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Abstract—In this work, we study an LQG control system
where one of two feedback channels is discrete and incurs a
communication cost. We assume that a decoder (co-located with
the controller) can make noiseless measurements of a subset of
the state vector (referred to as side information) meanwhile a
remote encoder (co-located with a sensor) can make arbitrary
measurements of the entire state vector, but must convey its
measurements to the decoder over a noiseless binary channel.
Use of the channel incurs a communication cost, quantified as
the time-averaged expected length of prefix-free binary codeword.
We study the tradeoff between the communication cost and
control performance. The formulation motivates a constrained
directed information minimization problem, which can be solved
via convex optimization. Using the optimization, we propose a
quantizer design and a subsequent achievability result.

I. INTRODUCTION

In this work we consider discrete-time MIMO LQG control
in a system where some measurements incur a communication
cost, but others do not. As in [1] and [2], we study the tradeoff
between control performance and communication cost, where
the latter is measured in terms of the average length of prefix-
free codewords. Our principal motivation is a sensing scenario
where an energy constrained remote platform (the encoder)
must encode, and then wirelessly transmit, its measurements to
a joint fusion center/controller (decoder) which contains some
sensors of its own. We model the decoder measurements as
noiseless observations of a subset of the state vector indices,
which we refer to as side information (SI). We consider a
setup where both the encoder and decoder have access to the
decoder’s measurements. In the remote sensing scenario, it
may be reasonable to assume that the decoder has sufficient
energy to feed its measurements back to the encoder while the
sensor platform could be constrained– under some additional
assumptions, minimizing the time-averaged bitrate from the
encoder to decoder is a surrogate for minimizing the energy
the sensor platform “spends" on communication. We establish
a converse bound on the minimum prefix-free codeword length
in terms of Massey’s directed information (DI) [3]. The
bound applies to the case when the SI is known at both
the encoder and decoder, and thus applies when the SI is
known at the decoder only. The converse motivates a rate
distortion problem where a DI term is minimized subject to
a constraint on control performance. The problem is solved
optimally via a tractable mathematical program (namely a

log-determinant optimization) [4]. We use the optimization to
derive an achievability result based on the construction in [2].

Massey’s DI quantifies the flow of information from one
stochastic process to another [3]. In [5], the time-averaged
bitrate of a prefix-free codec inserted into the feedback loop
of a SISO control system was shown to be lower bounded by
the DI from the plant output to the control input. Also, [5]
motivated the use of entropy dithered quantization (EDQ) in
control systems subject to data rate constraints. Extending [5]
to the MIMO setting, [1] motivated a rate distortion problem
that minimized DI in an LQG control system subject to a
constraint on performance. Under standard linear/Gaussian
plant dynamics, [1] showed that any optimal measurement
and control policy could be implemented via a three-stage
separation architecture; namely a linear/Gaussian sensor, a
Kalman filter, a certainty equivalence linear feedback con-
troller. The optimization to find the minimum DI (and the
minimizing policy) was formulated as a semidefinite (log-
determinant) program [1]. [2] gave operational significance
to the minimal DI (and minimizing policy) in [1]. In [2], it
was shown that a zero-delay source coding scheme, based on
quantizing Kalman filter innovations via EDQ, followed by
prefix-free coding achieves a DI cost within n

2
log(πe

3
) + 2

bits of the minimal DI cost in [1]. Likewise, [6] studied the
tradeoff between DI and LQG performance, proved converse
bounds applying to plants with non-Gaussian disturbances, and
demonstrated achievability without dithering.

The impact of SI (modeled as a decoder-side linear ob-
servation of the state vector in additive Gaussian noise) on
the tradeoff between DI and LQG performance in LTI SISO
systems was investigated in [7]. It was argued that it suffices
to consider a rate distortion problem in a related tracking
problem and that linear/Gaussian policies were optimal. In
[8], an optimization problem was formulated to analyze the
minimum attainable DI in a MIMO LQG control system with
SI assuming linear feedback policies. Very recently, [4] proved
that linear/Gaussian policies conforming to the “three-stage
separation" architecture of [1] achieve optimal performance in
a MIMO time-varying generalization of the original control
problem posed in [7]. It is also argued that it suffices to
consider time-invariant policies in the time-invariant infinite
horizon setting [4]. In [7], [8], and [4], SI at the encoder does
not impact the rate-distortion tradeoff.
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In this work, our system model differs slightly from that
in [8] and is slightly less general than that in [4]. Our
perspective is quite different. We motivate our rate distortion
problem, and demonstrate an achievability result, in terms of
digital communications. The achievability approaches in [8]
and [4] are analog in the sense that the feedback channel is
continuous. Our contributions are summarized as follows:

