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Abstract—Parallel, additive white Gaussian noise (AWGN)
channels with an average sum power constraint are consid-
ered. It is shown how the waterfilling Shannon capacity can
be approached by higher order modulation and probabilistic
amplitude shaping (PAS). This is achieved by a new distribution
matching approach called product distribution matching (PDM).
The asymptotic performance of PDM is analyzed by achievable
rates. A heuristic for optimizing the input distribution is pro-
posed, which enables signaling at a target spectral efficiency
with a fixed-rate forward error correction (FEC) code, while the
optimal power allocation is ensured by mercury-waterfilling and
a simple bit-loading strategy. Finite blocklength simulation results
with 5G low-density parity-check codes show power savings of
around 1 dB compared to a conventional scheme with uniform
input distributions.

I. INTRODUCTION

Higher-order modulation is indispensable in mobile, satel-
lite, cable, and fiber-optic communication to achieve the high
spectral efficiency (SE) required for data applications.

Transceivers must be flexible, i.e., they should support
different SEs so they can adapt to the link quality at hand
and deliver the best possible connectivity. Conventional coded
modulation uses uniform distributions on the constellation
points. This has two disadvantages. First, uniform distributions
suffer a power inefficiency of up to 1.53 dB [1]. Second,
flexibility requires sophisticated modulation and coding ap-
proaches, e.g., supporting a large number of modcods (com-
binations of modulation formats and channel codes such as
in DVB-S2X), puncturing schemes (e.g., for Turbo codes in
LTE [2, Ch. 10]) or rate-compatible low-density parity-check
(LDPC) codes in 5G [3].

One approach to circumvent this deficiency is geometric
shaping (GS) [4], [5] which uses constellations with non-
equidistant signal points. While improved power efficiency
was observed, the problem of flexibility remains. A second
approach is probabilistic shaping (PS) [6, p. 208], [7]–[9] that
uses equidistant signal points with a non-uniform distribution.
For an overview of PS schemes, see [10, Sec. II] and refer-
ences therein. Recently, we proposed probabilistic amplitude
shaping (PAS) [10], a PS architecture that concatenates a
distribution matcher (DM) as a shaping device with forward

error correction (FEC) for single carrier transmission, see
Fig. 1a. PAS achieves the optimal power efficiency and enables
flexible SE adaption with a small number of modcods. The
benefits of PAS for fiber-optic communication were recently
showcased in a transoceanic transmission [11] and future
optical modems will implement PAS [12, Sec. V-A].

In many practical settings, the data link is well modeled
by a set of non-interacting parallel channels. Examples in-
clude multi-carrier transmission such as orthogonal frequency
division multiplexing (OFDM), discrete multitone (DMT), and
multi-antenna transceivers when the singular value decompo-
sition (SVD) of the channel matrix is used to orthogonalize
the system.

In this work, we propose a novel DM architecture called
product distribution matching (PDM), which internally uses a
collection of parallel DMs with smaller output alphabets to
synthesize the desired distribution as product distribution. A
preferable implementation uses binary output alphabets for the
component DMs. This approach simplifies the implementation
significantly and allows for parallelization to achieve high
throughput.

We further show how PDM enables PS for multi-carrier
transmission by sharing the component DMs for lower bit-
levels among different sub-carriers. We provide a representa-
tive example where PDM is about 1 dB more power efficient
than uniform signaling and operates close to the waterfilling
limit [13, Sec. 5.4.6]. The DM implementation used in our
simulation is available to the public as a web service at [14].

This work is structured as follows. Sec. II reviews DM
and PAS and states achievable rate expressions for system
design. In Sec. III, we introduce the PDM architecture and
present simulation results for 64-ASK. Sec. IV shows how
PDM enables the operation of PAS close to the waterfilling
limit of parallel channels. We conclude in Sec. V.

