o(log(P )) terms, is achievable by interference alignment [11],
[12]. Thus, the achievable delivery time per bit, in Definition
2, is approximately given by

∆(µ, P ) = lim
L→∞

1

L
·

KL
MK

M+K−1 log(P )
=

M +K − 1

M log(P )
. (17)

And hence, we have the achievable NDT

δ(µ) = lim
P→∞

∆(µ, P )

1/ log(P )
=

M +K − 1

M
. (18)

Thus, we have the upper bound

δ∗(1/M) ≤
M +K − 1

M
. (19)

Combining (16) and (19) shows that the lower bound in
Theorem 1 is tight atµ = 1/M .
NDT at µ = 1: For µ = 1, substituting,ℓ = min{M,K} into
(13), we get

δ∗(1) ≥
K

min{M,K}
. (20)

Whenµ = 1, each EN has a cache storage ofNL bits, i.e.,
each EN can completely store the entire library fN files.
Hence the ENs can cooperatively transmit to the users using
broadcast techniques such as zero-forcing to achieve a reliable
sum-rate ofmin{M,K} log(P ), neglectingo(log(P )) terms
[13]. Thus, the delivery time per bit is approximately given

by

∆(µ, P ) = lim
L→∞

KL/L

min{M,K} log(P )
=

K/ log(P )

min{M,K}
. (21)

And hence, we have the achievable NDT

δ(µ) = lim
P→∞

∆(µ, P )

1/ log(P )
=

K

min{M,K}
. (22)

Thus, we have the upper bound

δ∗(1) ≤
K

min{M,K}
. (23)

Combining (20) and (23), shows that the lower bound in
Theorem 1 is tight atµ = 1.
Based on the results of Corollary 1, we establish the optimal
NDT for a system withM = K = 2 as stated in the following
corollary.

Corollary 2. For a cache-aided wireless network withM = 2
ENs,K = 2 users andN ≥ 2 files, the optimal NDT is given
by

δ∗(µ) = 2− µ, ∀µ ∈ [1/2, 1]. (24)

For this2-EN, 2-user system, the two corner pointsµ = 1/2
and µ = 1 are achievable as per Corollary 1. Instead, for
µ = 1/2, the system is a2−user X-channel which has a
sum-DoF of4/3, i.e., δ(1/2) = 3/2. Again, atµ = 1, the
system becomes a broadcast channel which has a sum-DoF
of 2, i.e., δ(1) = 1. All points on the line joining these
two achievable points can be achieved through cache and
time sharing between the two schemes as stated in Remark
3 in Section II. Next, considering the lower bound from
Theorem 1 and usingℓ = 1, we get (24), which is the line
joining the two achievable corner points. Thus, Theorem 1
completely characterizes the optimal NDTδ∗(µ) of the cache-
aided wireless network withM = K = 2 andN ≥ 2. This is
illustrated in Fig. 1(b).

We next present an application of Theorem 1 to obtain a
partial characterization of the optimal NDT for a system with
M = 3 ENs andK = 3 users.

Corollary 3. For a cache-aided wireless network withM = 3
ENs,K = 3 users andN ≥ 3 files, we have

δ∗(µ) =

{
5/3 for µ = 1/3,

3/2− µ/2 for 2/3 ≤ µ ≤ 1

3− 4µ ≤ δ∗(µ) ≤ 13/6− 3µ/2 for 1/3 ≤ µ ≤ 2/3. (25)

The bounds in Corollary 3 are illustrated in Fig. 2. The
lower bounds on NDT used in Corollary 3 are obtained from
Theorem 1, by settingM = K = 3 system, yielding

δ∗(µ) ≥ 3− 4µ for ℓ = 1, (26)

δ∗(µ) ≥ 3/2− µ/2 for ℓ = 2, (27)

δ∗(µ) ≥ 1 for ℓ = 3. (28)

As for upper bounds, we adapt the results in [8, Theorem 2]
to obtain the following achievable NDT:

δ∗(µ) ≤

{
13/6− 3µ/2 for 1/3 ≤ µ ≤ 2/3,

3/2− µ/2 for 2/3 ≤ µ ≤ 1.
(29)

The two corner points forµ = 1/3 andµ = 1 of the achievable
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Fig. 2. Lower and upper bounds on the NDT for a cache-aided wireless
network withM = 3 ENs andK = 3 users.