1) Assuming that the feedback channel from the encoder
to decoder is binary and noiseless, we derive a lower
bound on the minimum expected prefix-free codeword
length under a constraint on control performance. The
converse result motivates a rate distortion formulation.

2) Via the three-stage separation principle (cf. [4, (19)]),
we derive a semidefinite program equivalent to the rate
distortion problem. 1

3) We provide a recipe to design both a sensor and a
quantizer that nearly achieves the performance of the
rate distortion formulation. Namely, we specify both a
zero-delay quantizer design and source coding protocol.

A version of this paper with appendices is provided in [9].
Notation: We denote scalars by lower case letters s, vectors

by boldface lower-case letters v, and matrices by boldface
capitols M. MT denotes transpose. We use x1∶t to denote
the sequence (x1, x2, . . . , xt), and {xt} for x1∶∞. We define
the “time shifted" sequence x+1∶t = (0,x1, . . . ,xt−1). If t < 1,
x1∶t = ∅. Denote the set of finite length binary strings {0,1}∗.
Denote the entropy of a discrete random variable (RV) H ,
differential entropy by h, and mutual information (MI) by I .
Denote causally conditioned DI

I(p1∶T → q1∶T ∣∣r1∶T ) = ∑
T

t=1
I(p1∶t;qt∣q1∶t−1, r1∶t). (1)

If A,B,C are RVs and A is independent of C given B we say
that A, B, C form a Markov chain and write A↔ B ↔ C.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 illustrates our assumed system model. We assume
a MIMO plant, a generally randomized sensor/encoder, and
two feedback channels (one for SI and one for prefix-free
codewords) from the encoder to a possibly randomized de-
coder/controller. Let x1

t ∈ Rn and x2
t ∈ Rm. The state

vector is defined as xt = [(x1
t )T, (x2

t )T]T. Let A11 ∈ Rn×n,
A12 ∈ Rn×m, A21 ∈ Rm×n, and A22 ∈ Rm×m be block
partitions of the system matrix A, and define W11 ∈ Rn×n,
and W22 ∈ Rm×m. The plant dynamics are given by

[x
1
t+1

x2
t+1

] = [A11 A12

A21 A22
] [x

1
t

x2
t
] +But +wt, where (2a)

wt ∼ N(0,W) and W = [W11 0
0 W22

] . (2b)

We assume W11,W22 ≻ 0 and the wt are IID. We assume B ∈
Rn+m×u and that (A,B) is stabilizable. The sensor/encoder

1When we originally submitted this manuscript, we proposed three-stage
separation as a conjecture. After submitting, we became aware that it was
shown to optimal in the commensurately published [4]. We derived our
SDP formulation independently, and provide additional system theoretic
commentary with respect to [4].

Fig. 1. The encoder has access to x1
t and x2

t , while the decoder can access
x2
t , only. At every time t, the encoder transmits a prefix-free codeword at ∈

{0,1}∗ to the controller. As in [1] [2], the length of the codeword provides
a notion of communication cost. Intuitively, the decoder relies on a discrete
channel to convey any knowledge of {x1

t } not contained in {x2
t } to the

decoder. The decoder generates the control input ut

policy is a sequence of causally conditioned stochastic ker-
nels denoted P(a1∶∞∣∣x1∶∞) = {P(at∣x1∶t,a1∶t−1)}t=1,..., the
decoder/controller policy is defined analogously and denoted
P(u1∶∞∣∣a1∶∞,x

2
1∶∞) = {P(ut∣a1∶t,x

2
1∶t,u1∶t−1)}t=1,2,....

