
c© 2016 Zeyu Zhou

ar
X

iv
:1

81
2.

03
04

0v
1

 [
cs

.I
T

]
 3

0
N

ov
 2

01
8

PER-FLOW CARDINALITY ESTIMATION BASED ON VIRTUAL LOGLOG
SKETCHING

BY

ZEYU ZHOU

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Professor Bruce Hajek

ABSTRACT

Flow cardinality estimation is the problem of estimating the number of distinct elements in

a data flow, often with a stringent memory constraint. It has wide applications in network

traffic measurement and in database systems. The virtual LogLog algorithm proposed re-

cently by Xiao, Chen, Chen and Ling estimates the cardinalities of a large number of flows

with a compact memory. The purpose of this thesis is to explore two new perspectives on

the estimation process of this algorithm. Firstly, we propose and investigate a family of

estimators that generalizes the original vHLL estimator and evaluate the performance of

the vHLL estimator compared to other estimators in this family. Secondly, we propose an

alternative solution to the estimation problem by deriving a maximum-likelihood estimator.

Empirical evidence from both perspectives suggests the near-optimality of the vHLL esti-

mator for per-flow estimation, analogous to the near-optimality of the HLL estimator for

single-flow estimation.

ii

ACKNOWLEDGMENTS

I thank Prof. Bruce Hajek, for introducing this topic to me and guiding me through the

completion of this thesis with great patience. I thank my parents, for their unconditional

love and support.

iii

CONTENTS

Chapter 1 INTRODUCTION . 1
1.1 Flow cardinality estimation . 1
1.2 Motivation and contributions . 3
1.3 Thesis overview . 4

Chapter 2 BACKGROUND AND PRELIMINARIES 5
2.1 Single-flow cardinality estimation . 5
2.2 Per-flow cardinality estimation with memory sharing 8
2.3 A per-flow estimator performance metric – Weighted square error 12

Chapter 3 VIRTUAL LOGLOG ESTIMATOR WITH PARAMETER θ 16
3.1 The LLθ estimator for single-flow estimation 16
3.2 The vLLθ estimator for per-flow estimation 20
3.3 Experimental performance evaluation . 25

Chapter 4 MAXIMUM LIKELIHOOD ESTIMATOR 26
4.1 Formulation . 26
4.2 Derivation of the likelihood function . 27
4.3 Implementation . 32
4.4 Aside: MLE for single-flow estimation . 36
4.5 Experimental performance evaluation . 37

Chapter 5 CONCLUSIONS AND FUTURE WORK 40

REFERENCES . 42

iv

Chapter 1

INTRODUCTION

1.1 Flow cardinality estimation

Today’s Internet is flooded with data. The measuring and monitoring of Internet data traffic

has led to many useful applications but it is also challenging due to the sheer volume and

speed of the traffic. Flow cardinality estimation is one of the fundamental problems in

network traffic measurement and it is the problem addressed by this thesis.

In general, we define cardinality estimation to be the problem of estimating the number

of distinct elements n of a given multiset1 S. For example, if S = {1, 2, 3, 2, 1}, then n = 3.

The problem is often considered in the stream model — we are only allowed to observe each

element in S once, then the element is discarded forever.

Flow cardinality estimation, in its essence, is cardinality estimation in the context of

network traffic measurement, where we define a flow to be a multiset of data packets defined

by certain properties observed on a network link over a period of time. The purpose of flow

cardinality estimation is to estimate the number of distinct packets in the multiset, where

the distinction is made based on some properties such as values of certain packet header

fields of interest.

For example, we can consider a per-source flow that contains all the packets from the same

source address and use cardinality estimation to estimate the number of distinct destination

addresses among them. In this case, the particular source address is known as the flow’s

identifier (flow ID). Some commonly used flow identifiers are source/destination address,

source/destination port number, protocol type, or a combination of them (such as source-

destination pair).

Challenges: The challenges of flow cardinality estimation are mainly twofold: time and

space constraints. First of all, high data transfer rates in some communication networks

1A multiset is a generalization of a set, with the difference that a multiset can have duplicate elements.

1

today make it infeasible to spend much time on processing each element. According to [1]

and [2], on a typical OC-7682 backbone network link with 40 Gbps traffic speed, the time

available to process each packet is at best about tens of nanoseconds, corresponding to no

more than a hundred elementary operations.

Secondly, such a high traffic rate necessitates the need to use on-chip cache memory on

network processors, in order to achieve real-time processing and maintain high throughput.

But most on-chip caches on processors are made of SRAM, typically only a few megabytes

[3]. A näıve approach that maintains a look-up dictionary to record all the distinct elements

seen thus far is too costly, since it requires O(n) bits. In some applications, n can be on the

order of billions.

Therefore, an ideal algorithm should be simple and quick in processing each flow element

and be compact in memory usage. The good news is that it is usually not necessary to know

the exact value of a flow’s cardinality. Many approximation algorithms have been developed

to explore the trade-off between estimation accuracy and space/timing efficiency.

Applications Examples: One important direction of application of cardinality esti-

mation is network anomaly detection. Estan et al. [4] suggested three such applications:

detecting port scans, detecting denial of service (DoS) attacks and estimating worm spread

rate.

Let us take port scan detection as an example to illustrate the idea. A port scan is a

probing process that sends service requests from a client to a range of port addresses of a

server with the aim of finding an open port, which an attacker can take advantage of to find

vulnerabilities on the server. A router can detect such a process by keeping track of packet

flows and using cardinality estimation to measure the number of distinct port addresses

attempted by each source. Any source that is trying to connect to an abnormally large

number of port addresses in a short time interval should be suspected of conducting a port

scan.

Other than network anomaly detection, we can apply flow cardinality estimation to many

other problems that have a count-distinct nature by adapting the concept of a flow to contain

other (maybe abstract) types of data. For example, Google might be interested in estimating

the number of distinct users that query certain keywords in a period of time [3]. Here a

per-keyword flow can be defined to be all the user IP addresses that query that keyword.

Information about the cardinalities of such flows reflects the popularity of those keywords

2OC is an acronym for Optical Carrier. OC-n specifies the transmission rate of digital signals on a
Synchronous Optical Networking (SONET) fiber optic network, equivalent to n× 51.84 Mbit/s.

2

which might be helpful in the optimization of Google’s database and search algorithm. Much

research on cardinality estimation was motivated by database-related applications (e.g. [5]

and [6]).

1.2 Motivation and contributions

State-of-the-art algorithms for cardinality estimation comprise two processes. First, the

sketching process reads elements from the flow and stores useful information in a compact

data structure. Second, in the estimation process, an estimator takes the recorded informa-

tion as input and outputs the estimated cardinality of the flow.

The HyperLogLog (HLL) algorithm proposed by Flajolet et al. in [7] is near-optimal

and has been widely adopted in many industry systems due to its simplicity and excellent

performance; according to [3], it is the best existing algorithm for single-flow estimation.

Roughly speaking, the HLL algorithm requires hundreds of bytes to make a fair estimation

for a single flow with cardinality up to 4× 109. Details of the HLL algorithm are presented

in Section 2.1.1.

However, in some applications the cardinalities of multiple flows need to be estimated at

the same time — this is known as per-flow cardinality estimation. In this case, the rate of

hundreds of bytes per flow is still too much in some important scenarios where the number

of flows can be on the order of tens of millions and memory usage is critical. To this end,

Xiao et al. [3] proposed the virtual LogLog algorithm based on memory sharing at register

level, which can potentially bring down the memory cost from hundreds of bytes per flow to

one bit per flow on average. Details of the sketching process of this algorithm are described

in Section 2.2.1. The estimation process of this algorithm uses an estimator called vHLL,

summarized in Section 3.2.1.

The main purpose of this thesis is to propose and investigate alternative estimators for

the estimation process of the virtual LogLog algorithm in [3]:

• The original vHLL estimator of [3] is based on the HLL estimator for single-flow esti-

mation. We show that the HLL estimator can be generalized by a family of estimators

parametrized by a value θ (Section 3.1); for HLL, θ = −1. The idea of this general-

ization can be easily applied to the vHLL estimator for per-flow estimation as well.

Although it is already known that for single-flow estimation, θ = −1 (i.e. HLL) is

near-optimal [7], it is not clear whether this near-optimality at θ = −1 extends to the

3

case of per-flow estimation. We provide empirical evidence to show that indeed θ = −1

(i.e. vHLL) is still optimal for per-flow estimation.

• We introduce an alternative approach to the estimation problem – a maximum-likelihood

estimator. We find that this estimator does not significantly improve the estimation

process, compared to the vHLL estimator.

