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Abstract—We consider the problem of estimating the expected
time to find a maximum degree node on a graph using a
(parameterized) biased random walk. For assortative graphs
the positive degree correlation serves as a local gradient for
which a bias towards selecting higher degree neighbors will
on average reduce the search time. Unfortunately, although the
expected absorption time on the graph can be written down using
the theory of absorbing Markov chains, computing this time is
infeasible for large graphs. With this motivation, we construct
an absorbing Markov chain with a state for each degree of
the graph, and observe computing the expected absorption time
is now computationally feasible. Our paper finds preliminary
results along the following lines: i) there are graphs for which
the proposed Markov model does and graphs for which the model
does not capture the absorbtion time, ii) there are graphs where
random sampling outperforms biased random walks, and graphs
where biased random walks are superior, and iii) the optimal bias
parameter for the random walk is graph dependent, and we study
the dependence on the graph assortativity.

Index Terms—graph search; Markov chain; biased random
walks; greedy search, assortativity.

I. INTRODUCTION

A graph representing Facebook’s network of 1.4 billion
users would require 1.4 billion nodes and hundreds of billions
of edges, stretching the capacity of current hardware to hold
the graph in memory. This inability to represent large graphs
makes them difficult to study. One way of sidestepping this
issue is to study a representative subsample of the entire graph.
How one takes this sample often depends on the properties of
the graph being studied. The simplest method of sampling a
graph is to select nodes uniformly at random, however, many
graphs, specifically those representing social networks, exhibit
a power law degree distributions the probability of selecting
a high degree node using this method is small. Intuitively a
better sampling method would use the information gained by
a sample to increase the probability of selecting a max degree
node on subsequent samples. In the context of social networks,
sampling methods for a max degree node that exploit local
information exploit the friendship paradox; on average your
friends have more friends than you do. One goal is to study
the impact that biasing the random choice of the next neighbor
in a random walk towards selecting higher degree neighbors
has on the time to reach a maximum degree node.

This research has been supported by the National Science Foundation under
award #IIS-1250786.

Previous work has developed analytical bounds for the
hitting time of a biased random walk, the time it takes to get
from one node in a graph to another, and the cover time of the
walk, the time it takes a walk to visit every node in a graph.
Ikeda shows that the hitting and cover time of an undirected
graph of n nodes is upper bounded by O(n2) and O(n2log(n))
respectively [1]. Cooper shows all nodes of degree na for
a < 1 in a n node power law graphs with exponent c can be
found in O(n1−a(c−2)+δ) steps [2]. Maiya evaluates several
biased sampling strategies on real world graphs numerically
showing that a walk which always transitions to the max
degree node attached to its current node is a good method
of exploring these graphs [3].

Our approach is different. We first observe that the basic
theory of absorbing finite-state Markov chains (§II) yields
expressions for the mean and variance of the random time to
reach an absorbing state, which in our case is a maximum de-
gree node on the n-node graph. However, computing this mean
and variance requires inverting an n×n matrix, which for large
graphs is prohibitive (§III). Consequently, we consider the case
of assortative graphs where the degrees of the endpoints of
an edge are positively correlated, and recognize that for such
graphs an intelligent strategy for minimizing the search time
to find a maximum degree node is to exploit the local gradient
provided by the assortativity, and to select the next node in
the walk with a bias towards higher degree neighbors. We
construct a random walk on a significantly reduced state space,
with one state for each degree in the graph, and the transition
probability matrix derived from the joint degree distribution
of the graph and the random walk bias parameter (§IV). The
advantage of such a model is that we can analytically compute
the absorption time of the random walk on this reduced state
space quite easily. A second goal is to study how the statistics
of the random absorption time to find maximum degree nodes
on large graphs may be captured using this model.

