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Event-triggered stabilization of disturbed linear systems

over digital channels

Mohammad Javad Khojasteh, Mojtaba Hedayatpour, Jorge Cortés, Massimo Franceschetti

Abstract— We present an event-triggered control strategy
for stabilizing a scalar, continuous-time, time-invariant, linear
system over a digital communication channel having bounded
delay, and in the presence of bounded system disturbance. We
propose an encoding-decoding scheme, and determine lower
bounds on the packet size and on the information transmission
rate which are sufficient for stabilization. We show that for
small values of the delay, the timing information implicit in
the triggering events is enough to stabilize the system with any
positive rate. In contrast, when the delay increases beyond a
critical threshold, the timing information alone is not enough to
stabilize the system and the transmission rate begins to increase.
Finally, large values of the delay require transmission rates
higher than what prescribed by the classic data-rate theorem.
The results are numerically validated using a linearized model
of an inverted pendulum.

Index Terms— Control under communication constraints,
event-triggered control, quantized control

I. INTRODUCTION

Networked control systems (NCS) [1], where the feedback

loop is closed over a communication channel, are a funda-

mental component of cyber-physical systems (CPS) [2], [3].

In this context, data-rate theorems state that the minimum

communication rate to achieve stabilization is equal to the

entropy rate of the system, expressed by the sum of the

logarithms of the unstable modes. Early examples of data-

rate theorems appeared in [4], [5]. Key later contributions

appeared in [6] and [7]. These works consider a “bit-pipe"

communication channel, capable of noiseless transmission of

a finite number of bits per unit time evolution of the system.

Extensions to noisy communication channels are considered

in [8]–[12]. Stabilization over time-varying bit-pipe channels,

including the erasure channel as a special case, are studied

in [13], [14]. Additional formulations include stabilization

of systems with random open loop gains over bit-pipe

channels [15], stabilization of switched linear systems [16],

systems with uncertain parameters [15], [17], multiplicative

noise [18], [19], optimal control [20]–[23], and stabilization

using event-triggered strategies [24]–[29].

This paper focuses on the case of stabilization using event-

triggered communication strategies. In this context, a key

observation made in [30] is that if there is no delay in the

communication process, there are no system disturbances,

and the controller has knowledge of the triggering strategy,

then it is possible to stabilize the system with any positive
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rate of transmission. This apparently counterintuitive result

can be explained by noting that the act of triggering es-

sentially reveals the state of the system, which can then be

perfectly tracked by the controller. Our previous work [31]

quantifies the information implicit in the timing of the trig-

gering events, as a function of the communication delay and

for a given triggering strategy, showing a phase transition be-

havior. When there are no system disturbances and the delay

in the communication channel is small enough, a positive

rate of transmission is all is needed to achieve exponential

stabilization. When the delay in the communication channel

is larger than a critical threshold, the implicit information in

the act of triggering is not enough for stabilization, and the

transmission rate must increase. These results are compared

with a time-triggered implementation subject to delay in [32].

The literature, however, has not considered to what extent

the implicit information in the triggering events is still

valuable in the presence of system disturbances. These

disturbances add an additional degree of uncertainty in the

state estimation process, beside the one due to the unknown

delay, and their effect should be properly accounted for. With

this motivation, we consider stabilization of a linear, time-

invariant system subject to bounded disturbance over a com-

munication channel having a bounded delay. In comparison

with [31], we consider here a weaker notion of stability,

requiring the state to be bounded at all times beyond a

fixed horizon, but without imposing exponential convergence

guarantees. This allows to simplify the treatment and to

derive a simpler event-triggered control strategy. We design

an encoding-decoding scheme for this strategy, and show that

when the size of the packet transmitted through the channel at

every triggering event is above a certain fixed value, then for

small values of the delay our strategy achieves stabilization

using only implicit information and transmitting at a rate

arbitrarily close to zero. In contrast, for values of the delay

above a given threshold, the transmission rate must increase

and eventually surpasses the one prescribed by the classic

data-rate theorem. It follows that for small values of the

delay, we can successfully exploit the implicit information

in the triggering events and compensate for the presence

of system disturbances. On the other hand, large values of

the delay imply that information has been excessively aged

and corrupted by the disturbance, so that increasingly higher

communication rates are required. All results are numerically

validated by implementing our strategy to stabilize an in-

verted pendulum, linearized about its equilibrium point, over

a communication channel. Proofs are omitted for brevity and

will appear in full elsewhere.
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Notation: Throughout the paper, R and N represent the

set of real and natural numbers, respectively. Also, log and

ln represent base 2 and natural logarithms, respectively. For

a function f : R → R
n and t ∈ R, we let f(t+) denote

the right-hand limit of f at t, namely lims→t+ f(s). In

addition, ⌊x⌋ (resp. ⌈x⌉) denote the nearest integer less (resp.

greater) than or equal to x. We denote the modulo function

by mod(x, y), whose value is the remainder after division of

x by y. sign(x) denotes the sign of x.