Let `(at) be the length of the codeword at ∈ {0,1}∗
(in bits). We seek policies that minimize the time averaged
expected codeword length subject to a constraint on control
performance. Following from [2], we pursue the optimization:

inf
P(a1∶∞∣∣x1∶∞)

P(u1∶∞∣∣a1∶∞,x
2
1∶∞)

lim sup
T→∞

1

T
∑

T

t=1
E[`(at)]

s.t. lim sup
T→∞

1

T
∑

T

t=1
E[∥xt+1∥2

Q + ∥ut∥2
R] ≤ γ

(3)

where Q ≻ 0, R ≻ 0. The expectations are taken with respect to
the joint measure induced by the policies and plant dynamics.

III. CONVERSE

The converse follows from [2] and [1].

Theorem III.1 (A converse proof). Consider the model in
Fig. 1. Let `(at) be the length of the codeword at in bits.
For any (possibly randomized) control and encoding/decoding
policies, we have

∑
T

t=1
E[`(at)] ≥ I(x1∶T → a1∶T ∣∣x2

1∶T ). (4)

Proof. The model assumes that at is a codeword from a prefix-
free code. Let At = {a ∈ {0,1}∗ ∶ P(at = a) > 0}. At every
time t, if a1, a2 ∈ At the prefix-free assumption guarantees
that a1 is not a prefix of a2 and vice-versa. We claim that

E[`(at)] ≥H(at), (5)

this follows from a claim that for every t, any function Ct ∶
{0,1}∗ → {0,1}∗ satisfying a = Ct(a) for all a ∈ At is a
prefix-free code (in the terminology of [10, Ch. 5] ) from
At to {0,1}∗. For any prefix-free code C∗

t (cf. [10, Theorem
5.3.1])

E[`(C∗
t (at))] ≥H(at). (6)

Since Ct is identity on At, we have E[`(Ct(at))] = E[`(at)],
and (5) follows. We discuss (5) in [9, Appendix A].



At every time t we have the following chain of inequalities

E[`(at)] ≥H(at) (7)
≥H(at∣a1∶t−1,x

2
1∶t) (8)

≥H(at∣a1∶t−1,x
2
1∶t) −H(at∣a1∶t−1,x1∶t), (9)

Note that (7) is precisely (5), (8) follows since conditioning
reduces entropy, and (9) follows since discrete entropy is
positive. The right hand side of (9) is I(at;x1∶t∣a1∶t−1,x

2
1∶t).

Summing over t, and applying (1) gives (4).

IV. RATE DISTORTION FORMULATION

Given the converse in Sec. III, the arguments in [1] and [2]
suggest attempting the following optimization

inf
P(a1∶∞∣∣x1∶∞)

P(u1∶∞∣∣a1∶∞,x
2
1∶∞)

lim sup
T→∞

1

T
I(x1∶T → a1∶T ∣∣x2

1∶T )

s.t. lim sup
T→∞

1

T
∑

T

t=1
E[∥xt+1∥2

Q + ∥ut∥2
R] ≤ γ,

(10)

where the infimum is over all possible encoder and de-
coder policies and all expectations are computed under the
measure induced by the policies and the plant dynam-
ics. Let {yt} denote a sequence of (not necessarily dis-
crete) random variables. Define the set of causally condi-
tioned kernels P(y1∶∞∣∣x1∶∞) = {P(yt∣x1∶t,y1∶t−1)}t=1,... and
P(u1∶∞∣∣y1∶∞,x

2
1∶∞) = {P(ut∣y1∶t,x

2
1∶t,u1∶t−1)}t=1,2,.... The

infimum in (10) is lower bounded by

inf
P(y1∶∞∣∣x1∶∞)

P(u1∶∞∣∣y1∶∞,x
2
1∶∞)

lim sup
T→∞

1

T
I(x1∶T → y1∶T ∣∣x2

1∶T )

s.t. lim sup
T→∞

1

T
∑

T

t=1
E[∥xt+1∥2

Q + ∥ut∥2
R] ≤ γ.

(11)

That (11) lower bounds (10) follows from expanding the
domain of minimization. In (10) the optimization is restricted
to kernels where at is a discrete codeword, whereas in (11)
we make no such assumption.

Note that (11) is an optimization over an infinite dimen-
sional policy space and is not computationally amenable.
Recently, [4] demonstrated that the minimum in (11) is achiev-
able by a time invariant linear/Gaussian policy conforming
to the three-stage separation architecture depicted in Fig. 2;
namely, the optimal policy consists of a time-invariant linear-
Gaussian sensor, a Kalman filter, and a certainty equivalence
controller. Such a structural result allows us to convert (11)
into an equivalent finite dimensional optimization. We discuss
the optimal architecture in the following subsection.