As shown in §V, we investigate three natural questions,
for which this paper offers only preliminary and numerical
results: i) for which graphs does the above Markov chain state
reduction accurately capture the mean absorbtion time?, ii)
for which graphs does a biased random walk find a maximum
degree node more quickly than does random sampling?, and
iii) how does the optimal bias parameter (β) depend upon the
graph? For our preliminary numerical investigation of these
three questions, we employ Erdős-Rényi (ER) graphs, rewired
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(using a standard rewiring algorithm) to ensure the graph is
connected and has a target assortativity (α ∈ [−1,+1]); the
assortativity plays the role of an independent control parameter
in our investigations. Our preliminary results suggest the
following answers to the above questions. First, there are
certain (α, β) pairs for which the above model does and does
not work well, in particular α < 0 and β large gives a poor
match. Second, for certain values of α the optimal β∗(α) are
such that the resulting optimal absorbtion time of a biased
random walk is superior to random sampling, but otherwise
not. Third, the optimal β∗(α) appears to have an increasing
trend in α, so that “following the local gradient (choosing a
maximum degree neighbor)” is optimal for highly assortative
graphs, while choosing a neighbor uniformly is superior for
highly disassortative graphs.

II. ABSORPTION TIME FOR MARKOV CHAINS

We will have cause to use the theorem and corollary below
on the mean and variance of the random absorption time TX of
an absorbing finite-state discrete-time Markov chain (DTMC)
X = (X(t), t ∈ N) taking values in a finite state space X
(with |X | = n). Partition X into absorbing states X̂ (with
|X̂ | = n̂) and transient states X̌ (with |X̌ | = ň = n− n̂), and
so too partition the n×n transition matrix PX into submatrices

PX =

[ X̂ X̌

X̂ A O
X̌ R Q

]
, (1)

where A is the n̂ × n̂ submatrix of transition probabilities
between absorbing states, O is the n̂× ň zero matrix, R is the
ň × n̂ submatrix of transition probabilities from transient to
absorbing states, and Q is the ň × ň submatrix of transition
probabilities between transient states.

Definition 1. The fundamental matrix for the DTMC X is the
ň × ň matrix NX = (Iň − Q)−1, for Iň the ň × ň identity
matrix. The absorption times TX = (TX(x), x ∈ X̌ ) are the
collection of ň random absorption times starting from each
possible initial transient state, with TX(x) = min{t ∈ N :
X(t) ∈ X̂ |X(0) = x).

Theorem 1. ([4]) The absorption times TX have means µX
and variances σ2

X :

µX = NX1ň, σ2
X = (2NX − Iň)µX − (µT

XµX)1ň, (2)

where 1ň is the ň-vector of ones.

Let p̌X = (p̌X(x), x ∈ X̌ ) be the initial distribution of X
on the transient states X̌ , i.e., X(0) ∼ p̌X , and define TX as
the corresponding random absorption time.

Corollary 1. Given the initial distribution p̌X for X(0) on
X̌ , the resulting absorption time TX has

E[TX ] =
∑
x∈X̌

p̌X(x)µX(x), Var(TX) =
∑
x∈X̌

p̌X(x)σ2
X(x).

(3)

III. BIASED RANDOM WALK ON THE GRAPH

Denote the undirected graph on which the search takes place
as G = (V, E), with V the set of vertices and E the set of
undirected edges. The order and size of G are |V| = n and
|E| = m, respectively. The neighborhood of any node v is
denoted Γ(v) = {u ∈ V : {u, v} ∈ E}, and the degree is
d(v) = |Γ(v)|. The set of degrees found in the graph is D =⋃
v∈V d(v), the number of distinct degrees is δ = |D|. The

nodes V are partitioned into subsets (Vk, k ∈ D) with Vk =
{v ∈ V : d(v) = k} the set of nodes of degree k, and the
resulting degree distribution is pD = (pD(k), k ∈ D), with
entries pD(k) = |Vk|

n . In particular, the max degree found in
the graph is dmax = maxD, and the set of nodes with max
degree is Vmax = Vdmax

. An absorbing biased random walk
on G is defined as follows, where the notation is adopted from
the general case presented in §II.