Empirical evidence from both perspectives suggests the near-optimality of the vHLL esti-

mator for per-flow estimation, on the basis of the virtual LogLog algorithm [3].

1.3 Thesis overview

The rest of this thesis is organized as follows. Chapter 2 provides the background knowl-

edge and preliminaries to the estimators discussed in this thesis. Chapter 3 and Chapter 4

investigate alternative estimators of the virtual LogLog algorithm from the aforementioned

two perspectives. Chapter 3 introduces the vLLθ estimator, a generalization of the vHLL

estimator, and evaluates its performances for different values of θ. Chapter 4 derives the

maximum-likelihood estimator and compares its performance with that of the vLLθ esti-

mator. Chapter 5 summarizes the conclusions of the thesis and points to possible future

works.

4

Chapter 2

BACKGROUND AND PRELIMINARIES

This chapter briefly overviews cardinality estimation algorithms and points to relevant refer-

ences. The focus is on summarizing previous works that are essential to the understanding of

the main body of this thesis: the LogLog [8] and HyperLogLog [7] algorithms for single-flow

estimation and the virtual LogLog algorithm [3] for per-flow estimation.

2.1 Single-flow cardinality estimation

Given a single flow of elements x1, x2, x3, · · · , the goal of cardinality estimation is to estimate

the number of distinct elements in the flow. There are two general approaches to this

problem: sampling and streaming. A sampling-based algorithm collects a small sample of

elements from the flow while bypassing other elements and infers the cardinality of the flow

from sample information. A streaming-based algorithm, in contrast, processes every element

in the flow. Most state-of-the-art algorithms are based on streaming. For a review of these

two kinds of algorithms and a comparison between them, see [9].

A streaming-based algorithm for cardinality estimation has three integral components:

• A hash function H, mapping each element xi of the flow into a hashed value H(xi) of

a chosen type. The purpose of H is generally twofold: filtering out duplicate elements

(relying on the fact that multiple appearances of the same element have the same hash)

and providing randomization.

• A compact data structure D, capturing certain low-dimensional statistical information

of the flow’s cardinality by recording features of the hashed values. In some literature,

the data structure is known as a sketch, meaning it is a concise summary of the flow.

The process of updating the sketches is called sketching.

• An estimator E that takes the content of D as input and outputs the estimated car-

dinality, thus n̂ = E(D).

5

Usually we want the estimator to be unbiased (i.e. E[n̂|n] = n). One commonly used

metric for the evaluation of the performance of an estimator is the relative standard error

,
√

Var(n̂)

n
. For two unbiased estimators using the same amount of memory, the one with

a smaller relative standard error is better. For a detailed classification and comparison of

existing single-flow cardinality estimation algorithms, see [10, 11]. We take a closer look at

the LogLog and HyperLogLog algorithms in Section 2.1.1.

2.1.1 LogLog and HyperLogLog

The HyperLogLog (HLL) [7] algorithm is the best-known algorithm in practice, due to its

simplicity and good performance. HLL is a successor of LogLog [8]: the two algorithms use

the same hash function and data structure (therefore have the same sketching process) and

only differ in their choice of estimators.

The data structure of the LogLog/HLL algorithm is a single array of k registers (counters),

denoted as S, where S[i] refers to the ith register in the array (or the value stored in it,

depending on the context). Suppose we have a hash function H that maps each element

of the flow to a sufficiently long bit string. Define a function ρ that takes a bit string and

outputs the position of the leftmost 1-bit of the string, e.g. ρ(000010 · · ·) = 5. The sketching

process of LogLog/HLL is summarized as follows.

LogLog/HLL sketching process:

1. Initialize all the registers in S with value 0. Let l = log2 k.

2. For each element x in flow:

(i) 〈b1b2b3 · · ·〉 ← H(x). Hash x into a sufficiently long bit string.

(ii) Divide the bit string into two parts:

• j ← 〈b1b2 · · · bl〉. Use the prefix l bits to select a register in S.

• q ← 〈bl+1bl+2 · · ·〉. Use the remaining bits to update the selected register.

(iii) S[j]← max{S[j], ρ(q)}. Update the value of S[j] by the larger of the current

value of S[j] and the position of the leftmost 1-bit of q.

Here are a few points to note about the above sketching process. First, k is chosen to be

6

some integer power of 2 so that l is an integer and j ∈ {0, 1, · · · , k − 1}. Assume that for

a random element x, H(x) is a random bit string with independent and uniform bits. Then

j can be regarded as a uniform random variable in {0, · · · , k − 1}, which means that the k

registers in S are equally likely to be selected for updating for a randomly given element.

Second, the values of the registers in S after the sketching process should not be affected

by duplicate elements, nor by the order of the elements appearing in the flow. This is

guaranteed by hashing and the max operation in step (iii).

Third, how large can a register’s value get? With the previous assumption on the indepen-

dence and uniformity of the bits in the hash output string, for a random element x we have

ρ(q) = i with probability 1
2i

(i ≥ 1). That is, ρ(q) can be regarded as a geometric random

variable with parameter 1/2. By the same assumption, we expect about n
k

distinct elements

distributed to any particular register S[j]. Suppose that this number n
k

is exact, then at

the end of the sketching process, S[j] is just the maximum of n
k

independent Geo(1/2) ran-

dom variables. According to [8], previous study has shown that the expectation of S[j] is

close to log n
k

with a small additive bias. Therefore, on average each register needs about

log log n
k

= O(log log n) bits to store its value — this is why such a register is also known

as a LogLog sketch. Based on this discussion, a rough estimator for n can be n̂ = k2S[j].

Following this idea, the LogLog estimator [8] replaces S[j] with the average of the k register

values:

n̂ = LL(S) , ηk2
S[0]+···+S[k−1]

k , (2.1)

where η is a suitable bias correction factor. The HLL algorithm [7] uses a different estimator:

n̂ = HLL(S) , γk
k

2−S[0] + · · ·+ 2−S[k−1]
(2.2)

with a different bias correction factor γ. Note that 2
S[0]+···+S[k−1]

k is commonly known as the

geometric mean of the values 2S[0], · · · , 2S[k−1], while k
2−S[0]+···+2−S[k−1] is the harmonic mean

of those values.

We will introduce two other estimators for single-flow estimation in Section 3.1 (LLθ

estimator) and Section 4.4 (maximum-likelihood estimator), respectively.

It has been shown in [8] and [7] that the LogLog and HLL estimators are asymptotically

approximately unbiased in the sense that, as n→∞, E[n̂]
n

is very close to 1 with a practically

negligible fluctuation. It has been shown that as n → ∞, the bias correction constants are

independent of n. They do depend on k, however; but as k gets large (e.g. k ≥ 64), they

can be safely replaced by constants for all practical purposes. Practical values of η and γ

7

are 0.39701 and 0.7213 respectively.

The relative standard error ,
√

Var(n̂)

n
is approximately 1.30√

k
for the LogLog estimator [8]

and approximately 1.04√
k

for the HLL estimator [7], as n → ∞. Therefore, using the same

number of registers (same amount of memory), HLL’s estimate is more accurate than that of

LogLog. With the HLL algorithm, we can achieve an estimate accuracy (in terms of relative

standard error) of about 5% by choosing k = 512. If we use 5 bits for each register (for

measuring cardinalities up to 225 ≈ 4 × 109), then in total we need 5k = 2560 bits = 320

bytes for one estimation.

According to Section 4 of [7], the HLL algorithm is near-optimal, in the sense that its

relative standard error 1.04√
k

is quite close to the lower bound 1√
k

for a wider class of algorithms

based on order statistics. For a more detailed discussion of this lower bound, see [2].

One problem of the HLL algorithm is that it is highly biased and inaccurate for the

estimation of small cardinalities. Methods to remedy this flaw are considered in Section 4

of [7] and further in [6].

2.2 Per-flow cardinality estimation with memory sharing

In many real-world applications we need to estimate the cardinalities of multiple flows at the

same time. For example, consider a stream of data packets from many flows observed by a

network monitor device (such as a router). Let each packet be abstracted as a 2-tuple (f, x),

where f is the IP source address of the packet (the flow ID) and x is the destination address

(i.e. an element of the flow). The goal is, at the end of the measuring period, to estimate the

number of distinct destination addresses from each given source address, i.e. the cardinality

of each flow. For example, if the stream of packets is (A, 2), (C, 9), (A, 3), (A, 2), (C, 1), (B, 8),

then flow A is {2, 3, 2} with cardinality 2, flow B is {8} with cardinality 1 and flow C is

{9, 1} with cardinality 2.

An immediate idea to solve this problem is to allocate a separate block of memory for each

flow and use any of the existing single-flow cardinality estimation algorithms for each flow.