II. PROBLEM FORMULATION

The block diagram of a networked control system as a

plant-sensor-channel-controller tuple is represented in Fig-

ure 1. The plant is described by a scalar, continuous-time,

Fig. 1. System model.

linear time-invariant model as:

ẋ = Ax(t) +Bu(t) + w(t), (1)

where x(t) ∈ R and u(t) ∈ R for t ∈ [0,∞) are the plant

state and control input, respectively, and w(t) ∈ R represents

the process disturbance. The latter is upper bounded as:

|w(t)| ≤ M, (2)

where M is a positive real number. In (1), A is a positive

real number, B ∈ R, and

|x(0)| ≤ L (3)

for some positive real number L. We assume that the sensor

measures the system state exactly, and the controller acts with

infinite precision and without delay. However, the measured

state is sent to the controller through a communication

channel that only supports a finite data rate and is subject

to bounded delay. More precisely, when the sensor transmits

packet via the communication channel, the controller will

receive the packet entirely and without any error, but with

unknown bounded delay.

The sequence of triggering times at which the sensor

transmits a packet of length g(tks ) bits, is denoted by {tks}k∈N

and the sequence of times at which the controller receives the

corresponding packet and decodes it, is denoted by {tkc}k∈N.

Communication delays are uniformly upper-bounded by γ,

a finite non-negative real number, as follows:

∆k = tkc − tks ≤ γ, (4)

where ∆k is the kth communication delay. For all k ≥ 1,

we also define the kth triggering interval as

∆′

k = tk+1
s − tks . (5)

When referring to a generic triggering or reception time, for

convenience we skip the super-script k in tkr and tkc .

In this setting, the classical data-rate theorem states that

the controller can stabilize the plant if it receives information

at least with rate A/ ln 2 [31]. Let bs(t) be the number of

bits transmitted by the sensor up to time t. We define the

information transmission rate as

Rs = lim sup
t→∞

bs(t)

t
.

Since at every triggering interval the sensor sends g(ts) bits,

we have

Rs = lim sup
N→∞

∑N
k=1 g(t

k
s )

∑N
k=1 ∆

′

k

. (6)

At the controller, the estimated state is represented by x̂ and

evolves during the inter-reception times as

˙̂x(t) = Ax̂(t) +Bu(t), t ∈ [tkc , t
k+1
c ], (7)

starting from x̂(tk+c ) with x̂(0) = x̂0.

We assume that the sensor has knowledge of the time the

actuator performs the control action. This is to ensure that the

sensor can also compute x̂(t) for all time t. In practice, this

corresponds to assuming an instantaneous acknowledgment

from the actuator to the sensor via the control input, as

discussed in [8], [33]. To obtain such causal knowledge,

one can monitor the output of the actuator provided that

the control input changes at each reception time. In case the

sensor has only access to the system state, one can use a

narrowband signal in the control input to excite a specific

frequency of the state, that can signal the time at which the

control action has been applied. The state estimation error

is defined as

z(t) = x(t) − x̂(t), (8)

where z(0) = x(0)−x̂0. We use this error to determine when

a triggering event occurs in our controller design to ensure

a property similar to practical stability [34] for the system

in (1).

III. CONTROL DESIGN

This section proposes our event-triggered control strategy,

along with a quantization policy to generate and send packets

at every triggering event, to stabilize the scalar, continuous-

time linear time-invariant system described in Section II.

Along the way, we also characterize a sufficient information

transmission rate to accomplish this.

Assume a triggering event occurs when

|z(t)| = J, (9)

where J is a positive real number. If the controller knows

the triggering time ts, then it also knows that x(ts) = ±J+
x̂(ts). It follows that, it may compute the exact value of x(ts)
by just transmitting one single bit at every triggering time.