II. PRELIMINARIES

A. Distribution Matching (DM)

DMs transform a sequence of uniformly distributed input
bits into an output sequence of symbols from an alphabet
A with a desired distribution. In the following, we use
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Fig. 1. (a) System model of PAS. The shaping device DM is concatenated in reverse with the FEC device. (b) The DM implementation proposed in this
work: Product Distribution Matching (PDM) for 2m-ASK. k binary data bits are demultiplexed into m− 1 parallel blocks of sizes k2 to km. Parallel binary
component DMs output m shaped sequences of length n. A bit-mapper recombines the m− 1 sequences and outputs one shaped sequence of length n that
may be used as the amplitudes of the transmit symbols. The employed bit-mapping can be chosen independently from the one used at the receiver side for
BMD.

the compact notation xn = x1x2 · · ·xn for row vectors
(x1, x2, . . . , xn). A fixed-to-fixed length DM maps k input
bits dk = d1d2 . . . dk to n output symbols an = a1a2 . . . an =
dm(dk), where di ∈ {0, 1}, i = 1, . . . , k and ai ∈ A, i =
1, . . . , n. The mapping dm(·) is invertible, i.e., dk can be
recovered from an by applying the inverse mapping dm−1(·).
Fixed-to-fixed length DMs can be implemented by the constant
composition distribution matching (CCDM) [15], for binary
output alphabets see also [16]. A DM is specified by the
following parameters.
• The rate is

Rdm =
k

n

[
bits

output symbol

]
. (1)

• The output distribution is

PA(a) =

∑
dk∈{0,1}k P̄dm(dk)(a)

2k
, a ∈ A (2)

where P̄dm(dk) = P̄an is the empirical distribution of the
sequence an, i.e.,

P̄an(a) =
|{i : ai = a}|

n
, a ∈ A. (3)

The reference [15, Sec. III.B] shows that Rdm approaches the
entropy H(A) of PA, for large n. We take the actual DM rate
k/n into account for all finite length numerical results.

B. Channel Model and Achievable Rates
We consider transmission over the time-discrete additive

white Gaussian noise (AWGN) channel

Y = X + Z (4)

where the channel input X = ∆X̃ and ∆ > 0 is a constel-
lation scaling and X̃ comes from a normalized M = 2m-
amplitude shift keying (ASK) constellation

X = {±1,±3, . . . ,±(2m − 1)} . (5)

The noise Z is zero-mean Gaussian with unit variance, i.e.,
Z ∼ N (0, 1). The resulting signal-to-noise ratio (SNR) is
E
[
X2
]
/E
[
Z2
]
. The mutual information maximizing distri-

bution under an average power constraint is a zero mean
Gaussian input X with variance SNR, and the capacity is

CAWGN(SNR) =
1

2
log2(1 + SNR). (6)

TABLE I
TWO LABELS FOR 8-ASK. THE AMPLITUDE LABEL OF NBBC IS NBC

AND THE AMPLITUDE LABEL OF BRGC IS ALSO BRGC.

-7 -5 -3 -1 1 3 5 7

BRGC 000 001 011 010 110 111 101 100
NBBC 000 001 010 011 111 110 101 100

C. PAS Transmitter

The PAS architecture implements probabilistically shaped
ASK modulation [10, Sec. IV.]). It leverages the symmetry of
the capacity achieving distribution PX for the AWGN channel.
This allows a factorization of the input distribution into an
amplitude and sign part as PX(x) = PA(|x|) · PS(sign(x)),
where PA is non-uniform on A = {|x| , x ∈ X} and S
is uniform on {−1,+1}. A DM maps k data bits to n
amplitudes An, which are represented by n(m−1) amplitude
bits and associated with bit-levels b2b3 · · · bm. The amplitude
bits and γn additional data bits are multiplied with the parity
generating part P of a systematic generator matrix [I|P ] to
generate (1−γ)n parity bits. The parity bits and the additional
data bits are mapped to n signs Sn and associated with
bit-level b1. The signs are multiplied symbol-wise with the
amplitudes An. The FEC code instantiated by P has rate