Since we do not know the cardinalities of the flows beforehand, it is inevitable to allocate the

maximum amount of memory for each flow; with the HLL algorithm, we still need hundreds

of bytes per flow. However, in many applications most of the flows have small cardinalities.

Figure 2.1 shows an example of flow cardinality distribution from real-world data.1 Here, a

1Data are retrieved from network traffic trace files [12] recorded on a backbone link between San Jose
and Los Angeles during a ten minute interval.

8

flow is defined by an IP source address. The cardinality of a flow is the number of distinct

destination addresses among all the packets in the flow. In this example, the majority (about

90%) of the flows have cardinality of only 1, while only six flows have cardinalities larger

than 104.

Figure 2.1: A typical flow cardinality distribution from real trace files. x-axis: flow
cardinality. y-axis: the number of flows with the corresponding cardinality. Total number
of flows: 1, 116, 535. Average flow cardinality: 2.52.

In view of this waste of memory, some algorithms have been proposed that allow memory to

be shared among flows. Such an algorithm usually combines the following components/ideas:

• A memory pool, which is the actual source of memory for all estimations.

• A virtual data structure for each flow. This data structure does not physically exist

but is logically constructed by (often randomly) pointing to memory units in the pool.

Consequently, difference flows may share some common parts of the memory.

• In the sketching process, for each incoming element, the algorithm applies the sketch-

ing process of an existing single-flow estimation algorithm to update the virtual data

structure allocated for the corresponding flow.

9

• After the sketching process, the algorithm uses an estimator to estimate the cardinality

of any given flow (with its ID). The estimator needs to take into account the interference

among flows due to memory sharing. This estimation process can be done off-line (in

comparison to the online sketching process).

Such algorithms may differ from each other in any of the above aspects. A review and

comparison of some per-flow cardinality estimation algorithms based on memory sharing can

be found in [3]. All these algorithms, however, share memory at bit level (meaning that the

basic unit of the memory pool and of the virtual data structure is a bit), which [3] claims to

be inherently too noisy.

Another algorithm that shares memory at bit level, which [3] did not mention, is the

virtual FM sketches algorithm proposed in [13]. The algorithm constructs multiple virtual

bit arrays from a bit pool for each flow and relies on the sketching process of the FM

sketches2 algorithm for single-flow estimation. The algorithm adopts a maximum-likelihood

estimator in the estimation process based on bit patterns in the sketches. We will also

consider a maximum-likelihood estimator solution in Chapter 4, but for a different sketching

scheme. The performance reported in [13] shows that with memory cost of 1 bit per flow,

the algorithm can estimate flows with cardinalities up to 3000 and average flow cardinality

about 2.5; it can achieve relative standard error of about 20% for flows with cardinalities less

than 500 and 10% for flows with cardinalities in the range 500 to 3000. For relatively small

flows with cardinalities in the range 100 to 500, this algorithm may outperform the virtual

LogLog algorithm with the vHLL estimator [3]; but it does not appear to be as competitive

for larger ranges of flow cardinality.

In view of the inherent drawback of bit-level sharing, [3] proposed the virtual LogLog

algorithm based on memory sharing at register level and showed through experiments that

such an algorithm outperforms previous ones. The data structure and sketching process of

this algorithm are presented in the following subsection.

2.2.1 Virtual LogLog register sharing and sketching process

Virtual Data Structure: The virtual LogLog algorithm [3] keeps a memory pool in the

form of a register array, denote as R. Denote the size of the array by m, which is usually

a very large number. R[j] refers to the jth register in the array (or the value stored in

2See [5] by Flajolet and Marin for a description of the FM sketches algorithm for single-flow estimation.

10

the register, depending on the context). For each flow f , we form a virtual data structure

(virtual register array) denoted as Rf , which is a logically constructed array of k registers

with the ith register denoted as Rf [i]. The registers of Rf are randomly selected from R by

using k independent hash functions G0, G1, · · · , Gk−1, each mapping the flow ID uniformly

to an integer in {0, · · · ,m− 1}, i.e.

Rf [i] = R[Gi(f)], 0 ≤ i ≤ k − 1. (2.3)

The k hash functions can be implemented by a single master hash function G as follows:

Gi(f) = G(f |i), (2.4)

where “|” is the concatenation operator. It should be emphasized that Rf does not need to

be physically constructed (thus it is “virtual”). A simple example is shown in Figure 2.2 to

illustrate the concepts. In the example, say we want to update the third register of flow f2,

i.e. Rf2 [3], what actually will be updated is R[5] — we do not even need to know where the

other registers in Rf2 are.

Figure 2.2: An example of the register pool and virtual register arrays. Here m = 8, k = 4.
There are three flows and three corresponding virtual register arrays:
Rf1 = [R[0], R[2], R[5], R[7]], Rf2 = [R[0], R[1], R[3], R[5]], Rf3 = [R[3], R[4], R[6], R[7]].

A caveat should be pointed out here, which the original paper [3] omitted: it could happen

that two logically distinct registers of a virtual register array are mapped from the same

physical register in the pool, i.e. Gi(f) = Gj(f) for some i 6= j. Certainly we wish to avoid

this situation, but it is tolerable if the number of such “collisions” is very small.

To see how likely it is for such a “collision” to occur, we can consider a bins-and-balls

analogous problem: suppose we have k balls and n bins and we throw the balls sequentially,

independently and uniformly at random into the bins. In the end how many bins will contain

more than one balls? If k is reasonably large, then the number of balls distributed at each

11

bin can be approximated by an independent Poisson random variable X with mean k
m

(see

Chapter 5.4 of [14]). So we have

Pr{X ≥ 2} = 1− Pr{X ≤ 1} ≈ 1−
(

1 +
k

m

)
e−

k
m ≈ 1−

(
1 +

k

m

)(
1− k

m

)
=

k2

m2
,

where the last approximation assumes k � m. Therefore out of the m bins, we expect to

have approximately k2

m
bins that hold more than one ball. Ideally we want k2

m
to be small,

which means with high probability the registers in a virtual register array are all mapped

from distinct physical registers in the pool. This factor should be included in the design

consideration.

Sketching Process: The sketching process of virtual LogLog is almost identical to that

of LogLog/HLL (recall from Section 2.1.1): for each packet (f, x) in the stream, we process

x to obtain j (the register selector) and ρ(q) (to be compared with the selected register’s

value); except that the last step (iii) becomes

Rf [j]← max{Rf [j], ρ(q)}.

That is, we are treating the virtual register array as the actual register array. By combining

(2.3) and (2.4), the above expression can be re-written as

R[G(f |j)]← max{R[G(f |j)], ρ(q)}. (2.5)

Again, it shows that updates are actually made in the physical registers in R. It should now

be clear why the algorithm is called virtual LogLog: it is based on virtual register arrays,

where each register is a LogLog sketch.

After the sketching process, we obtain m register values. The remaining problem is to

infer flow cardinalities from these register values: this is the estimation process. We will

consider two kinds of estimators in Chapters 3 and 4, respectively.

2.3 A per-flow estimator performance metric – Weighted square

error

Before we discuss specific estimators for per-flow cardinality estimation, we consider a metric

based on weighted square error to evaluate the performance of any given estimator.

12

Suppose that the incoming data stream containsM flows, with cardinalities n1, n2, · · · , nM .

Given any estimator E, suppose its corresponding estimates for the flows’ cardinalities are

n̂1, n̂2, · · · , n̂M . The weighted square error of estimator E is defined as

WSE(E) ,
M∑
i=1

(ni − n̂i)2w(ni), (2.6)

where w(·) is a weight function mapping the cardinality of a flow to a positive number. For

two estimators using the same amount of memory, the one with a lower WSE is better.

2.3.1 Weight function

The choice of the weight function depends on the specific application. For example, if

each flow is considered equally important regardless of its cardinality, then we can simply let

w(n) = 1 for all n. In many other situations, large flows are considered to be more important

than small flows, then we want w(n) be an increasing function in n. The weight function

used in this thesis is presented and explained as follows.

First, assume that the cardinality of a randomly chosen flow can be modeled as a random

variable N with pmf pN(n) , Pr(N = n). We use the following weight function:

w(n) =
1

n · pN(n)
. (2.7)

The motivation for using this weight function is explained here. The integral∫ m2

m1

w(n)pN(n) dn

is an approximation of the total weight of flows whose cardinalities are in the range [m1,m2).