NDT in (29) are achieved similar to Corollary 1. The inner
point atµ = 2/3, instead uses a novel interference alignment
and zero-forcing scheme to achieve aδ(µ) = 7/6 [8]. It can be
seen from Fig. 2 that the lower bound coincides with the upper
bound atµ = 1/3 and for the range2/3 ≤ µ ≤ 1. Hence, the
proposed lower bound in conjunction with the recent result
from [8], partially characterizes the optimal NDT versusµ
trade-off for theM = K = 3 system as summarized in
Corollary 3. For the regime1/3 ≤ µ ≤ 2/3, characterizing
the optimal NDT remains an open problem.

B. Impact of Imperfect CSI on the NDT Trade-off

In this section, we investigate the impact of CSI availability
at the ENs and its impact on the NDT. When CSI is delayed,
at timet, ENs only have access toH1,H2, . . . ,Ht−1, i.e., the
CSI of the previoust−1 slots. For illustration, we consider the
system withM = K = 2 andN ≥ 2 with µ ∈ [1/2, 1]. For
the case of perfect CSI the optimal NDT can be characterized
as in Fig. 1(b). Next we look at the achievable NDT for the
case of delayed and no CSI respectively.
a) Delayed CSI:For the case of delayed CSI, consider the
corner pointµ = 1/2 where the system behaves like a2 × 2
X-Channel. It is known for the2× 2 X-Channel with delayed
CSI that a sum-DoF of6/5 is achievable [14]. As a result, an
NDT of δ(µ) = 5/3 is achievable. Compared to the perfect
CSI case, the NDT thus incurs a loss due to delayed CSI. Next,
consider the corner pointµ = 1, where the system reduces to
a 2× 2 broadcast channel with delayed CSI. It is known that
for such a system, a sum-DoF of4/3 is achievable [15], i.e., a
NDT of δ(µ) = 3/2 is achievable. The optimality of this trade-
off is, again, an open problem. However, the achievability
illustrates the loss incurred due to delay in CSI availability.

b) No CSI: In case of no CSI, it is known that the optimal
scheme is transmit using time-division to each user in a
separate slot [16]. Therefore a sum-DoF of1 can be achieved,
i.e., an NDT of2 can be achieved which is optimal for all
values ofµ ∈ [1/2, 1]. The NDT trade-offs for perfect, delayed
and no CSI are shown in Fig. 3.

Fig. 3. Effect of delayed or no CSI on the NDT forM = K = 2.

IV. CONCLUSIONS

In this paper, we studied the fundamental information-
theoretic limits of cache-aided wireless networks where net-
work edge nodes are endowed with cache storage. We first
proposed an information-theoretic model for such a network
and we introduced the metric of normalized delivery time
(NDT), which captures the worst-case latency in deliveringfile
requests to users. We presented the first known information
theoretic lower bounds for a generalM × K cache-aided
wireless networks with perfect CSI. Based on this result, we
showed that the optimal NDT for some system parameters can
be characterized by the use of known transmission schemes
such as interference alignment and zero-forcing beamforming.
Finally, we also demonstrated the effect of imperfect (delayed
or no) CSI at the ENs and users on the NDT for cache-aided
wireless networks.

APPENDIX A
PROOF OFTHEOREM 1

To obtain a lower bound on the NDT, we fix a specific
request vectorD, namely one for which all requested files
(F1, ..., FK) = F[1:K] are different and a given channel
realizationH. Note that this is possible given the assumption
N ≥ K. For any integera and b with a ≤ b, we define the
notation[a : b] = (a, a+1, . . . , b). We denote asT the delivery
time T (D,H) as per Definition 1 of any given feasible policy
π = (πc, πe, πd) which guarantees a vanishing probability of
errorPe asL → ∞ for the given requestD and channelH.
Our goal is to lower boundT in order to obtain a lower bound
on the minimum NDTδ∗(µ).