In general, however, the controller does not have knowledge

of ts because of the delay, but only knows the bound in (4).

Let z̄(tc) be an estimate of z(tc) constructed by the

controller knowing that |z(ts)| = v(ts) and using (4) and

the decoded packet received through the communication

channel. We define the following updating procedure, called

jump strategy

x̂(t+c ) = z̄(tc) + x̂(tc). (10)

At triggering time ts the sensor encodes the system state in

packet p(ts) of size g(ts), consisting of the sign of z(ts)
and a quantized version of ts, which we denote by q(ts),
and send it to the controller. Using the bound in (4) and by

decoding the received packet, the controller reconstructs the

quantized version of ts. Finally, the controller can estimate

z(tc) as follows:

z̄(tc) = sign(z(ts))Je
A(tc−q(ts)). (11)

Noting that with the jump strategy (10), we have

z(t+c ) = x(tc)− x̂(t+c ) = z(tc)− z̄(tc),

the sensor chooses the packet size g(ts) large enough to

satisfy the following equation for all possible tc ∈ [ts, ts+γ]

|z(t+c )| = |z(tc)− z̄(tc)| ≤ ρ0J, (12)

where 0 < ρ0 < 1 is a constant design parameter. To find a

lower bound on the size of the packet so that (12) is ensured,

the next result bounds how large the difference |ts − q(ts)|
of the triggering time and its quantized version can be.

Lemma 1: For the plant-sensor-channel-controller model

with plant dynamics (1), estimator dynamics (7), triggering

strategy (9), and jump strategy (10), using (11) with J >
M
Aρ0

(eAγ − 1), if

|ts − q(ts)| ≤
1

A
ln(1 +

ρ0 −
M
JA (eAγ − 1)

eAγ
) (13)

then (12) holds.

We next propose our quantization algorithm and rely on

Lemma 1 to lower bound the packet size to ensure (12).

Theorem 1: Consider the plant-sensor-channel-controller

model with plant dynamics (1), estimator dynamics (7),

triggering strategy (9), and jump strategy (10). If the control

has enough information about x(0) such that state estimation

error satisfies |z(0)| < J , there exists a quantization policy

that achieves (12) for all k ∈ N with a packet size

g(tks) ≥ max

{

0, 1 + log
Abγ

ln(1 + ρ0−(M/JA)(eAγ−1)
eAγ )

}

,

(14)

where b > 1 and J > M
Aρ0

(eAγ − 1).
Next, we show that using our encoding and decoding

scheme, if the sensor has a causal knowledge of the delay

in the communication channel, it can compute the state

estimated by the controller.

Proposition 1: Consider the plant-sensor-channel-

controller model with plant dynamics (1), estimator

dynamics (7), triggering strategy (9), and jump strategy (10).

Using (11) and the quantization policy described in

Theorem 1, if the sensor has causal knowledge of delay in

the communication channel, then the sensor can calculate

x̂(t) at each time t.
Next, we show that the proposed event-triggered scheme

has triggering intervals that are uniformly lower bounded

and consequently does not show “Zeno behavior”, namely

infinitely many triggering events in a finite time interval

Lemma 2: Consider the plant-sensor-channel-controller

model with plant dynamics (1), estimator dynamics (7),

triggering strategy (9), and jump strategy (10). If the packet

size satisfies (14) for all k ∈ N, and J > M
Aρ0

(eAγ − 1) then

for all k ∈ N

tk+1
s − tks ≥

1

A
ln(

J + M
A

ρ0J + M
A

). (15)

The frequency with which transmission events are trig-

gered is captured by the triggering rate

Rtr = lim sup
N→∞

N
∑N

k=1 ∆
′

k

. (16)

Using Lemma 2, we deduce that

Rtr ≤
A

ln(
J+M

A

ρ0J+
M
A

)

for all initial conditions and possible delay and process noise

values. Combining this bound and Theorem 1, we arrive at

the following result.

Corollary 1: Consider the plant-sensor-channel-controller

model with plant dynamics (1), estimator dynamics (7),

triggering strategy (9), and jump strategy (10). If the control

has enough information about x(0) such that state estimation

error satisfies |z(0)| < J with J > M
Aρ0

(eAγ−1), there exists

a quantization policy that achieves (12) for all k ∈ N and for

all delay and process noise realization with an information

transmission rate

Rs ≥ (17)

A

ln(
J+M

A

ρ0J+
M
A

)
max

{

0, 1 + log
Abγ

ln(1 + ρ0−(M/JA)(eAγ−1)
eAγ )

}

.