With the weight function in (2.7), we have w(n)pN(n) = 1
n
; it is easy to verify that in this

case the integral ∫ n∗(1+ε)

n∗
w(n)pN(n) dn

for ε > 0 is independent of n∗. If we plot the curve w(n)pN(n) as a function of n on log

scale of n, then the area under the curve should be approximately the same in each decade

interval: [1, 10), [10, 100), [100, 1000), [1000, 10000), etc. In another word, by choosing such

a weight function, we put approximately the same total weight to the aggregate of flow

13

cardinalities in each of these intervals.

2.3.2 Zipf model

The weight function in (2.7) can be applied to any given flow cardinality distribution. The

particular distribution used for simulation in this thesis is the Zipf distribution. A random

variable N following the Zipf(π, nmax) distribution has the following pmf:

pN(n) =
n−π

C
, n ∈ {1, 2, · · · , nmax}, (2.8)

where nmax is an upper bound of the flow cardinality, π is a parameter that controls the

shape of the Zipf distribution (π > 0) and C is a constant such that
∑nmax

n=1 pN(n) = 1.

The adoption of the Zipf model is motivated by the fact that Zipf’s law underlies many

Internet applications (see [15]). In Figure 2.3, we plot the distribution of a large number

of simulated flow cardinalities, each generated independently according to a Zipf(2.25, 105)

model. The validity of the model can be verified by observing the resemblance between

Figure 2.3 (from Zipf model) and Figure 2.1 (from raw Internet data).

Figure 2.3: Distribution of simulated flow cardinalities according to Zipf(2.25, 105). Total
number of flows: 1, 116, 535. Average flow cardinality: 2.88.

14

With N ∼ Zipf(π, nmax), by (2.7) and (2.8), we have

w(n) = Cnπ−1, (2.9)

where the constant C can be omitted (set to 1) because when we compare the weighted square

errors of two estimators, we only care about their relative values, which are unaffected by a

constant factor.

We remark that the specific estimators we will discuss in Chapters 3 and 4 do not reply

on any particular distribution model. The Zipf model here is for two purposes: to complete

the definition of the weighted square error for the performance evaluation of estimators and

to generate random flow cardinalities for simulation; both purposes are independent of the

estimation process.

Finally, we make a note on experimental evaluation of per-flow estimators. Given the

close match between the real trace data and simulated trace data with a Zipf distribution,

we will evaluate the estimators using simulated trace data. We generated 100 simulated

trace files. Each trace file contains 106 flows, with the cardinality of each flow randomly

and independently generated according to a Zipf(2.25, 105) distribution. A flow is presented

in the file as a collection of packets with the same source address and distinct destination

addresses; different flows have different source addresses (flow IDs). For one experiment,

we process one such trace file and estimate the cardinalities of all the 106 flows in it. For

a given estimator, we perform 100 independent experiments and evaluate its performance

based on the statistics averaged over the 100 experiments. All experiments are performed

with m = 200, 000 and k = 512. If each register uses 5 bits, this setting uses 106 bits to

measure the cardinalities of 106 flows, leading to one bit per flow on average.

15

Chapter 3

VIRTUAL LOGLOG ESTIMATOR WITH
PARAMETER θ

The sketching process of the virtual LogLog algorithm has been described in Section 2.2.1.

After the sketching process, we can offload the register values from the network measuring

device for off-line query. The following per-flow estimation problem is to be solved:

Given: Register values R[0], R[1], · · · , R[m− 1] and any flow’s ID f .

Objective: Estimate nf , the number of distinct elements in flow f .

In this chapter, we first introduce LLθ, a family of generalized LogLog estimators parame-

terized by θ, for single-flow estimation. Then, with the similar idea from LLθ, we propose

vLLθ, a family of generalized virtual LogLog estimators parameterized by θ, for per-flow

estimation.

3.1 The LLθ estimator for single-flow estimation

The LLθ estimator is a class of estimators parameterized by θ, which unifies and generalizes

the LogLog and HLL estimators described in Section 2.1.1.

3.1.1 Generalized mean

We start with the concept of generalized mean. Given k positive numbers x1, x2, · · · , xk,
their generalized mean parameterized by θ is defined for nonzero θ by

Aθ(x1, · · · , xk) =

(
1

k

k∑
i=1

xθi

) 1
θ

, θ ∈ R, θ 6= 0. (3.1)

16

In the case of θ = 0, we let

A0(x1, · · · , xk) =

(
k∏
i=1

xi

) 1
k

, (3.2)

which is in fact the limit of Aθ(x1, · · · , xk) as θ → 0. Note that

Aθ(x1, · · · , xk) =


min{x1, · · · , xk} if θ = −∞

k
1
x1

+···+ 1
xk

if θ = −1

x1+···+xk
k

if θ = 1

max{x1, · · · , xk} if θ =∞.

(3.3)

Aθ(x1, · · · , xk) is commonly known as the arithmetic mean, geometric mean, and harmonic

mean of the k numbers when θ = 1, 0,−1, respectively. A notable property of the generalized

mean function is that Aθ(x1, · · · , xk) with a lesser θ is more robust to abnormally high

values in obtaining the mean. Consider an example: for numbers 1, 1, 1, 1, 100, A1 = 20.8,

A0 ≈ 2.51, A−1 ≈ 1.25 and A−∞ = 1.

3.1.2 Unification and generalization of LogLog and HLL estimators

Recall from Section 2.1.1, the LogLog and HLL estimators use the geometric mean and

harmonic mean, respectively. Based on the generalized mean notation, we attempt to unify

these two estimators by proposing the LLθ estimator:

n̂ = LLθ(S) , ξkAθ
(
2S[0], · · · , 2S[k−1]

)
, (3.4)

where ξ is a suitable coefficient.

It is desirable if there exists a value of ξ to make the estimator approximately unbiased

and for which we can identify such value. Specifically, ξ should not depend on n. We already

know that for θ = 0 (i.e. LogLog [8]) and θ = −1 (i.e. HLL [7]) such values of ξ exist (by

letting ξ = η and ξ = γ respectively). But we do not know if it is true for other values of θ.

The analysis of this estimator for general θ is difficult.1 We resort to simulations to explore

empirical evidence of the existence of this coefficient ξ.

1Interested readers may refer to the analyses of LogLog [8] and HLL [7] algorithms to get an idea of the
techniques used for this kind of analysis.

17

Let Aθ denote Aθ
(
2S[0], · · · , 2S[k−1]

)
for short. In Figure 3.1 we show empirical values of

the ratio n
kAθ

for selected values of k, n and θ. Each dot in each of the sub-figures is generated

by taking the average of 50 independent experiment results. Experiments are performed on

values of θ in [−3.0,−2.9,−2.8, . . . , 0.9, 1.0], but plots are only shown for selected values of

θ for better graph layout; plots for other values of θ have similar shapes and are at their

expected positions in the figure.

(a) k = 256 (b) k = 512

(c) k = 1024

Figure 3.1: Empirical values of n
kAθ

for different k, n and θ’s.

From the plots we see:

• For the same value of θ and k, n
kAθ

is almost a constant when n gets large (say n >

10000).

18

• For the same value of θ and n, n
kAθ

is almost a constant for large k (256, 512 or 1024).

We conclude that, at least for θ ∈ [−3.0, 1.0], there exists a value for the aforementioned

coefficient ξ that approximately depends only on θ for large n and k. To reflect this depen-

dence of ξ on θ, we denote this coefficient as ξθ instead.

To investigate the relationship between ξθ and θ, we plot values of ξθ computed empirically

for selected values of θ in [−3.0, 1.0], shown in Figure 3.2. Here, the values are generated

empirically with fixed n = 105 and k = 512.

Figure 3.2: Empirical values of ξθ as a function of θ and a fitted line showing the
approximate linear relationship.

We observe an approximately linear relationship between ξθ and θ by

ξθ = 0.401− 0.318θ, −3.0 ≤ θ ≤ 1.0, (3.5)

which is plotted as the red line in Figure 3.2. The LLθ estimator is now completely defined

by replacing ξ in (3.4) with ξθ specified in (3.5). The claim that this family of estimators

unifies the LogLog and HLL estimators can be verified by checking that ξ0 ≈ η (for LogLog)

and ξ−1 ≈ γ for (HLL).

A natural question one may ask next is if there exists an optimal value of θ for the LLθ

estimator. To answer this question, we empirically calculate the relative standard error of

19

the LLθ estimator for different values of θ (and for selected k’s). The results are plotted in

Figure 3.3.

Figure 3.3: Empirically calculated relative standard error ,
√

Var(n̂)

n
of the LLθ estimator

vs. θ for selected k’s.

According to the experiment results, for each fixed value of k, the optimal value of θ

for the LLθ estimator is either −1 or −0.9; in the cases where LL−0.9 is the optimal, the

difference between LL−1 and LL−0.9, in terms of relative standard error, is negligible. Recall

the LL−1 estimator is the same as the HLL estimator. This verifies the claim that the HLL

is near-optimal [7], which we briefly described in Section 2.1.1.