A. Three stage test channel (cf. [1], [4])

The feedback loop contains three components:
I. Time-invariant linear/Gaussian sensor: Let C1 ∈ Rn×n

and C2 ∈ Rn×m.The equation governing the sensor output, yt,
is assumed to be

yt = [C1 C2]xt + vt, where vt ∼ N(0,V). (12)

Fig. 2. The three-stage separation architecture.

II. Kalman filter: The standard Kalman filter (KF) com-
putes the linear minimum mean squared error (LMMSE)
estimator, which in the joint Gaussian case is also the MMSE
estimator. The estimator is computed by the standard recursion
(cf. [11]). The KF computes the estimate x̂t via a linear (in
all arguments), time varying, C and V dependent recursion
denoted x̂t = Ψt(x̂t−1,yt,x

2
t ,ut).

III. Certainty equivalence control: We assume certainty
equivalence linear feedback control. Let S be a stabilizing
solution to the algebraic Riccati equation [2]

S = ATSA −ATSB(BTSB +R)−1BTSA +Q. (13)

The feedback control gain K is then given by

K = −(BTSB +R)−1BTSA. (14)

Under the three-stage test channel assumption, the design
variables are limited to C and V ⪰ 0, converting (11) into
a finite-dimensional optimization.

V. A CONVEX PROGRAMMING APPROACH TO THE
RATE/CONTROL PERFORMANCE TRADEOFF

Via three-stage separation, the minimum in (11) is given by

inf
C,V

lim sup
T→∞

1

T
I(x1∶T → y1∶T ∣∣x2

1∶T ) (15a)

s.t. ∀ t lim sup
T→∞

1

T
∑

T

t=1
E[∥xt+1∥2

Q + ∥ut∥2
R] ≤ γ, (15b)

xt+1 = Axt +BKut +wt,

yt = Cxt + vt, vt ∼ N(0,V), V ⪰ 0,

x̂t = Ψt(x̂t−1,yt,x
2
t ,ut−1), ut = Kx̂t,

where we identify the DI (15a) as the communication cost and
the quadratic (15b) as the control cost [4]. All expectations are
under the measure induced by C, V, and Fig. 2. In this section
we derive a convex program from (15). We first simplify
the cost (15a) under the assumed architecture, deriving an
expression in terms of Kalman filter error covariance matrices.

A. The rate and control costs in terms of KF variables
Under the architecture in Fig. 2, it can be verified that

x1∶t−1 ↔ x2
1∶t,x

1
t ,y1∶t−1 ↔ yt. Thus, by the chain rule

I(x1∶t;yt∣x2
1∶t,y1∶t−1) = I(xt;yt∣x2

1∶t,y1∶t−1) and the commu-
nication cost (15a) is given by

I(x1∶T → y1∶T ∣∣x2
1∶T ) = ∑

T

t=1
I(xt;yt∣x2

1∶t,y1∶t−1). (16)



Fig. 3. A depiction of the Kalman filtering process with two measurement
updates. The first update is after acquiring the SI (x2)t, meanwhile the second
is after acquiring the sensor measurement yt. In the present setting, joint
Gaussianity ensures the filter computes MMSE estimators. The residuals are
uncorrelated, and thus independent, of the respective observations (cf. V-A).

Let x̃1
t = E[x1

t ∣x2
1∶t,y1∶t−1] and x̂1

t = E[x1
t ∣x2

1∶t,y1∶t]. Denote
the residuals r̃t = x1

t −x̃1
t and r̂t = x1

t −x̂1
t . Since x̃1

t and x̂1
t are

measurable functions of x2
1∶t,y1∶t−1 and x2

1∶t,y1∶t respectively,
by the definition of MI

I(x1
t ;yt∣x2

1∶t,y1∶t−1) =
h(r̃t∣x2

1∶t,y1∶t−1) − h(r̂t∣x2
1∶t,y1∶t). (17)

By the joint Gaussianity of x1∶t and y1∶t and the orthogonality
principle, r̃t is Gaussian, has E[r̃t] = 0, and is independent
of x2

