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Abstract—We introduce a generative model, dubbed I/O
HSMM, for learning the bi-modal behavioral dynamics of a net-
work of cognitive radios (CRs). Each of the two modes of the CRs
is represented as a Hidden Semi-Markov model (HSMM), where
the states, state durations and emissions, transition probabilities
between states, and transitions between modes are uncovered
based solely on RF spectrum sensing. The learning of the CR
dynamics is non-parametric and derived from the Hierarchical
Dirichlet Process (HDP), with the switching between the two
modes modeled as a latent variable that is estimated as a part
of the learning process. The non-parametric model provides
flexibility in handling unknown communication protocols. We
evaluate the quality of learning against ground truth, and
demonstrate that this approach is promising and merits extension
to more complex models.

I. INTRODUCTION

Although the concept of a cognitive radio (CR) was in-
troduced almost two decades ago [1], it has recently become
feasible to physically realize an operational CR network due
to the spread of software defined radios. Fundamentally, a CR
is a device with the ability to adaptively select a frequency
for transmission in a part of the spectrum that is unutilized
in a specific geographic location. Efficient communications
may require changes in parameters other than frequency, such
as modulation, error-control coding, transmit power or activity
pattern. As cognitive networks penetrate application space [2],
accurate modeling of other (cognitive) spectrum users becomes
essentially important for prediction of available "spectrum
holes". That is why we do not limit ourselves to the usual
CR model involving primary user (PU) and secondary user
(SU) [3]. We refer to nodes of the CR network that is sensing
the environment as observers, while active radios in other
networks that are transmitting, receiving and adapting their
parameters as CRs. Each observer can share information with
other radios within its network for source localization. This
enables observers to estimate the interference that the CRs are
subject to in other networks [4].

The use of machine learning for a CR to characterize the
environment and adaptively alter its transmission parameters
is not new [5]. However, in this paper, learning of the CR
behavior is performed by an observer that is not a part of
the CR network. From an observer perspective, we adopt
a generative model to represent a CR state machine, and
estimate the conditional probability of the CR adapting its

transmission parameters contingent upon its current (hidden)
protocol state, as well as on inputs from the environment in
the form of binary-quantized interference. We assume that the
node is switching between two state-machines when evaluation
of the most-recent window of binary interference indicators
(BIIs) dictates so. We model the evaluation of the BIIs by a
function referred to as the switching function (SF). Note that
we assume the CR and the observer perceive the same BIIs,
and the SF is known to the observer. Because the observer has
no apriori knowledge of the CR state machine, we employ
Bayesian non-parametric learning in the form of an HDP-
HSMM [6]. The semi-Markov model aspect of the HDP-
HSMM [7] is well-suited to characterize the amount of sojourn
time in any particular state, which for CRs may represent
the transmission length. For example, the acknowledgments
(acks) may have distinctly shorter durations than those of data
packets, and potentially be transmitted with higher power to
avoid re-transmission of the sequence of much longer packets
preceding the ack in case it gets lost. Because we do not
parametrically model the structure of the HSMM, and in
particular the number of states or their semantics, a state is
identified based on the distinct statistical description of its
emission parameters [8].

As an example, consider a CR with two modes; the first
mode is ’nominal’, in the absence of interference, in which
the CR transmits at a lower power level in each state, while
the second mode is ’active’ in which in every state the CR
transmits at a higher power level to overcome interference.
The objective of the observer then is to learn the HDP-HSMM
for each of the individual modes as well as the conditions
under which the CR switches modes. Because the interference
estimate (BII) is used by the observer to infer the probability
of a CR switching modes, we construct an extension of the
conventional HSMM to Input/Output HSMM (I/O HSMM),
whereby state dynamics are conditioned on the input (BII).