To this end, consider the channel outputY
T
k = (Yk[t])

T
t=1

at receiverk:

Y
T
k =

M∑

m=1

hkmX
T
m + n

T
k , (30)

where X
T
m = (Xm[t])Tt=1 and n

T
k = (nk[t])

T
t=1. We con-

sider YT
k ,X

T
m and n

T
k as 1 × T row vectors. The noise

nk[t] ∼ N (0, 1) is a zero mean, unit variance Gaussian
random variable and is i.i.d. across time and users.
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Fig. 4. Edge-caching set-up for the proof of Theorem 1.

For ease of exposition, we next introduce the following
notation which we use throughout the appendix. For any
integer pair (a, b) with 1 ≤ a ≤ b ≤ K, let Y

T
[a:b] be

the (b − a + 1) × T matrix of channel outputs of a subset
{a, a + 1, . . . , b}, of receivers. The notation is also used for
the channel inputsXT and noisenT . Furthermore, for any
integers1 ≤ a ≤ b ≤ K and1 ≤ c ≤ d ≤ M , we define the
following sub-matrix of the channel matrixH:

H
[c:d]
[a:b] =




ha,c ha,c+1 · · · ha,d

ha+1,c ha+1,c+1 · · · ha+1,d

...
...

. . .
...

hb,c ha,c+1 · · · hb,d


 .

Using this notation, we can represent the channel outputs at
all K receivers as

Y
T
[1:K] = H

[1:M ]
[1:K] X

T
[1:M ] + n

T
[1:K], (31)

To obtain the lower bound on NDT, we make the following
key observation, which is illustrated in Fig. 4. Given any set of
ℓ ≤ min{M,K} output signals, sayYT

[1:ℓ], and the content of
any (M − ℓ)+ caches, sayS[1:(M−ℓ)+], all transmitted signals
X

T
[1:M ], and hence also all the filesF[1:K], can be resolved

in the high-SNR regime. This is because: (i) from the cache
contentsS[1:(M−ℓ)+] one can reconstruct the corresponding
inputsXT

[1:(M−ℓ)+]; (ii ) neglecting the noise in the high-SNR
regime, the relationship between the variablesY

T
[1:ℓ] and the

remaining inputsXT
[(M−ℓ)+:M ] is given almost surely by an

invertible linear system as in (30). This intuition is formally
stated in Lemma 3 in Appendix B. We use this argument in
the following:

KL = H
(
F[1:K]

) (a)
= H

(
F[1:K]|F[K+1:N ]

)

= I
(
F[1:K];Y

T
[1:ℓ], S[1:(M−ℓ)+]|F[K+1:N ]

)

+H
(
F[1:K]|Y

T
[1:ℓ], S[1:(M−ℓ)+], F[K+1:N ]

)
, (32)

where (a) follows from the fact that all filesF[1:N ] are
independent. We next upper bound the two terms in (32)

separately. The first term in (32) can be upper bounded as
follows:

I
(
F[1:K];Y

T
[1:ℓ], S[1:(M−ℓ)+]|F[K+1:N ]

)

= I
(
F[1:K];Y

T
[1:ℓ]|F[K+1:N ]

)

+ I
(
F[1:K];S[1:(M−ℓ)+]|Y

T
[1:ℓ], F[K+1:N ]

)

≤ I
(
F[1:K];Y

T
[1:ℓ]|F[K+1:N ]

)

+ I
(
F[1:K];S[1:(M−ℓ)+], F[1:ℓ]|Y

T
[1:ℓ], F[K+1:N ]

)

= I
(
F[1:K];Y

T
[1:ℓ]|F[K+1:N ]

)