1∶t,y1∶t−1. Likewise r̂t is Gaussian, has E[r̂t] = 0, and
is independent of x2

1∶t,y1∶t. Define P̃t = E[r̃tr̃T
t ] and P̂t =

E[r̂tr̂T
t ]. The differential entropy of z ∼ N(0d,Σ) is h(z) =

1
2
(log det(Σ) + d log(2πe)) [10]. Thus (17) is

I(x1
t ;yt∣x2

1∶t,y1∶t−1) =
1

2
(log det P̃t − log det P̂t). (18)

Thus, the rate cost function in (15) may be written

lim sup
t→∞

1

T
I(x1∶T → y1∶T ∣∣x2

1∶T ) =

lim sup
t→∞

1

2T
∑

T

t=1
log det P̃t − log det P̂t. (19)

Under the present assumptions (cf. [2] [1]), the control cost
may also be written in terms of P̂t. Let Θ be the upper left
n × n block of KT(BTSB +R)K. We have

lim sup
T→∞

1

T
∑

T

t=1
E[∥xt+1∥2

Q + ∥ut∥2
R] =

lim sup
T→∞

1

T
∑

∞

i=1
Tr(ΘP̂t) + Tr(SW). (20)

In the sequel, we recast (15) in terms of P̂t and P̃t.

B. The constraints in terms of Kalman filter variables

In this subsection, we derive constraints between the resid-
ual covariance matrices and conclude the simplification of
(15). The sequences {P̃t} and {P̂t} are related via a Riccati
recursion we derive via considering the implementation of the
Kalman filter from Fig. 2 depicted in Fig. 3.

Define the a posteriori state estimate of x at time t − 1
as x̂t−1. This is the estimator given x2

1∶t−1 and y1∶t−1 and is
given by x̂t−1 = [(x̂1

t−1)T, (x2
t−1)T]T (cf. Sec. V). Since x2

t−1

is observed noiselessly there is no error in estimating x2
t−1;

we thus defined the residual, r̂t−1, with respect to x1
t−1 (only).

The orthogonality principle and Gaussianity ensures that r̂t−1

is independent of x2
1∶t−1,y1∶t−1.

Denote the a priori state estimate for time t as x̂t∣t−1.
Given the linear feedback control, x̂t∣t−1 is a linear func-
tion of x̂t−1 and is precisely the MMSE estimator x̂t∣t−1 =
E[xt−1∣x2

1∶t−1,y1∶t−1]. Denote the a priori residual process
r̂t∣t−1 = xt − x̂t∣t−1. Note that in contrast to the definition of
r̂t−1, r̂t∣t−1 contains residuals from estimating (predicting) both
x1
t and x2

t . It can be shown that E[r̂t∣t−1] = 0. Denote the co-
variance matrix Pt∣t−1 = E[r̂t∣t−1r̂

T
t∣t−1]. Let Ā = [AT

11,A
T
21]T.

By direct substitution Pt∣t−1 = ĀP̂t−1Ā
T+W, where P̂t−1 is

covariance of r̂t−1 defined in V-A.
The estimator after the SI update (the noiseless observation

of x2
t ) at time t is given by x̃t = [(x̃1

t )T, (x2
t )T]T (cf. Sec.

V). Again, x̃t = E[xt∣x2
1∶t,y1∶t−1] and is a linear function of

x̂t∣t−1 and x2
t . The residual, r̃t, is again defined with respect to

the error estimating x1
t only (as in Sec. V). Let P11

t∣t−1 ∈ R
n×n,

P12
t∣t−1 ∈ R

n×m, P21
t∣t−1 ∈ R

m×n, P22
t∣t−1 ∈ R

m×m be such that

Pt∣t−1 = [
P11
t∣t−1 P12

t∣t−1

P21
t∣t−1 P22

t∣t−1

] . (21)

The covariance of the residual r̃t (cf. V-A) follows from a
standard Shur complement result

P̃t = P11
t∣t−1 −P12

t∣t−1(P
22
t∣t−1)

−1P21
t∣t−1. (22)

Finally, the sensor measurement update computes the posterior
state estimate at time t. It can be shown that P̂t is given by