Definition 2. The absorbing discrete-time Markov chain
(DTMC) V = (V (t), t ∈ N) on G with bias parameter β ≥ 0
has states V , partitioned into absorbing states V̂ = Vmax and
transient states V̌ = V \Vmax. The n×n transition probability
matrix PV has entries PV (u, v) = P(V (t+1) = v|V (t) = u).
For u ∈ V̌ we set PV (u, v) = d(v)β∑

v′∈Γ(u) d(v′)β
for v ∈ Γ(u)

and PV (u, v) = 0 else. For u ∈ V̂: PV (u, u) = 1 and
PV (u, v) = 0 for v 6= u. The absorption times from each
initial transient state are TV = (TV (v), v ∈ V̌), with
TV (v) = min{t ∈ N : V (t) ∈ V̂|V (0) = v}. Note the event
V (t) ∈ V̂ is equivalent to d(V (t)) = dmax.

This random search for Vmax uses a transition probability
that is biased towards selecting higher degree neighbors of
the current node, as introduced by Cooper [2], with the bias
monotonically increasing in β. For β = 0 the next step is
uniform among all neighbors of u, while as β → ∞ the
next step is uniform among the maximum degree neighbors
of u, i.e., Γmax(u) = argmaxv∈Γ(u) d(v). A key goal of this
paper is to characterize E[TV ] and Var(TV ) as a function of
the initial distribution p̌V on V̌ and on the bias parameter
β. Although numerical estimates can (and will) be obtained
by simulating the random walk, for large graphs (large n) it
is computationally infeasible to compute E[TV ] and Var(TV )
analytically using Cor. 1, due to the need to compute NV as
the inverse of the (large) ň× ň matrix Iň−Q. This difficulty
motivates us to define an approximation of the biased random
walk using a significantly smaller state space, discussed next.

IV. APPROXIMATE BIASED RANDOM WALK

In this section we develop our key approximation giving
a more computationally feasible means to estimate the mean
and standard deviation of TV . Our derivation consists of the
following steps: i) define the joint degree matrix J and the
conditional degree distribution matrix J̃ for G, ii) define the
biased walk degree transition probability distribution p̆(n) and
average biased walk degree transition matrix P̄ , and iii) define
the approximate biased walk degree transition matrix P̃ .



A. Joint degree and conditional degree distribution matrices

We define the joint degree matrix J and the conditional
degree distribution matrix J̃ for G.

Definition 3. The joint degree matrix J is the δ×δ symmetric
matrix with entries J(k, l) = #{{u, v} ∈ E : {d(u), d(v)} =
{k, l}}, the number of edges in G with endpoints of degrees
k and l, and entries J(k, k) twice the number of edges with
endpoints both of degree k, for (k, l) ∈ D2.

Example 1. The joint degree matrix J for the graph G shown
in Fig. 1 (left) is found by grouping the edges E by the degrees
of the endpoints, as shown in Fig. 1 (right):

J =


1 2 3 4

1 1
2 1 3
3 1 2
4 1 3 2 2

. (4)
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Fig. 1: Graph G (left) with edges E grouped by the endpoint degrees
(right).

Observe
∑
k,l J(k, l) = 2m, and that if an edge from E is

selected uniformly at random then the probability that it should
have endpoints {k, l} is given by J(k, l)/m for k 6= l, and
J(k, k)/(2m) else. The conditional degree distribution matrix
is obtained by normalizing each row of J into a probability
distribution.

Definition 4. The conditional degree distribution matrix J̃ is
the δ × δ matrix with J̃(k, l) = J(k, l)/

∑
l′∈D J(k, l′), for

(k, l) ∈ D2.