Figure 2 shows the sufficient transmission rate as a function

of the bound γ on the channel delay. As expected, the rate

starts from zero and as γ increases, goes above the data-rate

theorem.

The next result ensures a property similar to practical

stability [34] for the system in (1).

Theorem 2: Consider the plant-sensor-channel-controller

model with plant dynamics (1), estimator dynamics (7),

triggering strategy (9), and jump strategy (10). Assume the

pair (A,B) is stabilizable. If the control has enough infor-

mation about x(0) such that state estimation error satisfies

|z(0)| < J with J > M
Aρ0

(eAγ − 1), and if the sensor use

the quantization policy proposed in Theorem 1, then there

exists a time T0 and a real number κ such that, |x(t)| ≤ κ
for all t ≥ T0, provided that the packet size is lower bounded

by (14).
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Fig. 2. Illustration of sufficient transmission rate as a function of γ. Here,

A=5.5651, ρ0 = 0.1, b = 1.0001, M = 0.2, and J = M
Aρ0

(eAγ
−1)+0.1.

From Corollary 1, it follows that a transmission rate lower

bounded by (17) is sufficient to ensure the property similar

to practical stability stated in Theorem 2.

IV. SIMULATION

We now implement the proposed event-triggered control

scheme on a dynamical system such as a linearized inverted

pendulum. In this section, initially, a mathematical model of

an inverted pendulum mounted on a cart is presented. Then

the nonlinear equations are linearized about the equilibrium

state of the system. In addition, a canonical transformation

is applied to the linear time-invariant system to decouple the

equations of motion.

We consider the two-dimensional problem where motion

of the pendulum is constrained in a plane and its position can

be measured by angle θ. We assume that inverted pendulum

has mass m1, length l, and moment of inertia I . Also, the

pendulum is mounted on top of a cart of mass m2 constrained

to move in y direction. Nonlinear equations governing the

motion of the cart and pendulum can be written as follows:

(m1 +m2)ÿ + νẏ +m1lθ̈ cos θ −m1lθ̇
2sinθ = F

(I +m1l
2)θ̈ +m1g0lsinθ = −m1lÿcosθ

where ν is the damping coefficient between the pendulum

and the cart and g0 is the gravitational acceleration.

A. Linearizion

We define θ = π as the equilibrium position of the

pendulum and φ as small deviations from θ. We derive the

linearized equations of motion using small angle approxi-

mation. Let’s define state variable s = [y, ẏ, φ, φ̇]T , where y
and ẏ are the position and velocity of the cart respectively.

Assuming m1 = 0.2 kg, m2 = 0.5 kg, ν = 0.1 N/m/s,

l = 0.3 m, I = 0.006 kg/m2, one can write the evolution of

s in time as follows:

ṡ = As(t) +Bu(t) + w(t), (18)

A =









0 1 0 0
0 −0.1818 2.6730 0
0 0 0 1
0 −0.4545 31.1800 0









, B =









0
1.8180

0
4.5450









.

In addition, we add the process noise w(t) to the linearized

system model. w(t) is a vector of length four, and we assume

that all the elements of w(t) are upper bounded M . Also,

a simple feedback control law can be derived for (18) as

u = −ks where k is chosen such that A − Bk is Hurwitz.

We let k be as follows k =
[

−1.00 −2.04 20.36 3.93
]

.

Note that although Theorem 1 holds for the linear system

with any worst-case delay, the linearizion is only valid for

sufficiently small values of γ.

B. Diagonalization

The eigenvalues of the open-loop gain of the system A
are e =

[

0 −5.6041 −0.1428 5.5651
]

. Hence, three of

the four modes of the system are stable and do not need

any actuation. Also, the open-loop gain of the system A
is diagonalizable (All eigenvalues of A are distinct). As

a result, diagonalization of the matrix A, enables us to

apply Theorem 1 to the unstable mode of the system, and

consequently stabilize the whole system.