Rc =
n(m− 1) + γn

mn
=
m− 1 + γ

m
(7)

and the fraction of signs used for data bits is

γ = 1− (1−Rc)m. (8)

PAS requires 0 ≤ γ ≤ 1. The transmission rate of PAS is the
number of data bits per ASK symbol given by

Rtx =
k

n
+ γ. (9)

D. Achievable Rates for PAS

In [17], it is shown that an achievable rate for PAS is

Ra =

[
H(X)− E

[
− log2

(
q(X,Y )∑
x∈X q(x, Y )

)]]+

(10)



where [·]+ = max(0, ·). The expression q(x, y) is a non-
negative memoryless metric on X×R to determine an estimate
x̂n of the sent symbol sequence via

x̂n = argmax
xn∈C

n∏

i=1

q(xi, yi) (11)

where C is the set of codewords. To use binary FEC codes, we
introduce a labeling function that maps a constellation point
x ∈ X to an m-bit binary label, i.e., χfec : X → {0, 1}m and
χfec(x) = bfec

1 bfec
2 . . . bfec

m = bfec. Its inverse is χ−1
fec : {0, 1}m →

X . The BMD metric is

q(x, y) = q̃(χfec(x), y) = q̃(bfec, y) =
m∏

i=1

PBfec
i |Y (bfec

i |y)

(12)
and the achievable rate (10) becomes

RBMD(SNR;PX) =

[
H(X)−

m∑

i=1

H(Bfec
i |Y )

]+

. (13)

In the following, we use a binary reflected Gray code
(BRGC) [18] for χfec(·), see Table I.

III. PRODUCT DISTRIBUTION MATCHING (PDM)

A. Concept of PDM

Suppose for some amplitude label bdm
2 · · · bdm

m and the cor-
responding signal point label bdm = bdm

1 bdm
2 · · · bdm

m we have

PBdm(bdm) =
m∏

i=1

PBdm
i

(bdm
i ) = 0.5 ·

m∏

i=2

PBdm
i

(bdm
i ) (14)

where PBdm
1

(b) = PB1
(b) = 0.5, b ∈ {0, 1} because of the

required symmetry. The bits of the label bdm are statistically
independent. We can construct a distribution on the signal
points by choosing binary distributions PBdm

i
, i = 2, . . . ,m

and a bit mapper χdm : X → {0, 1}m. PDM can efficiently
generate the product distributions of (14) and the procedure
is displayed in Fig. 1b. k binary data bits are demultiplexed
into m − 1 parallel blocks of lengths k2 to km. The m − 1
parallel binary DMs output m−1 shaped binary sequences of
length n. A bit mapper recombines the m− 1 sequences and
outputs one shaped amplitude sequence of length n. Hence,
PDM provides the same interface as the DM in the original
work of [10], which uses one M/2-ary DM for a M -ASK
constellation. The use of binary output DMs greatly reduces
the complexity of the underlying matching algorithm, e.g., of
arithmetic coding used for CCDM. The rate Rdm for PDM is

Rdm =
k2 + k3 + · · ·+ km

n
. (15)

and approaches
∑m
i=2 H(Bdm

i ) for large n. An achievable rate
asymptotically in n is

RΠ
BMD =

[
m∑

i=1

H(Bdm
i )−

m∑

i=1

H(Bfec
i |Y )

]+

. (16)

Note that the labeling functions χdm(x) and χfec(x) for the
DM and FEC may be different for the same signal point. We
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Fig. 2. Achievable rates for 64-ASK and different BMD schemes.

choose the natural based binary code (NBBC) for χdm and
the BRGC for χfec (see Table I) and optimize (16) over the
binary distributions PBdm

i
, i = 2, . . . ,m (recall that the sign

distribution PB1
is uniform) and the constellation scaling ∆.