It is important to motivate J̃ for what follows. Towards this
end we define the following. First, the set of degrees D(v) ⊆
D of some v ∈ V is formed by taking the union of the degrees
of each neighbor of v, i.e., D(v) =

⋃
u∈Γ(v) d(u). The number

of neighbors of some v ∈ V of each different degree D(v),
which we term the degree neighborhood of v, is given by
n(v) = (nl(v), l ∈ D(v)), with entries nl(v) = #{u ∈ Γ(v) :
d(u) = l}.

Proposition 1. The entries J̃(k, l) of the conditional degree
distribution matrix in Def. 4 are the averages of the fraction
of neighbors of degree l over all degree k nodes:

J̃(k, l) =
1

|Vk|
∑
v∈Vk

nl(v)

k
. (5)

Proof: Observe J(k, l) =
∑
v∈Vk nl(v) by partitioning

all edges with a degree k endpoint by the degree of the other

endpoint, and
∑
l′∈D J(k, l′) = k|Vk| since the sum is the

number of edges with a degree k endpoint.
Row k of J̃ is denoted J̃(k, ·) = (J̃(k, l), l ∈ D). The

locations of the non-zero entries of J̃(k, ·) are denoted Dk =⋃
v∈Vk D(v), i.e., l ∈ Dk means there exists some {u, v} ∈ E

with d(u) = k and d(v) = l.

B. Biased walk degree transition probability distribution

We define the biased walk degree transition probability
distribution p̆(n) and average biased walk degree transition
matrix P̄ .

Definition 5. The biased random walk degree transition prob-
ability distribution p̆(n) = (p̆l(n), l ∈ D) from a node with
degree neighborhood n = (nl, l ∈ D) (with

∑
l∈D nl ∈ D) is

p̆l(n) =
nll

β∑
l′∈D nl′ l

′β . (6)

The following is an immediate result of Def. 2.

Proposition 2. The biased random walk V in Def. 2 obeys
the degree transition probability

P(d(V (t+ 1)) = l|V (t) = v) = p̆l(n(v)), l ∈ D(v). (7)

The above proposition states that the biased random walk
V degree transition probability distribution has the property
that the probability of the degree of the next node of the
biased random walk depends upon the current node v only
through n(v). The next definition gives an average transition
probability from nodes of degree k to nodes of degree l under
the biased random walk.

Definition 6. The average biased walk degree transition
matrix P̄V is the δ × δ matrix with entries

P̄V (k, l) =
1

|Vk|
∑
v∈Vk

p̆l(n(v)), (k, l) ∈ D2 (8)

giving the average probability of transitioning to a node of
degree l over all starting nodes of degree k.

A key point, developed below, is that P̄V is of size δ × δ
whereas the transition matrix PV is of (potentially) signifi-
cantly larger size n× n.

C. Approximate biased walk degree transition matrix

A random δ-vector N = (Nl, l ∈ D) has a multinomial
distribution with parameters (k,p), denoted N ∼ mult(k,p),
if

P(N = n) =

(
k

n

)∏
l∈D

pnll , n ∈ Nk, (9)

where
(
k
n

)
=
(

k∏
l∈D nl!

)
is the multinomial coefficient. Here,

N has support Nk = {n ∈ Nδ :
∑
l∈D nl = k}, defined as

the set of all possible δ-vectors from Nδ that sum to k.
The approximate biased walk degree transition matrix P̃W

has entries defined using the expectation of the biased random
walk degree transition probability distribution p̆l when the



degree neighborhood n is taken as a random multinomial
vector N with parameters (k, J̃(k, ·)).

Definition 7. The approximate biased walk degree transition
matrix P̃W is the δ × δ matrix with entries

P̃W (k, l) = E [p̆l(N)] , N ∼ mult(k, J̃(k, ·)). (10)

That is:

P̃W (k, l) =
∑
n∈Nk

(
k

n

) ∏
l∈Dk

J̃(k, l)nl
nll

β∑
l′∈Dk nl′ l

′β . (11)

Our model is suitable for those graphs for which P̄V (k, l) ≈
P̃W (k, l) for each (k, l) ∈ D2; as will be shown in §V, it is not
difficult to identify graphs for which the model works, and to
find graphs for which it does not. Finally, we define a biased
random walk on D.