+ I
(
F[1:K];F[1:ℓ]|Y

T
[1:ℓ], F[K+1:N ]

)

+ I
(
F[1:K];S[1:(M−ℓ)+]|Y

T
[1:ℓ], F[1:ℓ]∪[K+1:N ]

)

(a)

≤ I
(
F[1:K];Y

T
[1:ℓ]|F[K+1:N ]

)
+H

(
F[1:ℓ]|Y

T
[1:ℓ]

)

+H
(
S[1:(M−ℓ)+]|Y

T
[1:ℓ], F[1:ℓ]∪[K+1:N ]

)

−H
(
S[1:(M−ℓ)+]|Y

T
[1:ℓ], F[1:N ]

)

(b)

≤ h
(
Y

T
[1:ℓ]

)
+ LǫL +H

(
S[1:(M−ℓ)+]|F[1:ℓ]∪[K+1:N ]

)

−H
(
S[1:(M−ℓ)+]|Y

T
[1:ℓ], F[1:N ]

)
− h

(
Y

T
[1:ℓ]|F[1:N ]

)

(c)

≤ ℓT log
(
2πe
(
ΛP + 1

))
− h

(
n
T
[1:ℓ]|F[1:N ]

)

+

(M − ℓ)+∑

i=1

H
(
Si,[1:N ]|F[1:ℓ], F[K+1:N ]

)
+ LǫL

(d)

≤ ℓT log
(
2πe
(
ΛP + 1

))
− ℓT log(2πe)

+

(M − ℓ)+∑

i=1

(K − ℓ)+∑

j=1

H(Si,j) + LǫL

≤ ℓT log
(
ΛP + 1

)
+ (M − ℓ)+(K − ℓ)+µL+ LǫL, (33)

where, the steps in (33) are explained as follows:

• Step (a) follows from the fact that conditioning reduces
entropy.

• Step (b) follows from the fact thatYT
[1:ℓ] are continuous

random variables and that dropping the conditioning in the
first term increases entropy. We apply Fano’s inequality to
the second term whereǫL is a function, independent ofP ,
which vanishes asL → ∞.

• Step(c) can be explained as follows. The first term is upper
bounded by the use of Lemma 1 stated below. The parameter
Λ is a constant dependent only on the channel parameters
and is defined in Lemma 1. The third term is zero since
the cache contentsS[1:(M−ℓ)+] are functions of the files
F[1:N ]. Moreover, given all the files, the channel outputs
are a function of the channel noise at each receiver.

• Step(d) follows from the fact that the channel noise is i.i.d.
across time and distributed asN (0, 1).
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Next, the second term in (32) can be upper bounded as follows:

H
(
F[1:K]|Y

T
[1:ℓ], S[1:(M−ℓ)+], F[K+1:N ]

)

≤ LǫL + T log det
(
I[K − ℓ] + H̃H̃

H
)
, (34)

where ǫL is a function, independent ofP , that vanishes as
L → ∞; and the matrixH̃ is square matrix of dimension(K−
ℓ)× (K− ℓ), which is a function solely of the channel matrix
H. The matrixI[K − ℓ] is a (K − ℓ)× (K − ℓ) identity matrix.
We note that the second term in (34) is constant independent of
the signal powerP and the file sizeL. The proof of inequality
(34) is relegated to Lemma 2 given in Appendix B.

Using (33) and (34) in (32), we get

KL ≤ ℓT log ((ΛP + 1)) + (M − ℓ)+(K − ℓ)+µL+ LǫL

+ T log det
(
I[K − ℓ] + H̃H̃

H
)
.