Using the eigenvector matrix P , we diagonalize the system

to obtain
˙̃s = Ãs̃(t) + B̃ũ(t) + w̃(t) (19)

where

Ã =









0 0 0 0
0 −5.6041 0 0
0 0 −0.1428 0
0 0 0 5.5651









, B̃ =









10.0000
−2.3865
10.0979
2.2513









s̃(t) = P−1s(t) and w̃(t) = P−1w(t). Moreover,

ũ(t) = −k̃s̃(t) where k̃ = kP , that is, k̃ =
[

−1.0000 −0.1295 0.7422 7.2624
]

.

C. Event-triggered design

For the first three coordinates of the diagonalized sys-

tem (19) which are stable the state estimation ŝ at the

controller simply constructs as follows:

˙̂s = Ãŝ(t) + B̃ũ(t)

starting from ŝ(0). The unstable mode of the system is as

follow

˙̃s4 = 5.5651s̃4(t) + 2.2513ũ(t) + w̃4(t) (20)

Then using the problem formulation in section II the es-

timated state for the unstable mode ŝ4 evolves during the

inter-reception times as

˙̂s4(t) = 5.5651ŝ4(t) + 2.2513ũ(t), t ∈ [tkc , t
k+1
c ], (21)

starting from ŝ4(t
k+
c ) and ŝ4(0).

The triggering occurs when

|z̃4(t)| = |s̃4(t)− ŝ4(t)| = J,

where |z̃4(t)| is the estate estimation error for the unstable

mode. Let λ4 be the eigenvalue corresponding to the unstable

mode which is equal to 5.5651. Then using Theorem 1 we

choose

J =
M

λ4ρ0
(eλ4γ − 1) + 0.005,
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and the size of the packet for all ts to be

g(ts) = max

{

1, ⌈1 + log
Abγ

ln(1 + ρ0−(M/JA)(eAγ−1)
eAγ )

⌉

}

,

where b = 1.0001, ρ0 = 0.9.

The packet size for the simulation has two differences

from the lower bound provided in Theorem 1. Because the

packet size should be an integer we used the ceiling operator,

and since we should have at least one bit, to send a packet

we take the maximum between 1 and the result of the ceiling

operator.

D. Simulation Results

The following simulation parameters are chosen for the

system: simulation time T = 5 seconds, sampling time ∆t =
0.005 seconds, s̃(0) = P−1[0, 0, 0, 0.1001]T , and ŝ(0) =
P−1[0, 0, 0, 0.10]T .

Theorem 1 is developed based on a continuous system

but the simulation environments are all digital. We tried to

make the discrete model as close to the continuous model

by choosing a very small sampling time. However, the

minimum upper bound for the channel delay will be equal

to one sampling time. A set of three simulations are carried

out as follows. For simulation (a) we assumed the process

disturbance is zero and channel delay upper bounded by

sampling time. In simulation (b) we assumed that the process

disturbance upper bounded by M and channel delay upper

bounded by sampling time. Finally, for simulation (c) we

assumed that the process disturbance upper bounded by M
and channel delay upper bounded by γ.

Simulation results for simulation (a), (b) and (c) are

presented in Figure 4. Each column represents a different

simulation. The first row shows the triggering function for

s̃4 (20) and the absolute value of state estimation error for

the unstable coordinate, that is, |z̃4(t)| = |s̃4(t) − ŝ4(t)|.
As soon as the absolute value of this error is equal or

greater than the triggering function, sensor transmit a packet,

and the jumping strategy adjusts ŝ4 at the reception time

to practically stabilize the system. The amount this error

exceeds the triggering function depends on the random

channel delay with upper bound γ. In the second row of

Figure 4, the evolution of the unstable state (20) and its

state estimation are presented (21). Finally, the last row in

Figure 4 represents the evolution of all actual states of the

linearized system (18) in time.

Finally, Figure 3 presents the simulation of information

transmission rate versus the worst-case delay in communi-

cation channel γ for stabilizing the linearized model of the

inverted pendulum.

V. CONCLUSIONS

We have presented an event-triggered control scheme for

the stabilization of noisy, scalar, continuous, linear time-

invariant systems over a communication channel subject to

random bounded delay. We have also developed an algorithm

for coding/decoding the quantized version of the estimated

states, leading to the characterization of a sufficient trans-

mission rate for stabilizing the system. We have illustrated

our results on a linearization of the inverted pendulum for

different channel delay bounds. Future work will study the

identification of necessary conditions on the transmission

rate, the investigation of the effect of delay on nonlinear

systems, and the implementation of the proposed control

strategies on real systems.
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