Definition 8. The absorbing discrete-time Markov chain
(DTMC) W = (W (t), t ∈ N) on D with bias parameter β ≥ 0
has states D, partitioned into absorbing states D̂ = {dmax}
and transient states Ď = D \ dmax. The δ × δ transition
probability matrix P̃W is given in Def. 7. The absorption times
from each initial transient state are TW = (TW (l), l ∈ Ď),
with TW (l) = min{t ∈ N : W (t) = dmax|W (0) = l}.

Recall that for large graphs (large n) it is not possible
to compute E[TV ] and Var(TV ) for TV in Def. 2 using
Cor. 1 since we cannot obtain the fundamental matrix NV =
(Iň−Q)−1, on account of the difficulty of inverting the (large)
ň × ň matrix Iň − Q. In contrast, for graphs with bounded
δ, it is possible to compute E[TW ] and Var(TW ) for TW
in Def. 8 using Cor. 1 since the corresponding fundamental
matrix NW = (Iδ−1 − Q)−1 is obtained by inverting the
(smaller) (δ − 1)× (δ − 1) matrix Iδ−1 −Q.

Our model’s approximation TV ≈ TW lies with the required
approximation P̄V ≈ P̃W mentioned above. That is, i) al-
though the biased random walk on the graph has a probability
of transitioning to nodes of each degree l ∈ D(v) from a node
v of degree k that depends upon the exact degree neighborhood
n(v) (i.e., p̆l(n(v))), ii) we approximate this probability using
the expectation with respect to a random degree neighborhood
N, drawn with parameters k and J̃(k, ·). This distribution
J̃(k, ·) is the average distribution of the number of nodes of
each degree over all degree k nodes (Prop. 1).

V. RESULTS

The experimentation framework for this work is written
using the igraph Python library [5]. We use this framework to
generate instances of a graph family, then for each graph we
measure the random times to find a maximum degree node
by i) a biased random walk (BRW), and ii) random sam-
pling. Unless noted otherwise, the mean E[TV ] and standard
deviation Std[TV ] of the absorption of a BRW on a graph is
calculated from 500 trials for each tested bias coefficient β.
We compare the empirical mean E[TV ] and empirical standard
deviation Std[TV ] measured from the BRW on the graph with
the numerical mean E[TW ] and standard deviation Std[TW ]

of a BRW on the Markov chain of the graph’s degree states.
Tab. I describes the Erdős-Rényi (ER) graphs we used.

Graph Parameters Size dmax

Erdős-Rényi (ER) p = 0.05 100 11
Erdős-Rényi (ER) p = 0.0024 1121 10
Erdős-Rényi (ER) p = 0.002569 1011 11

TABLE I: Parameters of the graphs used in the simulations.

As currently implemented our model has a significant
computational limitation in that the approximate random walk
(W (t)) in Def. 8 requires computing the matrix P̃W in (11),
and each such entry P̃W (k, l) requires summing over all
n ∈ Nk. As the size of |Nk| grows exponentially in k, we
are unable to compute it for graphs with dmax > 15; this is
the motivation behind our selecting (n, p) pairs for the ER
graphs so that dmax is small. Addressing this deficiency is the
subject of our ongoing and future work.