The rest of this paper is organized as follows. In Section II
we explain the learning model preliminaries and introduce our
system model based on an example. Section III depicts the I/O
HSMM extension to HDP HSMM. Section IV presents the
simulation results of I/O HSMM performance, and Section V
concludes with a brief summary.
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II. SYSTEM MODEL THROUGH AN EXAMPLE

A. Basic HSMM Model

A hidden Markov model [9] is a doubly stochastic pro-
cess, with the underlying process being a discrete-time finite-
state homogeneous Markov chain. The state sequence {st} is
not observable, hence, hidden. Here t denotes discrete time,
and st ∈ S, |S| < ∞. The second stochastic process is
producing a sequence of observations {yt}, conditioned on
the hidden state sequence s.t. emission probability density
which describes state i observations is fi(yt) = p(yt|st = i).
Due to the non-zero probability of self-transition of a (non-
absorbing) state at each discrete time instant, the state duration
of an HMM implicitly follows a geometric distribution. This
limits the use of the HMM in some applications. It can be
overcome by allowing the underlying process to be a semi-
Markov chain. This modified model is known as Hidden
semi-Markov model (HSMM). In HSMM each state i is
associated with a distinct sojourn time (duration) d, which
is a random variable with probability distribution (PD) pi(d).
The state-duration is commonly identified with the number
of observations produced while in that state. Various degrees
of dependency between state durations and successive state-
transition probabilities are defined in [7]. We adopt the HSMM
variant in which state duration is assumed to be independent
of the previous states, and the transition probability ai,d

′
(j, d)

to state i of duration d′ after a sojourn of length d in state
j is ai,d

′
(j, d) = ai(j, d) = aijpj(d), where pj(•) is the

duration PD of state j, and aij = P (st+1 = i|st = j), is
the HMM-style transition probability from j to i (independent
of durations). In view of the difference in the number of
observations produced per state, we refer to a state in HSMM
as the super-state to distinguish it from an HMM state.
Sequence of super states is denoted by {zk} , where k denotes
the sequence index, and not discrete time. Fig. 1 presents
two instances of the HSMM model (one for each behavioral
mode). Note that super-state z1 has a duration equivalent to
D1 discrete time ticks, producing D1 emissions which are
drawn i.i.d. from fz1(•). For a comprehensive overview of
the HSMM see [7].

B. Cognitive Radio Ground-Truth and Observation Model

In this paper we implicitly focus on ad-hoc wireless network
nodes, and our examples with one CR reflect this assumption.
However, the approach is equally applicable to infrastructural
wireless networks. To present and analyze the learning mech-
anism, we use an example of the CR ground truth (GT) model
consisting of protocol states and modes, and which involves
per-packet power adjustment for different types of traffic [10]
and for distinct interference levels. For the sake of simplicity,
other parameters are not modified. We assume that control
packets are more important for the functioning of the entire
network, and that they are transmitted with a higher power to
ensure a better average SNR across the network. Moreover,
control packets can be medium access requests, traffic control
handshaking (ACKs), network discovery, routing signaling and

Fig. 1. HSMM: Markov chain on a set of super-states (zi)
S′

i=1 belonging
to mode p only or mode q only, as the binary switch is trivial. Number of
leaf nodes Di associated with a super-state i follows state-and-mode-specific
(duration) distribution. Values of leaf nodes (observations) follow state-and-
mode-specific (emission) distribution

many more. We assume that each particular family of control
or data packets Fi is transmitted with a different power P ti .
The observer, who performs the learning task, is receiving
the node’s transmissions over a log-normal channel. Hence,
each transmission from Fi is perceived by the observer in the
log domain as a normal variable Ri whose mean is a known
function of P ti .

Let us assume that the received power is sampled at regular
intervals (time ticks). Consequently, according to the adopted
HSMM model, the observed node is emitting a sequence of
Gaussian random variables {yt} from an unknown number
of super-states {zj}, each drawn from Gaussian pdf with
unknown parameters {µi, σi} , conditional on zj = i. Each
super-state i has an unknown initial probability π0

i , and its
transition probabilities Aij to other super-states are unknown.
In addition, each super-state’s duration is described by a
Poisson random variable denoting the number of time ticks,
and whose parameter λi is distinct. Hence, we aim to learn
the posterior probability of the following set of parameters
Θ = {θi = (µi, σi), λi, πi, Aij , j ∈ S} . For a fixed mode,
i.e. without any external interference, Θ describes fully the
behavioral dynamics of the CR node.