3.2 The vLLθ estimator for per-flow estimation

With the LLθ estimator defined, we now introduce the vLLθ estimator for per-flow estimation.

We start with a high-level idea of the estimator and the motivation for introducing the

parameter θ here.

Just like for single-flow estimation where we infer the cardinality of a flow from its register

array, for per-flow estimation we can infer the cardinality of a given flow f from its virtual

20

register array Rf . We can directly apply the LLθ estimator on Rf to give an estimate of

the total number of distinct elements distributed to Rf . But this estimate involves the

noise brought by other flows that have registers shared with flow f ; so we probably need a

different bias correction coefficient to calibrate this rough estimate. While for the single-flow

case θ = −1 is near-optimal, it is not immediately clear whether θ = −1 with a suitable bias

correction coefficient is still near-optimal in the per-flow case.

Recall that Aθ with a lesser value of θ is more robust to abnormally high values in obtaining

the mean. For per-flow estimation, due to register sharing, large flows can cause much noise

to some small flows by causing abnormally high register values. Therefore, we speculate

that an estimator with a lesser value of θ might work better in the per-flow case due to its

robustness against bursty noise from large flows. This motivates our investigation of the

vLLθ estimator, introduced in the rest of this section.

3.2.1 Review of vHLL estimator and the generalization to vLLθ estimator

We start with a review of the virtual HyperLogLog (vHLL) estimator introduced in [3]. Let

nT be the total aggregate cardinality of all flows, i.e. the sum of the cardinalities of all flows

in the packet stream. Let nf+ be the total number of distinct elements distributed to the

register array Rf , which include the distinct elements from flow f and those from other flows

(we call noise elements). Suggested in [3] is the following approximate relationship between

nf , nf+ and nT :

nf+ − nf ≈
k

m
(nT − nf), (3.6)

which can be interpreted as: the number of noise elements received by Rf is the total number

of elements from flows other than f scaled by k
m

— the ratio of the number of registers in

Rf to the number of registers in R. The assumption here is that noise elements are roughly

uniformly distributed to all the m registers in the pool, which is a fair approximation when

the number of flows and the number of registers for each flow are both sufficiently large [3].

Rearranging (3.6) gives us

nf ≈ −
k

m− k
nT +

m

m− k
nf+ . (3.7)

Now the values of nT and nf+ are not directly available so we need their estimates n̂T and n̂f+ .

It has been shown in Section 6.1 of [3] that if n̂f+ and n̂T are close to nf + k
m

(nT −nf) (which

approximately equals to nf+ by (3.6)) and nT respectively, then n̂f is an approximately

21

unbiased estimator of nf .

There are two possible methods to estimate nT . The first method is to treat nT as the

cardinality of a grand flow – the flow containing all the distinct packets in the stream. In

another word, if a packet is abstracted as a (f, x) pair, to estimate nT is to estimate the total

number of distinct f − x pairs (e.g. source-destination pair) in the stream. This is a single-

flow cardinality estimation problem and, as discussed in Section 2.1, can be solved using the

HLL algorithm with an additional few hundreds of bytes, which is negligible compared to

the memory for main register pool R. The second method is to use n̂T = HLL(R) as a rough

estimator, based on the assumption that all the elements of the grand flow are distributed

approximately uniformly over R. Either method works fine in practice. So n̂T is relatively

easy to obtain.

Now, for nf+ , the vHLL estimator applies the HLL single-flow estimator on Rf to obtain

an estimate, i.e.

n̂f+ = HLL(Rf) = ξ−1kA−1
(
2−Rf [0], · · · , 2−Rf [k−1]

)
. (3.8)

Combining the ideas above, the vHLL estimator for flow f is summarized as:

n̂f = − k

m− k
n̂T +

m

m− k
ξ−1kA−1

(
2−Rf [0], · · · , 2−Rf [k−1]

)
. (3.9)

We consider a generalization of the vHLL estimator by replacing the above harmonic mean

A−1 with a generalized mean Aθ. More specifically, given any value θ, let

ñf (θ) = k · Aθ
(
2Rf [0], · · · , 2Rf [k−1]

)
(3.10)

be a rough estimate of nf . Then we calibrate this rough estimate by suitable additive and

multiplicative constants αθ and βθ to obtain a better estimate, i.e.

n̂f (θ) = αθ + βθñf (θ). (3.11)

We discuss how to set the values of αθ and βθ in Section 3.2.2.

22

3.2.2 How to set αθ and βθ

For a given θ, one way to set the values of αθ and βθ is through empirical error minimization,

explained as follows. Recall from the end of Section 2.3.2, we have 100 simulated trace files,

each can be considered as a training sample. Suppose that in one training sample we have

M flows with cardinalities n1, n2, · · · , nM , and by the vLLθ estimator specified in (3.11) we

obtain corresponding estimates n̂1(θ), n̂2(θ), · · · , n̂M(θ). Then we can find values of αθ and

βθ that minimize the weighted square error defined in Section 2.3 on this training sample.

That is

(αθ, βθ) = arg min
(α,β)

M∑
i=1

(ni − n̂i(θ))2w(ni) = arg min
(α,β)

M∑
i=1

(ni − (α + βñi(θ)))
2w(ni), (3.12)

where we let w(ni) = nπ−1i and π = 2.25. The solution to the above minimization problem

is standard:

βθ =
xy − x · y
x2 − x2

, αθ = y − βθx, (3.13)

where

x =

∑M
i=1w(ni)ñi(θ)∑M

i=1w(ni)
, y =

∑M
i=1w(ni)ni∑M
i=1w(ni)

, xy =

∑M
i=1w(ni)ñi(θ)ni∑M

i=1w(ni)
, x2 =

∑M
i=1w(ni)ñ

2
i (θ)∑M

i=1w(ni)
.

Since we have 100 training samples, we can obtain the values of αθ and βθ for each of

the samples using the above method and use their average values for the estimator. The

values of αθ and βθ obtained in this way are optimal in the sense that they minimize the

weighted square error of the training samples (i.e. the empirical error). The drawback of

this approach is obvious. It only works well for the training samples generated according to

a specific Zipf distribution; there is no performance guarantee for other data sets. Also, it

relies on the specific definition of the weighted square error (including the weight function

and the cardinality distribution model), which may not be universal for all applications.

We suggest the following alternative and practical choice of αθ and βθ for the vLLθ estima-

tor, which does not reply on any assumption on weight function or cardinality distribution

model:

βθ =
m

m− k
ξθ and αθ = − k

m− k
n̂T , (3.14)

where ξθ can be calculated using (3.5) and n̂T can be calculated using either of the two meth-

ods mentioned in Section 3.2.1 (e.g. n̂T = HLL(R)). Note that this is a direct generalization

23

of the vHLL estimator in (3.9). Also note that in this case αθ does not depend on θ.

In Figure 3.4, we plot the empirical values of αθ and βθ obtained by these two different

methods through experiments on the 100 training samples. The plots show that our sug-

gested values of αθ and βθ are good as they are close to the optimal values of αθ and βθ for

these training samples.

(a) (b)

Figure 3.4: The values of αθ and βθ vs. θ by two different methods.

3.2.3 Summary of the vLLθ estimator

We summarize the vLLθ estimator here. For a given θ ∈ [−3.0, 1.0], the vLLθ estimator

estimates the cardinality of a given flow f by

n̂f = − k

m− k
n̂T +

m

m− k
ξθkAθ

(
2Rf [0], · · · , 2Rf [k−1]

)
, (3.15)

where

ξθ = 0.401− 0.318θ, −3.0 ≤ θ ≤ 1.0, (3.16)

and n̂T is an estimate of the total aggregate cardinality of all the flows and can be obtained

by calculating HLL(R) in practice.

Note that it could happen that Equation (3.15) produces an estimate n̂f < 1, which is

impossible in practice. In such case, we can simply reset n̂f = 1.

24

3.3 Experimental performance evaluation

We ran experiments on the 100 simulated trace files to evaluate the performance of the

vLLθ estimator for different values of θ, in terms of the weighted square error defined in

Section 2.3. The results are plotted in Figure 3.5. Results for θ ≥ 0.5 are not plotted in the

graph because the values are comparatively too large (which means the corresponding vLLθ

estimators are bad).

Figure 3.5: Experimental values of WSE(vLLθ) vs. θ.

According to the experiment results, the vLL−1 estimator has the best performance, which

refutes our speculation at the beginning of Section 3.2 that a value of θ lesser than −1 might

be optimal for the per-flow estimation case.