A. Erdős-Rényi (ER) Graphs

The Erdős-Rényi graph [6] G(n, p) is a family of random
graphs with n nodes and each of the

(
n
2

)
possible edges is

added independently with probability p. The resulting graph
has a binomial degree distribution, pD(k) ∼ bin(n − 1, p).
To investigate larger graphs we must ensure the graph is
constructed so as to have a bounded expected maximum
degree, on account of the computational limitation dmax ≤ 15
discussed above. The following proposition gives an upper
bound on the expected maximum of n iid random variables:

Proposition 3. Let (Y1, . . . , Yn) be iid with moment gen-
erating function (MGF) φ(t) = E[etY ] and let Ymax =
max(X1, . . . , Xn). Then E[Ymax] ≤ 1

t log(nφ(t)).

It may be proved by application of Jensen’s inequality to
establish etE[Ymax] ≤ nφ(t).

We apply the above rule to the random degrees (D(v), v ∈
[n]) of an ER graph G(n, p), each D(v) ∼ bin(n − 1, p),
which are identically distributed, but not independent; it can be
shown that the slight dependence is inessential and the bound
applies. Recall that the binomial distribution bin(n, λ/n) can
be approximated as a Poisson distribution Po(λ) in the case
when n is large, and that the Poisson MGF is φ(t) = eλ(et−1).
Applying Prop. 3 to this case yields the following upper bound
on the max degree of an ER graph G(n, λ/n)

E[max(D(v), v ∈ [n])] ≤ log(n)− λ
W( log(n)−λ

eλ )
(12)

whereW is the Lambert W function. The value of (12) is that
it allows us to select λ(n) so that the resulting ER graph of
order n has a specified expected max degree upper bound.

However, the ER graph is known to be disconnected with
high probability when p(n) = λ/n (or smaller) for any λ,
and our random walk is only guaranteed to find a maximum
degree node for a connected graph. It is further known that
an ER graph with p(n) = λ(β)/n will have a fraction β
of the n nodes in the giant connected component where
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Fig. 2: Left: average absorbtion time, E[T ] (solid lines), for original
graph (blue, via simulation) and model (green, via (3)), with E[T ]±
Std[T ] (dashed lines). Right: output assortativity α as a function of
input target assortativity αt in the random rewiring algorithm.

λ(β) = − log(1 − β)/β [7]. Hence the trade-off we face in
generating ER graphs is between a large fraction β in the
giant connected component vs. a bounded max degree. For
n = 1090 and λ = 2.8 (i.e., p(n) = λ/n = 0.0024569), the
expected max degree upper bound in (12) is dmax ≤ 11.1041,
and β = 0.924975 obeys − log(1 − β)/β = λ, meaning
the giant connected component will contain approximately
nβ = 1008 nodes.

B. Results for ER Graphs

Fig. 2 (left) shows the expected absorbtion time E[T ] for
an ER graph using both i) the simulated biased random walk
(BRW) on the original graph E[TV ], and ii) the analytically
computed E[TW ] using the reduced state space model, both
swept over a range of bias coefficients β. The plot shows a
significant deviation between the measured quantity and the
model prediction. The failure of the model for this graph may
be accounted for by the fact that the ER graph is known to
have zero assortativity, i.e., the degrees of the two endpoints
of the graph are conditionally independent, and as such the
degree of the current node does not provide any substantial
information about the proximity of that node to higher degree
(and by extension, maximum degree) nodes. In this sense, our
approximation is shown to break down for such graphs, as a
central assumption of our model is the idea that the degree of a
node does contain information about its degree neighborhood
and all nodes of degree k have similar degree neighborhoods.

This led to a set of questions: i) is the accuracy of our
model of a BRW on a graph dependent upon the graph’s
assortativity?, ii) are there graphs where BRW finds the max
degree nodes faster than random sampling?, and iii) what is
the optimal bias coefficient β∗ for a graph of assortativity α?