Fig. 1 illustrates this scenario, where the BII sequences are
either all zeros, or all ones, and therefore the CR node is
perpetually either in mode p or in mode q. Recall that BII
b(t) is a quantized interference measurement at each time tick
t observed by both the CR and the observer. State unfolding
in both examples is represented as a trajectory of super-states{
z
(k)
t

}
, for a fixed k ∈ {p, q} where each super state i persists

for Di
t successive time ticks, and where Di

t is a Poisson
random variable of intensity λ(k)i . The transition probabilities
between super states i and j in mode k are denoted A

(k)
ij ,

where A(k)
ii = 0. Note that (in both modes) the super-state is

intended to model a distinct time-span of node’s emissions,
which also may have an interpretation related to the protocol
state machine. For instance Di

t consecutive samples from
distribution N (µi, σi) may correspond to a packet of a certain
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Fig. 2. Illustration of the SF that evaluates a window of indicators b(t−w+1 :
t) at each state boundary t =

∑`
i=1 Di, ` = 1, 2, · · ·

duration, transmitted with a certain power.
By using a GT example we do not intend to narrow the

scope of the proposed learning. Let us illustrate this on an
example different from the GT. As already mentioned, data
packets are usually followed by acknowledgment (ack) pack-
ets. As acks are very short, it is justified to apply a less efficient
modulation, provided it works well in very low signal-to-
noise ratio (SNR) conditions. Such robust modulation prevents
’loosing’ a large data packet due to a loss of its ack in case of
channel deterioration. That is why WiFi acks (and other control
packets) are commonly BPSK-modulated, while higher-order
modulation is applied to data packets. Hence, if we sample
at a symbol rate, we will collect different phase histograms
(constellations) during ack and data transmission. Also, given
cognition, the CR may detect interference and decide that
its data packets be modulated with some low-order QAM
instead of the nominal high-order modulation. Using phases as
features, the learning mechanism should be able to recognize
each of these packet transmissions as separate hidden states.
The interpretation of the states is outside of the learning scope
here, although learning the HSMM parameters is certainly the
first step in recognizing domain-relevant states and modes.

Mode switching as a result of the evaluation of the SF is
equivalent to switching between super-states of two distinct
HSMMs. Such a switch is associated with an additional set of
intermode transition probabilities Aklij , with k 6= l, indicating a
transition from super-state i in mode k to superstate j in mode
l. We learn these transition probabilities implicitly through
the switching function. Note that we know apriori that the
GT system flips between two such modes, and we know the
criterion for flipping, but not the flipping times. Knowing the
switching criterion makes our approach semi-parametric.

The switching function (SF) in the GT model is evaluated
at boundaries of network protocol states t` =

∑`
i=1Di, ` =

1, 2, · · · (red arrows in Fig. 2), assuming that the network
protocol design does not allow asynchronous evaluation of the
interference. The value S(t) of the SF defines the current mode

Mt`:t`+1
= S(t`). (1)

We now introduce the SF as a composite mapping S(t) =
Qτ (f(t)) , where t is the time expressed in ticks. Qτ (r) is
a binary quantizing function with domain r ∈ [0, 1] , and
parameterized by threshold τ :

Qτ (r) =

{
p if r <= τ
q o.w.

Fig. 3. I/O HSMM state trajectory includes states from both modes according
to the SF evaluated over the latest window of BIIs

Fig. 4. I/O HSMM vs I/O HMM (bottom)

The threshold τ in our example is based on the average
occurrence of ones over the entire binary sequence. Now, we
monitor the average occurrence of interference indicators over
the most recent window w of BIIs. The function f(t) calculates
the percentage of ones in the window at time t by evaluating
BIIs b(u) preceding t :

f(t) =

∑t
u=t−w+1 b(u)

w
. (2)

The window size is considered fix apriori but can be obtained
as side information, e.g, through a separate learning mecha-
nism that performs the analysis of the binary sequence prior to
the main learning task. Our ultimate goal is to learn jointly w
and the HSMM parameters. Fig. 3 presents our model which
switches between two modes based on the SF evaluated at the
states boundaries.