A possible explanation of this phenomenon is as follows. With the weight function defined

in Section 2.3 and Zipf(2.25, 105) used for flow cardinality distribution, we have that w(n) ∝
n1.15. This means we put much larger weights on large flows compared to small flows.

Therefore the weighted square error of an estimator is largely determined by how well the

estimator estimates large flows. But the influence of bursty noise on large flows is much

weaker than that on small flows; in another word, the signal-to-noise ratio for the cardinality

estimation of a large flow is larger than that for small flows. Therefore, as we have discussed

for the single-flow case where θ = −1 is near-optimal, for per-flow case θ = −1 is also likely

to give good estimates for large flows and hence results in a smaller weighted square error.

25

Chapter 4

MAXIMUM LIKELIHOOD ESTIMATOR

In this chapter we derive an alternative approach to the same per-flow estimation problem

stated at the beginning of Chapter 3: a maximum-likelihood estimator.

4.1 Formulation

We model the values of the k registers in Rf after the sketching process as a random vector

Zf = (Zf,0, Zf,1, · · · , Zf,k−1) ,

where Zf,i ∈ {0, · · · , rmax}. The rmax is the maximum value that can be stored in a register.

For example, if the register has 5 bits, then rmax = 25 − 1 = 31. Register values Rf =

(Rf [0], · · · , Rf [k − 1]) is an instance of the random vector Zf . Let pn(z0, · · · , zk−1) be the

pmf of Zf (i.e. the joint pmf of the k random variables) given that nf = n, i.e. it is the

likelihood function of n:

pn(z0, · · · , zk−1) , Pr
{
Zf = (z0, · · · , zk−1)

∣∣∣nf = n
}
. (4.1)

The maximum likelihood estimator finds the value of n that maximizes the likelihood function

based on the instance of register values in Rf . An equivalent formulation is to maximize the

natural log of the likelihood function

Lf (n) , ln pn (Rf [0], · · · , Rf [k − 1]) . (4.2)

The maximum-likelihood estimator of flow f ’s cardinality is then given by

n̂f,ML = arg max
n

Lf (n), n ∈ {1, 2, · · · , nmax}, (4.3)

26

where nmax is an upper bound of the cardinality of a flow.

4.2 Derivation of the likelihood function

In this section we derive an analytical expression for the likelihood function pn(z0, · · · , zk−1).

4.2.1 Outline of derivation

Suppose we have two copies of the register pool R: R(1) and R(2), both initialized with 0’s.

Consider the following process:

1. Repeat the virtual LogLog sketching process described in Section 2.2.1 for all elements,

except those from flow f , with register pool R(1).

2. Repeat the sketching process only for elements from flow f with register pool R(2).

3. Merge the register values in R(1) and R(2) by a register-wise max operation.

The register values in the merged pool as described above are exactly the same as those in

R after the original sketching process. This is because the register values at the end of the

sketching process are not affected by the order of arrival of the elements in the stream.

Let R
(1)
f (R

(2)
f) denote the virtual register array for flow f constructed by selecting registers

from R(1) (R(2)), whose indices in R(1) (R(2)) are the same as those of Rf in R. Then define

the following random variables:

Z ′ , the value of an arbitrary register in R(1).

Wn , the value of an arbitrary register in R
(2)
f , conditioned on nf = n.

Zn , the value of an arbitrary register in Rf , conditioned on nf = n.

Z ′ represents the background noise in our estimation caused by elements from flows other

than f . Wn represents the impact of elements from flow f itself. We model the values of the

k corresponding registers in R
(1)
f and R

(2)
f also as random vectors, respectively, i.e.

Z
(1)
f =

(
Z

(1)
f,0 , Z

(1)
f,1 , · · · , Z

(1)
f,k−1

)
,

Z
(2)
f =

(
Z

(2)
f,0 , Z

(2)
f,1 , · · · , Z

(2)
f,k−1

)
.

27

Then we have

Z
(1)
f,0 , Z

(1)
f,1 , · · · , Z

(1)
f,k−1 ∼ Z ′,

Z
(2)
f,0 , Z

(2)
f,1 , · · · , Z

(2)
f,k−1 ∼ Wn,

Zf,0, Zf,1, · · · , Zf,k−1 ∼ Zn,

Zf,i = max{Z(1)
f,i , Z

(2)
f,i }, i = 0, 1, · · · , k − 1.

Therefore

Zn = max{Z ′,Wn}. (4.4)

Here is an outline of the derivation of an analytical expression for pn(z0, · · · , zk−1):

1. Find the distribution of Z ′ and argue that Z
(1)
f,0 , Z

(1)
f,1 , · · · , Z

(1)
f,k−1 are independent. We

will see that it is difficult to obtain the exact distribution of Z ′, but there exists a

convenient and close approximation to it.

2. Find the distribution of Wn and argue that Z
(2)
f,0 , Z

(2)
f,1 , · · · , Z

(2)
f,k−1 are independent under

the assumption that n is large.

3. With the distribution of Z ′ and Wn, find the distribution of Zn by (4.4).

4. With the independence of Z
(1)
f,0 , Z

(1)
f,1 , · · · , Z

(1)
f,k−1 and Z

(2)
f,0 , Z

(2)
f,1 , · · · , Z

(2)
f,k−1, we have that

Zf,0, Zf,1, · · · , Zf,k−1 are independent. Then we can factor pn(z0, · · · , zk−1) out as the

product of k pmfs of a single variable Zn.

4.2.2 Distribution of Z ′ and independence of Z
(1)
f,0, · · · , Z

(1)
f,k−1

One possible approach to obtain an approximate expression of the distribution of Z ′ is as

follows. First assume that the total number of flows (excluding flow f) is known and a

flow’s cardinality can be modeled as a random variable (e.g. Zipf). Then we can model

the number of distinct elements distributed to an arbitrary register by a random variable

Y and calculate the distribution of Y by adding up the influences from all the individual

independent flows on that register. This calculation involves a high-dimensional convolution,

which is computationally costly. We can perhaps avoid the convolution by appealing to the

central limit theory for approximation. However this approximation gives us a continuous

distribution for Y , from which we need to derive the CDF of Z ′ that only takes discrete

values (and really concentrates on only a few values as we shall see soon). This calculation

28

may be highly inaccurate and is somewhat complicated. Moreover, in practice we usually

do not know the total number of flows beforehand and it is undesirable that our estimator

relies on any particular cardinality distribution model.

Another approach to approximate the distribution of Z ′, which circumvents the above

difficulties and complications, is the following. Define a random variable Z:

Z , the value of an arbitrary register in R.

We claim that, for any practical purpose, the distribution of Z ′ can be directly approximated

by the distribution of Z, i.e.

FZ′(i) ≈ FZ(i), 0 ≤ i ≤ rmax, (4.5)

where FZ′ and FZ are the CDFs of Z ′ and Z, respectively. This approximation is based on

the following two considerations:

• Register values in R(1) differ from those in R at no more than k registers, because flow

f can only affect k registers. If k � m, the difference in the CDF of Z ′ compared to

that of Z is small.

• Assume there are many flows in the stream and nf is small compared to the total

cardinalities of all other flows. As packets are being distributed to a register, it becomes

harder and harder for the register’s value to further increase, because it requires an

much less likely (with geometrically decaying probability) hashed value to occur.

The analytical distribution of Z is also difficult to find. However, we can obtain an

empirical distribution of Z directly from the register values in the pool at the end of the

sketching process:

FZ(i) , Pr(Z ≤ i) ≈

m−1∑
j=0

1{R[j]≤i}

m
, 0 ≤ i ≤ rmax. (4.6)

In Figure 4.1 we show a sample distribution of Z generated using real trace data (the same

data used for plotting Figure 2.1). From the figure we can see that the values of most of the

registers are centered around 2 to 7.

Since Z ′ is the distribution of an arbitrary register value in R(1), including the k registers

in R
(2)
f . We have Z

(1)
f,0 , Z

(1)
f,1 , · · · , Z

(1)
f,k−1 ∼ Z ′. Since the k registers are randomly selected

29

from the pool with replacement, their independence is guaranteed by a good choice of the

hash function G.

Figure 4.1: Sample distribution of Z generated using real trace data. Top: pmf of Z.
Bottom: CDF of Z. In this case, m = 200, 000 and k = 512.

30

4.2.3 Distribution of Wn and independence of Z
(2)
f,0, · · · , Z

(2)
f,k−1

To find the distribution of Wn, we first define a random variable Xn:

Xn , the number of distinct elements distributed to an

arbitrary register in R
(2)
f , conditioned on nf = n.