C. Graph Re-wiring Algorithm

Our approach in this paper is to offer some preliminary
numerical answers to these questions, using graph assorta-
tivity, denoted by α ∈ [−1,+1], as the independent control
parameter. To construct graphs with a target assortativity,
αt, we modified Brunet’s rewiring algorithm for increasing
or decreasing a graph’s assortativity [8]. Given an initial
graph G0 and a target assortativity αt. We calculate G0’s
assortativity, α0 and choose two edges at random e1, e2. Then
we remove e1 and e2 from G0. If two new edges e3 and

e4 can be wired between the endpoints of the former edges
e1 and e2 without creating self loops or multiple edges such
that the assortativity of the new graph α1 is closer to αt than
α0 we add edges e3 and e4, if not we replace e1 and e2.
This procedure is repeated until the graph’s assortativity is
within a suitably small interval around αt. Notice that this
procedure preserves the degree distribution of G0, since the
degree of the end points of e1 and e2 are unchanged. When the
assortativity converges, if the graph is disconnected, then for
each disconnected component a random node is selected in the
graph’s giant component and wired to the smaller component,
thereby connecting the graph. The assortativity of the 1011
node graphs compared to their target assortativity is shown in
Fig. 2 (right) for both disconnected (red) and connected (blue)
graphs. From these results we infer that connecting the graphs
in this manner has little effect on their assortativity.

D. Biased Random Walks

We carried out Monte carlo simulations of 500 trials on 10
graphs with binomial degree distributions of 100 and 1011
nodes, while sweeping the bias coefficient β of the walk. We
compared BRWs with two random sampling algorithms: i)
sampling nodes without replacement, denoted ’no-r’, and ii)
sampling a node and all of its neighbors without replacement,
denoted ’no-r n’. The rationale for these two forms of sampling
is in the interest in making a fair comparison in the absorbtion
time between the BRW and a random sample. The BRW
algorithm presumes at each step that the search is able to not
only view the degree of the current node but also the degree of
all neighbors of that node. Thus any comparison between the
performance of, say, k steps of the BRW and k nodes sampled
without replacement is unfair to random sampling, since the
latter does not see as many nodes as the former. The second
sampling scheme, where at each step we sample a node and
see its degree as well as the degrees of its neighbors, offers a
more balanced comparison with the performance of the BRW.

For our comparison between the BRW and random sampling
we investigated nine sample values of the target assortativity
αt, namely the nine values {−1.0,−0.75, . . . , 0.75, 1.0}, and
we used both 100 node and 1000 node ER graphs. For each
target αt, and each graph rewired to that αt, we swept the
biased coefficient β over the range [0, 8].

The results for αt ∈ {+0.5,−0.5} are shown in Fig. 3 (for
n = 1000) and Fig. 4 (for n = 100). Several points bear
mention. First, for target assortativity αt = +0.5 (both for
n ≈ 1000 and n ≈ 100) there exist optimized β∗(αt) for
which BRW outperforms random sampling of a node and its
neighbor degrees, and there exist non-optimal values of β for
which random sampling outperforms the non-optimized BRW.
Second, for target assortativity αt = −0.5 we see that the
BRW is inferior to random sampling a node and its neighbor
degrees for all values of β. Third, the case of n ≈ 1000 and
α = +0.5 shows there exists a non-trivial value of β∗ for this
α, meaning the optimal value is not at either endpoint of the β
interval of [0, 8]. This suggests that although BRWs can yield
superior search times compared with sampling neighborhoods,
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Fig. 3: ER graph with ∼ 1000 nodes. Expected time to absorbtion
E[T ] (solid) and E[T ]±Std(T ) (dotted) for i) the BRW (blue) and ii)
random sampling without replacement (observing a) just the degree
of the sampled node (green) and b) degrees of node and its neighbors
(red)) versus β. αt = +0.5 (left) and αt = −0.5 (right).
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Fig. 4: Same caption as Fig. 3 but for an ER graph with ∼ 100 nodes.
Also shown is mean absorbtion time E[TW ] predicted by the model.

doing so requires a correctly-tuned value of β for the particular
value of α (and in this case also n). The inferiority of the BRW
for disassortative graphs (here, α = −0.5) may be on account
of the fact that BRWs on such graphs are more likely to spend
much of the search time trapped in a local minimum.