III. LEARNING MODEL

Our model, the I/O HSMM, is an extension of the input-
output HMM model (IOHMM) [11]. The extension incorpo-
rates state durations, following the HSMM paradigm, and the
flexibility of non-parametric Bayesian learning [8]. The origi-
nal IOHMM model [11] extended the HMM by conditioning
the latent variables s(t) on additional input time series I(t),
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and demonstrated how the Expectation-Maximization (EM)
and the Viterbi algorithm can be modified to allow the learning
of an IOHMM’s model and the latent sequence, by using the
following joint likelihood function:

p(I1:Ts , y1:D, z1:Ts |Θ) = (3)

p(z1|Θ, I1)

t=Ts∏
t=2

p(zt|zt−1, It,Θ)

u=Dt∏
u=1

p(yv|zt, It,Θ),

where Θ are the I/O HSMM parameters, Dt is the number
of samples emitted in state zt and D =

∑Ts

t=1Dt is the total
number of observed samples. Also, note that It denotes input
observables, which in our model is equivalent to Mt, (1). The
bottom insert in figure 4 presents the IOHMM model, while
the centerpiece depicts the version of the input-output HMM
that we propose, in which the HMM is replaced by HSMM
(note that the first super state of length D1 is producing
D1 emissions y1:D1

drawn from the same distribution, each
conditioned on the same latent variable s1 and the input I1.
To learn I/O HSMM, we modify an existing non-parametric
Bayesian learning model (HDP HSMM [6]) s.t. it reflects
the generative model of the cognitive node, i.e., the binary-
modulated Markov Chain shown in Fig. 3.

The learning model segments the time series of high-
resolution node and interference-specific observations ({yt}
and {bt}), attempting to recognize the latent sources of those
segments as node’s activity states and modes. Recall that the
mode Mt at time t is based on the last output of the SF
S(t`), t` ≤ t, and hence is a deterministic function of the
binary sequence b(t`). Hence, the complete joint likelihood
(of modes, observations and states) p(M,y, s|Θ) has the form
given in (3). Since the complete joint likelihood can be
intractable, we use Gibbs sampling to iteratively resample our
model parameters [6]. Gibbs sampling is a generic MCMC
method that relies on knowing only the conditional marginal
probabilities of the unknown parameters (as in Fig. 5). When
the infinite state-model is approximated by its finite counter-
part, our learning model also implements a version of the
EM algorithm, i.e., a procedure similar to the Baum-Welch
algorithm [12] used to train standard HMMs. In any case, we
modify backward message passing to incorporate the notion
of modes with super-states and their associated durations.

Weak-Limit Gibbs Sampler for the HDP-HSMM

Learning in the I/O HSMM model is carried out via
modification of the HDP-HSMM [6] to allow for modulation
of the state-models by an external function (Mt). Hence, I/O
HSMM is learned via a Bayesian non-parametric generative
model defined by the following equations,

B(k) ∼ GEM(γ),

π(k) ∼ DP (α,B(k)), , k ∈ {p, q}
(θ

(k)
i , λ

(k)
i ) ∼ (H(k) ×G(k)), i = 1, 2, · · · ,
zs ∼ π(k)(zs−1),

Initialize with

At iteration     update the joint probability:

Resample:

Resample:

Evaluate:

* Resample states: 

* Perform forward-backward recursions 

state:

mode:

iteration:

time index:

Fig. 5. Gibbs Sampling of I/O HSMM

where GEM denotes the Griffiths-Engen-McCloskey stick-
breaking process, which provides a prior for the discrete
measure π used in the Dirichlet Process (DP) construction [6].
In our case π(k)(i) denotes the probability distribution of
transitions from state i to any other state in mode k (equivalent
to a row of the transition probability matrix in finite Markov
models), and all π(•) have the same prior B. We denote
observation and duration prior distributions with H(k) and
G(k) respectively. The superscript (k) throughout all equations
is used to distinguish the mode.

We use the weak-limit sampler of the HDP-HSMM from
[6], which constructs a finite approximation (with finite K-
dimensional Dirichlet distributions) to the HDP transitions
prior. This allows block sampling of the entire state label
sequence at once, resulting in greatly accelerated mixing of
the Markov chain, i.e., faster learning. Please see [6] for a
discussion on the justification for this approximation, and for
further references on how the approximation becomes exact as
K grows. A common approach to sampling Dirichlet process
based mixture models is a marginalization known as the Chi-
nese Restaurant Process which gives an elegant analogy of the
incremental sampling of an unknown number of components.
Chinese Restaurant Franchise (CRF) represents its extension
to state-based models (such as HDP HMM) [8]. Hence, we
could use the CRF to converge to the most likely number of
states and other I/O HSMM parameters, but the weak limit
approximation is computationally more appropriate for our
model which includes not only state but mode transitions too.
In the next subsection we redefine backward messages used
by the blocked Gibbs sampler in [6] s.t. mode variables be
included in the forward-backward recursions of our Gibbs
sampling algorithm (Fig. 5).