It is easy to see Xn ∼ Binom
(
n, 1

k

)
. The number of distinct elements distributed to each of

the k registers in R
(2)
f has the same distribution as Xn, but they are not independent of each

other (because they sum to n). However, if n is large, we can approximate n by a Poisson

random variable with mean n. Under this Poissonization approximation, Xn ∼ Poisson
(
n
k

)
and the number of distinct elements distributed to each of the k registers in R

(2)
f will then

be independent (see Chapter 5.4 of [14] for this Poissonization trick).

As discussed in Section 2.1.1, Wn can be regarded as the maximum of Xn i.i.d. geometric

random variables with parameter 1/2. Given that Xn ∼ Poisson
(
n
k

)
, the CDF of Wn can be

calculated as follows. For 0 ≤ i ≤ rmax,

Pr{Wn ≤ i} =
n∑
j=0

Pr(Xn = j) Pr{the maximum of j i.i.d. Geo(0.5) r.v.’s ≤ i}

=
n∑
j=0

(n/k)j

j!
e−n/k

(
1− 1

2i

)j

=
n∑
j=0

(
n
k

(
1− 1

2i

))j
j!

e−n/k

= e−
n
k

1

2i . (4.7)

Under the Poissonization approximation, Z
(2)
f,0 , Z

(2)
f,1 , · · · , Z

(2)
f,k−1 are independent and have

the same distribution with Wn. We emphasize that this independence follows from the

assumption that n is large.

4.2.4 Distribution of Zn and independence of Zf,0, · · · , Zf,k−1

Recall that, by construction, Zn = max{Z ′,Wn}. Therefore the CDF of Zn is:

Pr{Zn ≤ i} = Pr{max{Z ′,Wn} ≤ i} = Pr{Z ′ ≤ i}Pr{Wn ≤ i} ≈ FZ(i)FWn(i), 0 ≤ i ≤ rmax,

31

where FZ(i) and FWn(i) are the CDF of Z and Wn respectively. We have used that Z ′ and

Wn are independent of each other and the distribution of Z ′ can be approximated by that

of Z. Hence, the pmf of Zn can be approximated by

pZn(i) =

{
FZ(i)FWn(i) when i = 0

FZ(i)FWn(i)− FZ(i− 1)FWn(i− 1) when 1 ≤ i ≤ rmax,
(4.8)

where

FWn(i) = e−
n
k

1

2i with Poissonization of n. (4.9)

We have argued the independence of Z
(1)
f,0 , · · · , Z

(1)
f,k−1 and the independence of Z

(2)
f,0 , · · · , Z

(2)
f,k−1

under certain conditions. But Zf,i = max
{
Z

(1)
f,i , Z

(2)
f,i

}
and Z

(1)
f,i is independent of Z

(2)
f,i by

construction. So Zf,0, · · · , Zf,k−1 are also independent of each other under the same condi-

tions. The consequence of this independence is that we can factor the k-variable likelihood

function pn(z0, · · · , zk−1) into the product of k single-variable pmfs, based on the distribu-

tion of Zn. That is, under this approximation, the log likelihood function in (4.2) can be

re-written as

Lf (n) =
k−1∑
j=0

ln pZn (Rf [j]) . (4.10)

4.3 Implementation

It would be nice if we could obtain a closed-form analytical expression of the value of n that

maximizes the log-likelihood function Lf (n). Unfortunately it turns out to be difficult. In

order to search for this value, we explore properties of Lf (n) that might be helpful.

4.3.1 Concavity of the log-likelihood function

In this subsection we show that Lf (n) has the decreasing increment property with respect

to n. That is, Lf (n) is the restriction of a concave function to integer values. A by-product

of this property is that Lf (n) must have a global maximum over the possible values of n.

We will call this property “concave” or “concavity” for convenience henceforth.

Suppose for now that the possible values of n is a continuous range. First, since Rf [j] ∈

32

{0, · · · , rmax}, we have

Lf (n) =
k−1∑
j=0

ln pZn (Rf [j]) =
rmax∑
i=0

ci ln pZn(i), (4.11)

for some non-negative integer constants c0, c1, · · · , crmax such that
∑rmax

i=1 ci = k (i.e. the

constants represent the empirical pmf of (Rf [0], · · · , Rf [k − 1])). Therefore a sufficient con-

dition for Lf (n) to be concave in n is that ln pZn(i) is concave in n for each fixed value

i ∈ {0, · · · , rmax}. Recall the pmf of Zn from (4.8) and (4.9). Let us denote ai , FZ(i) and

bi , e−
1

k2i , so ai, bi ≥ 0. Then we have

ln pZn(i) =

{
ln aib

n
i if i = 0

ln(aib
n
i − ai−1bni−1) if 1 ≤ i ≤ rmax.

When i = 0,

ln pn(i) = ln aib
n
i = ln ai + n ln bi,

which is linear in n and thus concave in n. When 1 ≤ i ≤ rmax, we prove that ln pZn(i) is

concave in n by showing that its second derivative with respect to n is non-positive:

ln pn(i) = ln
(
aib

n
i − ai−1bni−1

)
,

∂ ln pn(i)

∂n
=
ai(ln bi)b

n
i − ai−1(ln bi−1)bni−1

aibni − ai−1bni−1
,

∂2 ln pn(i)

∂n2
= −

ai−1aib
n
i−1b

n
i (ln bi−1 − ln bi)

2

(aibni − ai−1bni−1)2
< 0.

We conclude that Lf (n) is concave in n.

In Figure 4.2, we show the plot of Lf (n) as a function of n for four selected flows whose

cardinalities are 150, 611, 1000 and 31536, respectively. The plots are generated based on

the same trace data used for Figure 2.1 and Figure 4.1. The concavity of Lf (n) is obvious.

We can also observe that in each plot, the value of n at which the curve peaks is close to the

actual flow cardinality nf (though not exact the same due to randomness and noise).

33

(a) nf = 150 (b) nf = 611

(c) nf = 1000 (d) nf = 31536

Figure 4.2: Four sample plots of log likelihood function Lf (n) vs. n.

34

4.3.2 Bi-section search implementation

We have shown that Lf (n) is concave in n. Since n can only take integer values in {1, 2, · · · , nmax},
we can do a bi-section search to find the optimal n.

Bi-section search implementation of n̂f,ML:

1. lb← 1, ub← nmax.

2. While ub− lb > 1:

• mid1 ← b lb+ub
2
c, mid2 ← mid1 + 1

• if Lf (mid1) ≥ Lf (mid2):

– lb← lb, ub← mid1

• else:

– lb← mid2, ub← ub

3. If Lf (lb) ≥ Lf (ub), return lb; otherwise return ub.

The pseudo-code above should be self-explanatory. In actual implementation, it is found

that the algorithm reaches the optimal n at a faster rate if we replace mid1 = b lb+ub
2
c with

mid1 =
√

lb · ub, which is equivalent to log mid1 = 1
2
(log lb + log ub), i.e. a bi-section search

on log scale. This faster rate is because, as we already mentioned, most of the flows have

small cardinalities. If nmax = 106, then at the first while loop iteration, with mid1 = b lb+ub
2
c,

we have mid1 = 5× 105; but with mid1 =
√

lb · ub we have mid1 = 1000 — the latter search

is quicker if the optimal n is actually small.

With bi-section search, the number of searches required for the estimation of one flow is

upper bounded by log nmax. This is not ideal compared to the vLLθ estimator which only

needs one search/estimation. However, since the estimation process is off-line, the worst-case

time complexity of log nmax for searching is still acceptable.

4.3.3 Summary of the maximum-likelihood estimator

We wrap up the ideas in the previous sections of this chapter and name this estimator vLL-

MLE, meaning that it uses maximum likelihood estimation based on virtual LogLog sketching.

35

The estimator is summarized as follows. To estimate the cardinality of flow f :

1. Find the values of the k registers in Rf : Rf [0], · · · , Rf [k − 1].

2. From the register values in R, find the CDF of Z by (4.6).

3. Do a bi-section search on integer value n in the range {1, 2, . . . , nmax} to maximize the

log likelihood function Lf (n), output this value of n as the estimate.

• For a given n, Lf (n) can be evaluated by (4.8), (4.9) and (4.10).

4.4 Aside: MLE for single-flow estimation

As an aside, we can also use the vLL-MLE estimator for single-flow estimation, with some

minor changes. Recall that in single-flow estimation, the goal is to estimate the flow’s

cardinality n from its k register values. This is similar to the per-flow estimation case,

where the goal is to estimate a given flow f ’s cardinality nf from its k register values

Rf [0], · · · , Rf [k− 1], except that in the single-flow case, there is no background noise in the

register values. That is, the vLL-MLE estimator for per-flow estimation can be used for

single-flow estimation by simply letting Z = 0.