E. Optimal Bias Coefficient β

In this subsection we extend αt to include the nine values
mentioned earlier. For each αt we find β∗(αt) and E[T ∗(αt)]
using β∗(αt), and plot both these functions against αt. Be-
cause we observe that the dependence of E[T ] on β can be
somewhat flat near the optimal, meaning there is some degree
of insensitivity to the precise value of β, we actually compute
the interval [βmin(αt), βmax(αt)] containing α∗(αt), where
the interval holds all values of β for which the corresponding
value of E[T ] is within 10% of the optimal value E[T ∗].

The results are shown in Fig. 5 and Fig. 6. Several
points bear mention. First, Fig. 5 shows that the optimal
bias coefficient β∗ for β ∈ [0, . . . , 8] tends to increase with
increasing assortativity αt of the graph. More sample graphs
for each αt, more points αt ∈ [−1,+1], and a larger search
range for β than the current [0, 8] are required to confirm
this initial observation. Second, Fig. 6 shows that for both
n ≈ 100 and n ≈ 1000 there exists an interval of α over
which optimized BRWs outperform random sampling of node
and neighbor degrees. Again, more extensive simulations are
required. However, these preliminary results suggest BRWs
are inferior to sampling for graphs with negative assortativity.
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Fig. 5: The optimal bias coefficient β∗ (points) and the interval
[βmin, βmax] of points for which E[T ] is within 10% of E[T ∗]
(shaded) vs. the target assortativity αt. Left: comparison of n ≈ 100
(gray) and n ≈ 1000 (blue). Right: comparison of β∗ for n = 100
for actual graph (gray) and reduced state space model (blue).
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Fig. 6: Mean absorbtion times E[T ∗] vs. αt, where for each αt we
use the optimized value β∗(αt) from Fig. 5. Left: comparison of
n ≈ 100 (blue) and n ≈ 1000 (gray). Right: comparison of E[T ∗]
for actual graph (blue) and reduced state space model (green).

F. Biased Random Walk Model

Finally, the two right side plots in Fig. 5 and Fig. 6 include
results for both the simulations of BRWs on the graph as
well as analytical computations using the reduced state space
model. In particular, Fig. 5 shows that β∗ for minimizing
E[TV ] and β∗ for minimizing E[TW ] are not exactly equal, but
are comparable, and show the same rough increasing trend as
a function of α. Moreover, Fig. 6 shows E[T ∗V ] is comparable
to E[T ∗W ] for certain values of α.

VI. FUTURE WORK

The main contributions are i) a potentially useful model
for analytically computing the expected absorbtion time of a
biased random walk using a reduced state space model, and
ii) preliminary comparison of the absorbtion time between a
BRW and random sampling to find a max degree node. Our
current goal is to find an approximation for E[TW ].

REFERENCES

[1] S. Ikeda and I. Kubo, “Impact of local topological information on random
walks on finite graphs,” in Proc. of the 30th Intl. Conf. on Automata,
Languages and Programming, 2003, pp. 1054–1067.

[2] C. Cooper, T. Radzik, and Y. Siantos, “A fast algorithm to find all high-
degree vertices in graphs with a power-law degree sequence,” Internet
Mathematics, vol. 10, no. 1-2, pp. 137–161, 2014.

[3] A. Maiya and T. Berger-Wolf, “Benefits of bias: Towards better charac-
terization of network sampling,” in Proc. of the 17th ACM SIGKDD Intl.
Conf. on Knowledge Discovery and Data Mining, 2011, pp. 105–113.

[4] J. Kemeny and J. Snell, Finite Markov Chains, 1st ed. Springer, 1983.
[5] G. Csardi and T. Nepusz, “The igraph software package for complex

network research,” InterJournal, vol. Complex Systems, p. 1695, 2006.
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