Remark. The information-theoretic work [19] only consid-
ered the case when χfec = χdm, in which case (16) becomes∑m
i=1 I(Bfec

i ;Y ) which is the so-called bit-interleaved coded
modulation (BICM) capacity. We also note that imposing a
uniform distribution on PX implies a uniform distribution
on the bit-level probabilities causing them to be statistically
independent. In this case, RBMD also reduces to RΠ

BMD, irre-
spectively of the employed mapping functions for the DM and
FEC.

B. Achievable Rate Comparisons

In Fig. 2, we display the achievable rates for 64-ASK and
different DM schemes. We observe that the product constraint
(14) in combination with the different labelings χfec and χdm
leads to a performance loss of only 0.16 dB compared to RBMD
with a 32-ary DM at an SE of 4 bpcu (bits per channel use).
At the same time, the energy efficiency is improved by 1.8 dB
over uniform RBMD. Note that the input distribution has been
optimized for the shaped cases of RBMD and RΠ

BMD for each
SNR.

In Table II, we assess the different DM implementations
by their asymptotic achievable rates. We use 64-ASK, a DM
amplitude distribution with Rdm = 4.1 bits and γ = 0.4,
yielding an SE of Rtx = 4.5 bpcu. We employ a 32-ary DM as
a reference. The performance of this system is compared to a
PDM setup with 1 (Bdm

2 ), 2 (Bdm
2 , Bdm

3 ), 3 (Bdm
2 , Bdm

3 , Bdm
4 ),

4 (Bdm
2 , Bdm

3 , Bdm
4 , Bdm

5 ) and 5 (Bdm
2 , Bdm

3 , Bdm
4 , Bdm

5 , Bdm
6 )

individually shaped bit-levels and corresponding binary DMs.
The input distributions for PDM have been chosen such that
the DMs meet the specified rate using the heuristic

min
P
Bdm

2
,...,PBdm

m

E
[
X2
]

s.t.
m∑

i=2

H(Bdm
i ) = Rdm. (17)



TABLE II
REQUIRED SNRS FOR DIFFERENT DM CONFIGURATIONS AND A TARGET

SE OF 4.5 BPCU. (CAPACITY: 27.08 DB)

DM configuration Required SNR [dB] SNR gap to capacity [dB]

32-ary DM 27.13 0.05
PDM 1 bit shaped 28.29 1.21
PDM 2 bits shaped 27.48 0.40
PDM 3 bits shaped 27.35 0.27
PDM 4 bits shaped 27.32 0.24
PDM 5 bits shaped 27.31 0.23

27.5 28 28.5 29 29.5 30
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Fig. 3. Performance comparison of the proposed PDM for 64-ASK and a
target SE of 4.5 bpcu and different number of shaped bits.

We observe that the gap to capacity to achieve an SE of
4.5 bpcu is very similar for 3, 4 and 5 shaped bit-levels, larger
gaps can be observed when only 1 or 2 bit-levels are shaped.

We compare the asymptotic results to a finite length scenario
with a rate 9/10 LDPC code (corresponding to γ = 0.4)
from the DVB-S2 standard with a blocklength of 64 800 bits
and a corresponding DM output length of 10 800 symbols.
We observe that the performance of the 32-ary DM does not
improve upon PDM with four or five shaped bit-levels in
contrast to the asymptotic results of Table II. This is because
of the larger output alphabet and the slower convergence of
the DM rate to its asymptotic limit. One hundred iterations
are used for the belief propagation (BP) decoding.

IV. PDM FOR PARALLEL CHANNELS

We now consider L parallel channels of the same form as
in (4)

Y` = h`X` + Z`, ` = 1, 2, . . . , L. (18)

The noise terms Z` are zero mean Gaussian with unit variance.
The coefficients h` model the channel gains and we assume
that both the receiver and transmitter have full channel state
information, i.e., they both know the channel gains h` and the
noise variance.