= ℓT log(P )


1 +

ℓ log
(
Λ + 1

P

)
+ log det

(
I[K − ℓ] + H̃H̃

H
)

ℓ log(P )




+ (M − ℓ)+(K − ℓ)+µL+ LǫL (35)

Rearranging (35), we have

T log(P )

L


1 +

ℓ log
(
Λ + 1

P

)
+ log det

(
I[K − ℓ] + H̃H̃

H
)

ℓ log(P )




≥
K − (M − ℓ)+(K − ℓ)+µ− ǫL

ℓ
. (36)

Now, using (36), we first take the limit ofL → ∞ such that
ǫL → 0 asPe → 0. Further, taking the limitP → ∞, for the
high-SNR regime, we have

δ∗(µ) ≥ lim
P→∞
L→∞

T/L

1/(logP )
≥

K − (M − ℓ)+(K − ℓ)+µ

ℓ
,

(37)
in which we have used the fact that the second term within
the square brackets in (36) vanishes under the limit ofP →
∞. Optimizing the bound in (37) over all possible choices of
ℓ = 1, . . . ,min{M,K} completes the proof of Theorem 1.

APPENDIX B
LEMMAS USED IN APPENDIX A

In this section, we prove the lemmas used in the proof of
Theorem 1. First, we state and prove Lemma 1 which was
used in (33) in Appendix A.

Lemma 1. For the cache-aided wireless network under con-
sideration, the differential entropy of anyℓ channel outputs
Y

T
[1:ℓ] can be upper bounded as

h
(
Y

T
[1:ℓ]

)
≤ ℓT log

(
2πe (ΛP + 1)

)
, (38)

where the parameterΛ is a function of the channel coefficients
in H and is defined as

Λ =


 max

k∈{1,...,ℓ}




M∑

m=1

h2
km +

∑

m 6=m̃

hkmhkm̃




 .

Proof: The entropy of the received signalsYT
[1:ℓ] can be

upper bounded as follows:

h
(
Y

T
[1:ℓ]

)
≤

ℓ∑

k=1

T∑

t=1

h
(
Yk[t]

)
. (39)

Now, we upper bound the inner sum as follows:
T∑

t=1

h
(
Yk[t]

)
=

T∑

t=1

h

(
M∑

m=1

hkmXm[t] + nk[t]

)

≤
T∑

t=1

log

(
2πe Var

[
M∑

m=1

hkmXm[t] + nk[t]

])

(a)
=

T∑

t=1

log

(
2πe

(
Var

[
M∑

m=1

hkmXm[t]

]
+ Var [nk[t]]

))

(b)
=

T∑

t=1

log

(
2πe

(
M∑

m=1

h2
kmVar [Xm[t]]

+
∑

m 6=m̃

hkmhkm̃Cov(Xm[t], Xm̃[t]) + 1

))

(c)

≤
T∑

t=1

log

(
2πe

(
M∑

m=1

h2
kmVar [Xm[t]]

+
∑

m 6=m̃

hkmhkm̃

√
Var[Xm[t]]Var[Xm̃[t]] + 1

))

(d)

≤
T∑

t=1

log


2πe




M∑

m=1

h2
kmP +

∑

m 6=m̃

hkmhkm̃P + 1






=

T∑

t=1

log
(
2πe
(
ΛP + 1

))
= T log

(
2πe
(
ΛP + 1

))
(40)

whereΛ = maxk∈{1,...,ℓ}

[∑M

m=1 h
2
km +

∑
m 6=m̃ hkmhkm̃

]
.

Step (a) in (40) follows from the fact that noise is i.i.d.
and uncorrelated with the input symbols; Step(b) follows
from the fact that Var[nk[t]] = 1; Step (c) follows from the
Cauchy-Schwartz Inequality; and step(d) follows from (6).
Substituting (40) into (39), we have

h
(
Y

T
[1:ℓ]

)
≤

ℓ∑

k=1

T log
(
2πe
(
ΛP + 1

))

= ℓT log
(
2πe
(
ΛP + 1

))
, (41)

which completes the proof of the Lemma 1.
Next, we state and prove Lemma 2, which used in (34) in

the proof of Theorem 1.