P̂−1
t = P̃−1

t +CT
1 V−1C1, (23)

which demonstrates that C2 is completely arbitrary.
Let F = AT

21W
−1
22A21. Using (22), the matrix inversion

lemma gives

P̃t+1 = W11 +A11 (P̂−1
t +F)

−1
AT

11. (24)

Substituting (23) into (24) gives a recursion for P̃ via

P̃t+1 = W11 +A11 (P̃−1
t +CT

1 V−1C1 +F)
−1

AT
11. (25)

The matrix inversion lemma demonstrates that (25) is a
Riccati difference equation [12]. Given an initial condition,
the recursion (25) converges under a variety of circumstances
[12] [11]. If it exists, the steady state solution P̃∞ solves the
discrete algebraic Riccati equation

P̃∞ = W11 +A11 (P̃−1
∞ +CT

1 V−1C1 +F)
−1

AT
11. (26)

In particular, [12, Theorem 4.1] establishes convergence to
a unique, positive definite solution when (A11,W

1
2

11) is
stabilizable and ([CT

1 ,A
T
21]T,A11) is detectable [12]. The

stabilizability is immediate as W11 > 0. Furthermore, in the
present setting, the existence of a positive definite solution to
(26) can be shown to imply that ([CT

1 ,A
T
21]T,A) is detectable

via a discrete time Liaponov equation. We restrict our attention
to the case that ([CT

1 ,A
T
21]T,A) is detectable.

Convergence of {P̃t} implies that {P̂t} also converges. The
limits of {P̂t} and {P̃t} must satisfy both

P̂−1
∞ = P̃−1

∞ +CT
1 V−1C1, and (27a)



P̃∞ = W11 +A11 (P̂−1
∞ +F)

−1
AT

11. (27b)

Given C and V, if such a P̃∞ > 0 and P̂∞ > 0 can be
found, the resulting P̃∞ will satisfy (26). If for some C and
V there exists P̃∞ (necessarily positive definite) satisfying
(27), it follows that ([CT

1 ,A
T
21]T,A) is detectable and that

both P̃t → P̃∞ and P̂t → P̂∞. Using (19), a standard Cesáro
mean (cf. [10]) argument gives that

lim sup
T→∞

1

T
I(x1∶T → y1∶T ∣∣x2

1∶T ) =
1

2
log

det P̃∞

det P̂∞

. (28)

Similarly, using (20) we have that

lim sup
T→∞

1

T

T

∑
t=1

E[∥xt+1∥2
Q + ∥ut∥2

R] = Tr(ΘP̂∞ + SW). (29)

In the following subsection, we use these results to derive a
convex program for the rate distortion problem (15).

C. Derivation of the convex program

Define P̂
∆= P̂∞ and P̃

∆= P̃∞. Substituting (27), (28), and
(29) into (15) yields the finite dimensional optimization

min
C,V

1

2
(log det P̃ − log det P̂)

s.t. V ⪰ 0, P̃ ⪰ 0, Tr(ΘP̂ + SW) ≤ γ,
P̂−1 = P̃−1 +CT

1 V−1C1,

P̃ = W11 +A11(P̂−1 +F)−1AT
11.

(30)

Since W11 ≻ 0, P̃ ≻ 0. The minimum in (30) can be found
by the convex optimization

min
P̂,Π

log detW − log detΠ − log det (W22 +A21P̂AT
21)

2

s.t. P̂ ≻ 0,Π ⪰ 0,Tr(ΘP̂) + Tr(SW) ≤ γ,

W + ĀP̂ĀT − [P̂ 0
0 0

] ⪰ 0,

[P̂ −Π P̂ĀT

ĀP̂ W + ĀP̂ĀT] ⪰ 0.

(31)
Details are given in [9, Appendix B]. Let P̂min be the
minimizer in (31), and let P̃min be given by (27b). The
minimizers C1 and V are the set of matrices satisfying
P̂−1

min − P̃−1
min = C1V

−1CT
1 . Without loss of generality, we

choose V = I, C1 the corresponding minimizer, and C2 = 0.
We now show that the minimum is nearly achievable in the
architecture of Fig. 1.