A. Waterfilling Benchmark
The transmitter has an average power budget P , i.e., the

inputs are subject to the sum-power constraint

1

L

L∑

`=1

E
[
X2
`

]
≤ P. (19)

The average SE

1

L

L∑

`=1

1

2
log2(1 + h2

`P`) (20)

is achievable with the channel inputs X` being independent
zero mean Gaussian with variance P`. The average SE is
maximized by waterfilling, i.e.,

P ∗` =

[
1

λ
− 1

h2
`

]+

, λ :
1

L

L∑

`=1

P ∗` = P. (21)

Suppose that P ∗` is positive. The SE allocated to channel ` is
then C` = 1

2 log2(h2
`/λ) and we have

CWF(P ) =
1

L

L∑

`=1

C` =
1

L

L∑

`=1

1

2
log2

h2
`

λ
. (22)

The function CWF(P ) is the maximum achievable SE under the
sum power constraint P and it serves in the following as our
benchmark. For discrete inputs, the power allocation follows
the mercury-waterfilling principle [20]. In the following, we
develop a heuristic that uses PDM and operates closely to
CWF(P ).

B. Bit-Loading Strategy
Since the per-channel SEs can differ by several bits, we need

to support several constellations in parallel. This is for instance
important for digital subscriber line (DSL) systems, where
some good channels may support up to 32 768-QAM [21],
whereas the majority needs to be operated with smaller mod-
ulation formats. Next, we have to decide which constellation
size is used for which channel, an approach known as bit-
loading. We employ the following heuristic: We calculate
the waterfilling solution for the given channel coefficients
and obtain the optimal rate assignment C`, ` = 1, . . . , L
from (22). Then, we use Ungerböck’s rule-of-thumb [22] to
choose a constellation size M` = 2m` for channel ` such that
m` ≈ C` + 1. This avoids a reduced SE because of too small
constellation sizes. We assume the largest constellation size is
2m, i.e., m = max`m`. Further, the smallest constellation size
is 22-ASK for the ease of exposure. An extension to channels
using binary phase-shift keying (BPSK) is straightforward.

C. PAS for Parallel Channels
PAS can be combined with parallel channels as illustrated

in Fig. 4a. A DM device transforms data bits into a sequence
of amplitudes for each channel, which are then combined
with sign bits originating from a common encoding device. In
its simplest form, this DM device internally uses individual
DMs, each with its output alphabet size matched to the
corresponding constellation size.
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Fig. 4. (a) Illustration of PAS for L =
∑m

i=2 νi parallel channels. Note that the power control can still be applied individually. (b) Generating two Gaussian-
like amplitude distributions for 4-ASK and 8-ASK simultaneously by reusing the DM of bit-level (c) The PDM architecture for parallel PAS transforms k
data bits into m amplitude sequences of lengths ν2, . . . , νm. Internally, PDM for parallel PAS uses m − 1 binary component DMs, where 2m-ASK is the
largest supported constellation. The output lengths n2, . . . , nm of the component DMs are given by (24). The input lengths fulfill

∑m
i=2 ki = k.

D. PDM for Parallel Channels

PDM allows to jointly generate a length L amplitude se-
quence with different constellation sizes. For example, suppose
we have L = ν2 + ν3 possibly different channels where ν2

channels use 4-ASK and ν3 channels use 8-ASK. The PDM
needs one binary DM for 4-ASK and two binary DMs for 8-
ASK. As illustrated in the top part of Fig. 4b, the idea is now
to use for the first amplitude bit-level B2 of 4-ASK and 8-
ASK a single binary DM with output length n2 = ν2 +ν3 and
to generate the second amplitude bit-level B3 for 8-ASK by a
second binary DM with output length n3 = ν3. This approach
allows the DMs to operate over a longer blocklength, causing
the DM rate to reach its asymptotic limit faster. The illustration
in the bottom part of Fig. 4b shows this scheme.