Lemma 2. For the cache-aided wireless network under con-
sideration, for any feasible policyπ = (πc, πe, πd), the entropy
of the K requested filesF[1:K], conditioned on the channel
outputsYT

[1:ℓ], on any(M − ℓ)+ cache contentsS[1:(M−ℓ)+]

and on the remaining filesF[K+1:M ], can be upper bounded
as

H
(
F[1:K]|Y

T
[1:ℓ], S[1:(M−ℓ)+], F[K+1:N ]

)

≤ LǫL + T log det
(
I[K − ℓ] + H̃H̃

H
)
, (42)

where ǫL is a function of the probability of errorPe that
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vanishes asL → ∞, the matrixH̃ is a function solely of the
channel matrixH and I[K − ℓ] is a (K − ℓ)× (K − ℓ) identity
matrix.

Proof: In order to prove this lemma, we first consider the
following set of inequalities:

H
(
F[1:K]|Y

T
[1:ℓ], S[1:(M−ℓ)+], F[K+1:N ]

)

(a)
= H

(
F[1:K]|Y

T
[1:ℓ], S[1:(M−ℓ)+],X

T
[1:(M−ℓ)+], F[K+1:N ]

)

(b)

≤ H
(
F[1:K]|Y

T
[1:ℓ],X

T
[1:(M−ℓ)+], F[K+1:N ]

)

(c)

≤ H
(
F[1:ℓ]|Y

T
[1:ℓ]

)

+H
(
F[ℓ+1:K]|Y

T
[1:ℓ],X

T
[1:(M−ℓ)+], F[1:ℓ], F[K+1:N ]

)

(d)

≤ LǫL +H
(
F[ℓ+1:K]|Y

T
[1:ℓ],X

T
[1:(M−ℓ)+], F[1:ℓ]∪[K+1:N ]

)
,

(43)
where the steps in (43) are explained as follows:
• Step (a) follows from the fact that the channel inputs
X

T
[1:(M−ℓ)+] are functions of the cache contentsS[1:(M−ℓ)+ .

• Step (b) follows from the fact that the channel inputs
X

T
[1:(M−ℓ)+] are functions of the cache contentsS[1:(M−ℓ)+].

• Step(c) follows from the chain rule of entropy and from the
fact that conditioning reduces entropy; In step(d), we use
Fano’s inequality on the first term whereǫL is a function,
independent ofP , that vanishes asL → ∞.

Next, we consider the second term in (43). We have

H
(
F[ℓ+1:K]|Y

T
[1:ℓ],X

T
[1:(M−ℓ)+], F[1:ℓ]∪[K+1:N ]

)

(a)
= H

(
F[ℓ+1:K]|Y

T
[1:ℓ],X

T
[1:(M−ℓ)+],n

T
[ℓ+1:K], F[1:ℓ]∪[K+1:N ]

)

(b)

≤ H
(
F[ℓ+1:K]|Y

T
[ℓ+1:K] + ñ

T
[ℓ+1:K],Y

T
[1:ℓ], F[1:ℓ]∪[K+1:N ]

)

(c)

≤ H
(
F[ℓ+1:K]|Y

T
[ℓ+1:K] + ñ

T
[ℓ+1:K], F[1:ℓ]∪[K+1:N ]

)

−H
(
F[ℓ+1:K]|Y

T
[ℓ+1:K], F[1:ℓ]∪[K+1:N ]

)

+H
(
F[ℓ+1:K]|Y

T
[ℓ+1:K], F[1:ℓ]∪[K+1:N ]

)

(d)

≤ H
(
F[ℓ+1:K]|Y

T
[ℓ+1:K] + ñ

T
[ℓ+1:K], F[1:ℓ]∪[K+1:N ]

)

−H
(
F[ℓ+1:K]|Y

T
[ℓ+1:K], F[1:ℓ]∪[K+1:N ]

)
+ LǫL (44)

where the steps in (44) are explained as follows:
• Step(a) follows from the fact that the noise termnT

[ℓ+1:K] is
independent of all the other random variables in the entropy
term and can be introduced into the conditioning.