Backwards Messages

In the I/O HSMM, similar to [13], backward messages are
split into β and β∗ components for convenience. Note that
st in the definitions of β and β∗ denotes the state, not the
super-state. As the input to SF is random, so is its output,
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Fig. 6. Our GT example with the sequence of colored bars in the middle
representing the sequence of state labels (from both modes) s1 : s500,
corresponding to observation colors in the top pane, and the mode sequence
for the first 500 samples at the bottom

hence the capital letter notation for the mode Mt, while mt

is the observation of Mt. The expressions are independent of
the SF definition. Conditional probabilities are based on the
assumption that the new super-state begins at time t+1, which
is denoted by (Ft = 1), following the notation from [13]

βt(i) = p(yt+1:T |st = i,Mt+1:T = mt+1:T , Ft = 1) =

=
∑
j

p(yt+1:T |st+1 = j,Mt+1:T = mt+1:T , Ft = 1)

p(st+1 = j|st = i,M = mt+1)

=
∑
j

β∗t (j)p(st+1 = j,M = mt+1|st = i)

=
∑
j

β∗t (j)A
mt+1

ij (4)

β∗t (i) = p(yt+1:T |st+1 = i,Mt+1:T = mt+1:T , Ft = 1) =

=
T−t∑
d=1

p(Dt+1 = d|st+1 = i,M = mt+1) (5)

p(yt+1:t+d|st+1 = i,M = mt+1)βt+d(i) + Ct(i),

where Ct(i), as in [14], is the contribution of super-states that
run off the end of the provided observations (censored), which
depends on the survival function of the duration distribution
evaluated for the current mode M = mt+1

Ct(i) = p(yt+1:T |st+1 = i,M = mt+1, Dt+1 > T − t)
p(Dt+1 > T − t|st+1 = i,M = mt+1). (6)

Finally, βT (i) = 1.

IV. SIMULATION RESULTS

For the convenience of visualization, in our simulations
we use two-dimensional Gaussian observations instead of
one-dimensional Gaussian samples (representing received dB
power). The ground truth system switches between 2 be-
havioral modes, each with 4 protocol states, distinguished
by Gaussian parameters in the following way: mode p’s
states have emission means µi = (−i,−i), i ∈ {1, · · · , 4}
and equal standard deviations, while mode q’s states have
emission means µi = (i, i), i ∈ {1, · · · , 4} . We placed mean

-5 0 5

-5

0

5

HSMM sampled at iteration 50

0 100 200 300 400 500

0 500
Mode sequence

q p q

Fig. 7. Our CR toy model: learned state and mode trajectories for the first
500 samples (different color code, same meaning as in the GT)

values of the alternative modes in two different quadrants for
better visual perception (Fig. 8). Figures 6 and 7 demonstrate
visually the simulated GT system, and the learned system after
resampling the I/O HSMM model 50 times, with 2000 samples
observed. Note that only 2 states appear in the state trajectory
of mode p, and 3 states in the state trajectory of mode q, since
the sequence of synthesized samples is too short to capture all
system states. Note that state labeling, and hence, color coding
does not carry any meaning. However, based on associated
observations, we see that the red cluster in true mode q (top
3 clusters in Fig. 6) is colored yellow in the learned system.
Hence, if the learning is successful, the sequence of colored
bars in the middle of Fig. 7, depicting the time series of states,
will have the yellow bars where the red bars are in Fig. 6. With
this in mind, visual similarity is obvious, suggesting successful
learning. Also, note the black mask applied in the bottom pane
of figures 6 and 7 whenever the SF was evaluated as q.