In this case, we do not need the assumptions related to Z anymore. But the Poissonization

approximation of n (i.e. assuming n is large) is still necessary.

To evaluate the performance of the MLE on single-flow estimation, we run experiments

to obtain empirical values of its relative standard error for selected values of k and compare

it with the HLL estimator. The experiments are performed with n = 107. The results are

summarized in Table 4.1.

Table 4.1: Compare the accuracy (relative standard error) of the MLE and HLL estimators
with selected values of k.

Estimator k = 512 k = 1024 k = 2048
MLE 0.04609 0.03127 0.02220
HLL 0.04585 0.03127 0.02216

The experiment results show that the MLE’s performance is very close to that of HLL, but

not any better. It reinforces the claim that the HLL estimator is near-optimal for single-flow

estimation.

36

4.5 Experimental performance evaluation

In this section we evaluate the performance of the vLL-MLE estimator and compare it with

that of the vLLθ estimator introduced in Chapter 3. Since we have shown that vLL−1 (i.e.

vHLL) is the best within the family of the vLLθ estimators, we compare vLL-MLE with

vLL−1 in particular. Results for each estimator are generated by running experiments on

the same 100 simulated trace files.

Figure 4.3 shows the estimation results of both estimators by directly plotting the esti-

mated cardinalities vs. the corresponding actual cardinalities. Each point in the graphs

represents one flow, with its x-coordinate value being the actual cardinality of the flow and

its y-coordinate value being the estimated cardinality. The more clustered the points are

to the equality line y = x, the more accurate the estimator is. We can see that the two

estimators have comparable performances.

(a) vLL-MLE (b) vLL−1

Figure 4.3: Plot of estimated cardinalities vs. actual cardinalities for the vLL-MLE and
vLL−1 estimators.

In Figure 4.4 and Figure 4.5, we respectively plot the relative bias (defined as E
(
n̂f
nf

)
− 1)

and relative standard error (defined as

√
Var(n̂f)

nf
) vs. the actual flow cardinality for both

estimators. Since there are not many flows for some cardinalities (especial the large cardi-

nalities), we divide the horizontal axis into bins of width 1000 for cardinalities ≤ 10000 and

of width 5000 for cardinalities > 10000. In each bin, we calculate the empirical relative bias

and relative standard error of the data and interpolate the values for each bin on the graph

to form the plots. Again we see that the two estimators have very similar performances.

37

Figure 4.4: Simulated results on the relative bias of the vLL-MLE and vLL−1 estimators.

Figure 4.5: Simulated results on the relative standard error of the vLL-MLE and vLL−1
estimators.

In both figures, the curves are plotted for cardinalities larger than 1000 only. This is

for better graph layouts: we found from the experiment results that estimates for flows

with cardinalities less than 1000 are very inaccurate. Accurate estimation for small flows is

difficult because of the noise caused by large flows in their register values.

Figure 4.4 shows that both estimators are approximately unbiased for large flows (with

38

cardinalities > 1000).

Figure 4.5 shows that in general, for both estimators, the estimation accuracy improves as

the cardinality gets larger. We do observe a slight curving up at the high end of the graph

though, meaning that the accuracy stops improving once the actual flow cardinality reaches

a certain level (probably > 40000).

Figure 4.6: Compare the weighted square error of the vLL-MLE estimator and the vLLθ
estimators.

Finally, in Figure 4.6 we compare the weighted square error of the vLL-MLE estimator

with that of the vLLθ estimators. Experiment results show that the vLL-MLE estimator

outperforms the vLLθ estimator for all values of θ; compared to the vLL−1 estimator, the

vLL-MLE estimator has a slight improvement of about 3.5%. We conclude that the two

estimators, vLL-MLE and vLL−1 (i.e. vHLL), have comparable performances.

39

Chapter 5

CONCLUSIONS AND FUTURE WORK

In this thesis we explored two new perspectives on the estimation process of the virtual

LogLog algorithm [3] for per-flow cardinality estimation:

• We showed how the existing vHLL estimator of [3] for per-flow estimation can be

generalized by introducing a parameter θ, in a similar way in which the HLL estimator

for single-flow estimation can be generalized by θ.

• We proposed the vLL-MLE estimator, an alternative approach to the per-flow estima-

tion problem.

In both cases we provided empirical evidence to show the near-optimality of the vHLL

estimator for per-flow estimation. This result is analogous to the near-optimality of the HLL

estimator for single-flow estimation [7].

Results of this thesis are mostly based on simulated experiments. One possible future

work is the analysis of theoretical bounds for per-flow cardinality estimation. For example,

for a given amount of memory, flow cardinality distribution and number of flows, what is

the best possible level of accuracy that can be achieved for per-flow estimation? There has

been much research on this direction for single-flow estimation. For example, [2] gives an

asymptotic lower bound on the relative standard error of single-flow estimators based on

order statistics. It would be useful to obtain similar results for per-flow estimation.

Another possible direction of future work is on efficient algorithms that identify heavy-

hitters (i.e. large flows). With the per-flow estimators discussed in this thesis, one is able to

estimate the cardinality of a flow given the flow’s ID. However, in many applications, the goal

is to identify large flows, in which case we are not given the IDs of these flows beforehand.

One possible approach to this problem is to store all the distinct flow IDs using a separate

block of memory and then check each flow one by one; the work in [16] discusses how all the

distinct flow IDs can be stored in main memory. However, with this approach some memory

is wasted on flows that are actually small (which do not matter at all). Algorithms that

40

identify large flows and estimate their cardinalities directly and more efficiently are useful in

this context.

41

REFERENCES

[1] F. Giroire, “Order statistics and estimating cardinalities of massive data sets,” Discrete
Applied Mathematics, vol. 157, pp. 406–427, Jan 2009.

[2] P. Chassaing and L. Gerin, “Efficient estimation of the cardinality of large data sets,”
2011, arXiv:math/0701347v3.

[3] Q. Xiao, S. Chen, M. Chen, and Y. Ling, “Hyper-compact virtual estimators for big
network data based on register sharing,” in Proceedings of the ACM SIGMETRICS
2015, Portland, Oregon, USA, 2015, pp. 417–428.

[4] C. Estan, G. Varshese, and M. Fisk, “Bitmap algorithms for counting active flows on
high speed link,” IEEE/ACM Transactions on Networking, vol. 14, pp. 923–937, Oct
2006.

[5] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data base algo-
rithms,” Journal of Computer and System Sciences, vol. 31, no. 2, pp. 182–209, Sep
1985.

[6] S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in practice: Algorithmic engineering
of a state of the art cardinality estimation algorithm,” in Proceedings of the EDBT 2013
Conference, Genoa, Italy, Mar 2013.

[7] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: The analysis of a
near-optimal cardinality estimation algorithm,” in Proceedings of AOFA ’07, 2007, pp.
127–146.

[8] M. Durand and P. Flajolet, “Loglog counting of large cardinalities,” in European Sym-
posium on Algorithms, 2003, pp. 605–617.

[9] P. B. Gibbons, “Distinct-values estimation over data streams,” in Data Streams
Management: Processing High-Speed Data Streams, 2007. [Online]. Available:
http://www.pittsburgh.intel-research.net/people/gibbons/

[10] A. Metwally, D. Agrawal, and A. E. Abbadi, “Why go logarithmic if we can go linear?:
Towards effective distinct counting of search traffic,” in Proceedings of the 11th Interna-
tional Conference on Extending Database Technology: Advances in Database Technology,
ser. EDBT ’08. New York, NY, USA: ACM, 2008, pp. 618–629.

42

[11] P. Clifford and I. A. Cosma, “A statistical analysis of probabilistic counting algorithms,”
Scandinavian Journal of Statistics, vol. 39, no. 1, pp. 1–14, Jun 2010.

[12] “The CAIDA UCSD anonymized internet traces 2013 on Jan 17.” http://www.caida.
org/data/passive/passive 2013 dataset.xml.

[13] Z. Mo, Y. Qiao, S. Chen, and T. Li, “Highly compact virtual maximum likelihood
sketches for counting big network data,” in 52 Annual Allerton Conference, Allerton
House, UIUC, Illinois, USA, Oct 2014.

[14] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms
and Probabilistic Analysis, 1st ed. Cambridge, UK: Cambridge University Press, 2005.

[15] L. A. Adamic and B. A. Huberman, Glottometrics, pp. 143–150, 2002.

[16] M. Yoon, T. Li, S. Chen, and J.-K. Peir, “Fit a compact spread estimator in small
high-speed memory,” IEEE/ACM Trans. Netw., vol. 19, no. 5, pp. 1253–1264, Oct
2011.

43