• In Step (b), we use Lemma 3 stated in Appendix B and
the fact that conditioning reduces entropy. We observe
that nT

[ℓ+1:K] → (YT
[1:ℓ],X

T
[1:(M−ℓ)+], F[1:ℓ]∪[K+1:N ]) →

F[ℓ+1:K] forms a Markov chain and as a result, the data-
processing inequality [17] applies. The additive noise term
ñ
T
[ℓ+1:K] is defined as

ñ
T
[ℓ+1:K] =

(
H2 ·H1

†
)
n
T
[1:ℓ],

which is a [K − ℓ] × T matrix, where each column
is an independent Gaussian random vector distributed as

N
(
0, H̃H̃

H
)

with H̃ =
(
H2 ·H1

†
)

, where the matrices
H1 andH2 are sub-matrices of the channel matrixH and
are defined in Lemma 3 (see (48)), andH1

† is the Moore-
Penrose pseudo-inverse. We note here that the noise term
ñ
T
[ℓ+1:K] is independent of channel inputsXT

[1:M ] and noise
termsnT

[ℓ+1:K].
• Step (c) follows from the fact that conditioning reduces

entropy.
• Step(d) follows from applying Fano’s inequality to the last

entropy term in the previous step, whereǫL is again, a
function independent ofP that vanishes asL → ∞.

Now, from (44), considering the first and second entropy terms
together we have:

H
(
F[ℓ+1:K]|Y

T
[ℓ+1:K] + ñ

T
[ℓ+1:K], F[1:ℓ]∪[K+1:N ]

)

−H
(
F[ℓ+1:K]|Y

T
[ℓ+1:K], F[1:ℓ]∪[K+1:N ]

)

= I
(
F[ℓ+1:K];Y

T
[ℓ+1:K]|F[1:ℓ]∪[K+1:N ]

)

− I
(
F[ℓ+1:K];Y

T
[ℓ+1:K] + ñ

T
[ℓ+1:K]|F[1:ℓ]∪[K+1:N ]

)

= h
(
Y

T
[ℓ+1:K] + ñ

T
[ℓ+1:K]|F[1:N ]

)

− h
(
Y

T
[ℓ+1:K] + ñ

T
[ℓ+1:K]|F[1:ℓ]∪[K+1:N ]

)

+ h
(
Y

T
[ℓ+1:K]|F[1:ℓ]∪[K+1:N ]

)
− h

(
Y

T
[ℓ+1:K]|F[1:N ]

)

(a)

≤ h
(
Y

T
[ℓ+1:K] + ñ

T
[ℓ+1:K]|F[1:N ]

)

− h
(
Y

T
[ℓ+1:K] + ñ

T
[ℓ+1:K]|ñ

T
[ℓ+1:K], F[1:ℓ]∪[K+1:N ]

)

+ h
(
Y

T
[ℓ+1:K]|F[1:ℓ]∪[K+1:N ]

)
− h

(
Y

T
[ℓ+1:K]|F[1:N ]

)

= h
(
Y

T
[ℓ+1:K] + ñ

T
[ℓ+1:K]|F[1:N ]

)
− h

(
Y

T
[ℓ+1:K]|F[1:N ]

)

(b)
= h

(
n
T
[ℓ+1:K] + ñ

T
[ℓ+1:K]

)
− h
(
n
T
[ℓ+1:K]

)

(c)
= T log

(
(2πe)K−ℓ

∣∣∣I[K − ℓ] + H̃H̃
H
∣∣∣
)
− T log

(
(2πe)K−ℓ

)

= T log det
(
I[K − ℓ] + H̃H̃

H
)
. (45)

The steps in (45) are explained as follows:
• Step (a) follows from the fact that conditioning reduces

entropy.
• Step(b) follows from the fact that, given all the filesF[1:N ],

the channel outputs are functions of the channel noise.
• Step(c) follows from the fact that the noise terms are jointly

Gaussian and are i.i.d. across timeT . The function| · | is
the determinant.