E. Parametrization

We state how the system has to be parameterized to operate
at a given SE. For the considered case we assume νi channel
uses of a 2i-ASK constellation for i = 2, . . . ,m within one
FEC frame. The blocklength of the FEC code is

nc = L+
m∑

i=2

ni (23)

where we have L =
∑m
i=2 νi and the parameters ni denote

the DM output lengths

ni =

L∑

`=1

1(m` ≥ i) · νi, i = 2, 3, . . . ,m. (24)

The function 1(·) is the indicator function, which evaluates
to one if its argument is true and zero otherwise. The corre-
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Fig. 5. Achievable rates of the considered example.

sponding DM input lengths are k2, k3, . . . , km. The average
SE of the overall system is now

Rtx =

∑m
i=2 ki∑m
i=2 νi

+ γ. (25)

and converges to (
∑m
i=2 H(Bdm

i )ni)/(
∑m
i=2 νi) + γ for large

L. The formulas (7) and (8) generalize to

Rc =

∑m
i=2(i− 1 + γ)νi∑m

i=2 νi · i
(26)

γ = 1− (1−Rc)

∑m
i=2 νi · i∑m
i=2 νi

. (27)

F. Simulation Results

To evaluate the performance of parallel PAS with PDM, we
employ the following example of three different constellation
sizes which are used equally often. The coefficients are chosen
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Fig. 6. Coded performance comparison of PDM and uniform scheme for
parallel channels (LDPC code with block length 3600 bits).

such that the channel quality varies significantly (over a range
of 12 dB) and requires three different modulation formats. The
waterfilling solution (22) for a target SE of 3.0 bpcu yields the
following rate allocation

Y1 = 2.0 ·X1 + Z1, C1 = 4.0

Y2 = 1.0 ·X2 + Z2, C2 = 3.0

Y3 = 0.5 ·X3 + Z3, C3 = 2.0

which is achieved for an average sum-power of 17.94 dB. We
select constellation sizes of 2m1 = 32, 2m2 = 16 and 2m3 =
8 points according to our bit-loading strategy of Sec. IV-B.
The achievable rates are plotted over the average sum-power
in Fig. 5. Our proposed heuristic scheme exhibits a gap of
0.2 dB to the waterfilling benchmark of (22) for the target SE
of 3.0 bpcu. The uniform reference curve is shown in black
and has a gap of 1.22 dB to the waterfilling solution. The
employed bit distributions are summarized in Table III and
have been chosen as the solution to the following heuristic
optimization problem for Rdm = 3.0− γ with γ = 1/3:

min
P
Bdm

2
,...,PBdm

m

3∑

`=1

1

h2
`

E
[
X2
`

]
s.t.

1

L

5∑

i=2

H(Bdm
i )ni = Rdm.

(28)
In Fig. 6, we consider the same scenario with finite length
LDPC codes from the 5G standard [3] (basegraph BG1). The
uniform reference uses a rate Rc = 3/4, while the shaped
case has a rate Rc = 5/6 code (γ = 1/3). In both cases
the number of transmitted bits is 3600. The asymptotic gains
are also reflected in the coded results. We perform 100 BP
iterations.

TABLE III
PDM PROPERTIES FOR THE CONSIDERED EXAMPLE.

DMi νi ni PBdm
i
(0) H(Bdm

i )

2 300 900 0.1995 0.7208
3 300 900 0.3736 0.9534
4 300 600 0.4408 0.9898
5 300 300 0.4709 0.9976

V. CONCLUSION

We proposed product distribution matching (PDM), an ar-
chitecture that uses binary DMs in parallel. This parallelization
enables high-throughput implementations of DMs and the
binary component DMs of PDM reduce complexity. We also
proposed PDM for parallel PAS, which enables an operation
close to the waterfilling limit of multi-carrier transmission
schemes such as OFDM and improves over a uniform ref-
erence by 1 dB in a representative scenario.
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