We must point out that clusters do not overlap, making
the learning task easier. We tested our learning algorithm
on completely random, and on bursty BIIs with different
burstiness patterns. The quality of learning (QoL) was similar,
in the sense that convergence to the GT happened in most
cases, and the learning was better with more samples. To
quantify QoL, we introduce the following metrics
• Hamming distance between GT and learned model

(LM) state sequence (per mode)
• Frobenius norm of the difference matrix between GT

and LM transition matrices (per mode).
We also calculated Kullback-Leibler (KL) distances both be-
tween state emission distributions and state duration distribu-
tions (with respect to GT), and all those metrics exhibited good
convergence, indicting behaviors matching the GT. We do not
present how KL distances converge with iterations since there
are too many of them, and since the convergence rate is similar
to Hamming distance convergence.

Fig. 9 shows how the relative Hamming distance (by mode)
depends on the learning iteration for another example (the case
of 20K samples observed from the same GT model, presented
in Fig. 8) and three different input sequence types. The top
plots are for the random binary input sequence with probability
of one p1 = 0.3. The middle plots are for alternating bursts of
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at iteration 50

State sequence from 18K to 20k samples (from both modes)

18K 18.5K 19K 19.5K 20K

20K
Mode sequence18K

Mode p

Mode q

pq p...q

Fig. 8. Learned Model 20K (close up at the last 2K samples)

Fig. 9. Hamming Dist. for the 20K samples over 65 iterations(top: uniform
BII sequence with p1 = 0.3; middle: alternating bursts of 0s and 1s of random
length up to 20; bottom: random bursts of 0s and bursts of 20 1s

zeros and ones of random length up to 20, and the bottom plots
are for random burst of zeros (up to 20) followed by burst of
20 ones. When the sequence is order of magnitude shorter (like
in Fig. 7) this QoL metric visibly deteriorates since the system
is non-stationary, and small number of samples does not
capture complete state and mode dynamics. The same stands
for the Frobenius metric (Fig. 8). With shorter sequences,
QoL metrics still indicate learning improvement with more
iterations, up to a saturation point, which is random. However,
we only present metrics calculated at 20K samples, due to
space limit. As a practical guideline, we suggest increasing
the number of samples until QoL metric start converging with
respect to the previous posterior model.

V. CONCLUSIONS

We proposed and demonstrated a model which combines
non-parametric Bayesian approach of the HDP HSMM [6]
with the generative structure of the IO HMM [11], to semi-
parametrically learn behavioral dynamics of a cognitive RF
device communicating within a non-specific wireless ad-hoc
network, and whose unknown state machine is bi-modal, based
on a switching function (SF) that reacts to interference. The
model was also successfully tested on multinomial features
representing packet lengths, which underlines the value of non-
parametric learning in addressing multiple time scales in CR
dynamics.

Although the knowledge of the switching criterion suggests
that our model is oracle-aided, note that prior statistical
analysis of the sequence of BIIs could be used to learn the SF.

Fig. 10. Frobenius distance between GT and LT transition matrices vs learning
iteration, for the BIIs as in Fig 9 bottom, and 20K samples

Moreover, joint learning of the SF and the node’s dynamics
is the natural extension of this work. In [3] the learning target
is the SF itself, representing a PU’s activity which cognitive
node is trying to estimate or predict, based on a bivariate HMM
and online learning setup. An interesting prior work to point
out to is the paper [15] in which human activity learning is
conducted using a model dubbed switching HSMM, which is a
hierarchical Hidden Markov model with the lower-level states
(atomic activities) being modeled by an HSMM. Even though
this model does not have an input sequence, it motivates an
extension to our model in which the modulating influence of
the environment could be cast as another HMM hierarchy.

REFERENCES

[1] J. Mitola and J. G.Q. Maguire, “Cognitive radio: making software radios
more personal,” IEEE Personal Communications, vol. 6, no. 4, Aug
1999.

[2] Y. Zhang, R. Yu, M. Nekovee, Y. Liu, S. Xie, and S. Gjessing, “Cognitive
machine-to-machine communications: visions and potentials for the
smart grid,” IEEE Network, vol. 26, no. 3, pp. 6–13, 2012.

[3] S. Y. S., B. Mark, and Y. Ephraim, “Online parameter estimation for
temporal spectrum sensing,” IEEE Trans. on Wireless Comms,, vol. 14,
no. 8, pp. 4105–4114, Aug 2015.

[4] J. Goodman, K. Rudd, and T. Clancy, “Blind multiuser localization in
cognitive radio networks,” IEEE Communications Letters, vol. 16, no. 7,
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