Thus, using (44) and (45) in (43), we have

H
(
F[1:K]|Y

T
[1:ℓ], S[1:(M−ℓ)+], F[K+1:N ]

)

≤ LǫL + T log det
(
I[K − ℓ] + H̃H̃

H
)
, (46)

which completes the proof of the Lemma 2.
Finally, we state and prove Lemma 3 which was used in

(44) for the proof of Lemma 2.

Lemma 3. Given anyℓ ∈ 1, 2, . . . ,min{N,K}, there exists
a (deterministic) function of the channel outputsY

T
[1:ℓ], input
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symbolsXT
[1:(M−ℓ)]+ and channel noisenT

[ℓ+1:K], that yields

Y
T
[ℓ+1:K] + ñ

T
[ℓ+1:K], (47)

where we have defined̃nT
[ℓ+1:K] =

(
H2 ·H1

†
)
n
T
[1:ℓ] andH1

†

is the Moore-Penrose pseudo-inverse. The matricesH1 and
H2 are sub-matrices of the channel matrixH and are defined
as

H1 = H
[1:ℓ]
[(M−ℓ)++1:M ]; H2 = H

[ℓ+1:K]
[(M−ℓ)++1:M ]. (48)

Proof: Given anyℓ ∈ 1, 2, . . . ,min{M,K}, from (31),
the channel outputsYT

[1:ℓ] are a function of theM input
symbols X

T
[1:M ] and of the noisenT

[1:ℓ]. Given the input
symbolsXT

[1:(M−ℓ)+], we can cancel the contribution of these
input symbols from the channel outputsYT

[1:ℓ] to obtain

Ỹ
T
[1:ℓ] = H

[1:M ]
[1:ℓ] X

T
[1:M ] + n

T
[1:ℓ] −H

[1:M ]
[1:ℓ]

[
X

T
[1:(M−ℓ)+]

0
T
[(M−ℓ)++1:M ]

]

= H1

[
X

T
[(M−ℓ)++1:M ]

]
+
[
n
T
[1:ℓ]

]
, (45)

where0T
[(M−ℓ)++1:M ] is anℓ×T matrix of zeros. As a result,

multiplying both sides of (45) byH1
†, we get

H1
†
Ỹ

T
[1:ℓ] = X

T
[(M−ℓ)++1:M ] +H1

†
n
T
[1:ℓ]. (46)

Now let

H3 = H
[1:M ]
[ℓ+1:K]. (47)

Using this definition, we have

Y
T
[ℓ+1:K] = H3X

T
[1:M ] + n

T
[ℓ+1:K]

= H3

[
X

T
[1:(M−ℓ)+]

H1
†
Ỹ

T
[1:ℓ] −H1

†
n
T
[1:ℓ]

]
+ n

T
[ℓ+1:K]

(a)
= H3

[
X

T
[1:(M−ℓ)+]

H1
†
Ỹ

T
[1:ℓ]

]
−H3

[
0
T
[1:(M−ℓ)+]

H1
†
n
T
[1:ℓ]

]
+ n

T
[ℓ+1:K]

= H3

[
X

T
[1:(M−ℓ)+]

H1
†
Ỹ

T
[1:ℓ]

]
−H2

[
H1

†
n
T
[1:ℓ]

]
+ n

T
[ℓ+1:K], (48)

where, in(a), 0T
[1:(M−ℓ)+] is a [(M−ℓ)+]×T matrix of zeros.

Rearranging (48), we obtain

Y
T
[ℓ+1:K] + ñ

T
[ℓ+1:K] = H3

[
X

T
[1:(M−ℓ)+]

H1
†
Ỹ

T
[1:ℓ]

]
+ n

T
[ℓ+1:K], (49)

where the RHS is a function of theℓ channel outputsYT
[1:ℓ],

input symbolsXT
[1:(M−ℓ)]+ and channel noisenT

[ℓ+1:K]. This
completes the proof Lemma 3. Note that we assumed in (46)
that the sub-matrixH1 is invertible, which is true for almost
all channel realizations, i.e., it is true with probability1.
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