VI. QUANTIZATION AND PREFIX FREE CODING

The architecture used to demonstrate the achievability result
follows from [2, IV], and is shown in Fig. 4. As in [2], we use
a predictive elementwise uniform quantizer with subtractive
dither. We define an elementwise uniform quantizer with
sensitivity ∆ as a function q∆ ∶ Rn → Rn such that

[q∆(z)]i =m∆ if [z]i ∈ [m∆ − ∆

2
,m∆ + ∆

2
), (32)

Fig. 4. The dither signal [dt]i ∼ Uniform([−∆
2
, ∆

2
)) IID over i, t is

independent of x1∶t, y1∶t−1, u1∶t−1, a1∶t−1 but is assumed to be known
at both the encoder and decoder. In practice, this “shared randomness" could
be accomplished by using synchronized pseudorandom number generators at
both the encoder and decoder.

e.g. each element of z is “rounded" to the nearest integer
multiple of ∆. For a random input z, q∆(z) is a discrete RV
with countable support. Consider the random vector d ∈ Rn
where [d]i ∼ Uniform[−∆

2
, ∆

2
] IID over i and independent of

z. Define the quantizer with subtractive dither via

qSD
∆ (z) = q∆(z + d) − d (33)

Dithering allows the quantization error to manifest as additive
uniform noise; it can be shown that n = z − qSD

∆ (z) is
independent of z and that the elements [n]i are IID with
[n]i ∼ Uniform[−∆

2
, ∆

2
] [2, Lemma 1a] [13]. The caption of

Fig. 4 outlines the use of dithering this achievability result.
We now show that when ∆ = 2

√
3, the system in Fig.

4 achieves an equivalent control performance as the as the
architecture in Fig. 2 for equivalent C1 and V = I. In Fig.
4, at time t the decoder observes a dithered quantized mea-
surement of x1, denoted yNG

t and to be described presently.
The measurement is predictive and defined recursively via an
encoder KF process. At time t, a KF at the encoder computes

x̃1,NG
t = The LMMSE estimate of x1 given yNG

1∶t−1, x2
1∶t.

The encoder’s quantizer computes the discrete z̃t =
q∆(C1(x1

t − x̃1,NG
t ) + dt), and encodes z̃t with a prefix-free

lossless Shannon-Fano-Elias (SFE) code. The codeword is sent
to the decoder, which (exactly) reconstructs z̃t.

Given the dither signal, the decoder forms yNG
t = z̃t − dt,

or, equivalently yNG
t = qSD

∆ (C1(x1
t − x̃1,NG

t )). This gives

yNG
t = C1x

1
t −C1x̃

1,NG
t + nt

where nt is a zero mean, uniform random vector with IID
elements and E[ntnT

t ] = I. The decoder side Kalman filter
operates analogously to the two stage filter in Fig. 3. Having
received the previous measurements yNG

1∶t−1 and the SI x2
1∶t, the

decoder can compute x̃1,NG
t and form a centered measurement

yNG
t = yNG

t +C1x̃
1,NG
t . It clear that,

x̂1,NG
t = The LMMSE estimate of x1

t given yNG
1∶t , x2

1∶t, (34)



is the same as the LMMSE of x1
t given yNG

1∶t and x2
1∶t. The

controller forms the control input ut = K[(x̂1,NG
t )T, (x2

t )T]T
where K is as in (14). A corollary to the proof of [2,
Lemma 1a] demonstrates that under this (really any) feedback
arrangement, the sequence of quantization noises {nt} is
temporally white, e.g. E[ntnT

t′ ] = 0 if t ≠ t′.
This leads to a result analogous to [2, Lemma 2]. Having

fixed C1 and V = I, denote the jointly Gaussian random
variables (xt, x̃1

t , x̂
1
t ) with the joint distribution induced by

the architecture in Fig. 2 by (xG
t , x̃

1,G
t , x̂1,G

t ). Likewise,
denote the (generally non-Gaussian) RVs (xt, x̃1

t , x̂
1
t , ) with

the joint distribution induced by the architecture in Fig. 4 by
(xNG
t , x̃1,NG

t , x̂1,NG
t ). We have the following lemma.

Lemma VI.1. If RVs describing the initial conditions xNG
1

and xG
1 have identical first and second moments, then the

processes {(xNG
t , x̂1,NG

t , x̃1,NG
t )} and {(xG

t , x̃
1,G
t , x̂1,G

t )} are
equivalent up to second moments. Regardless of initial condi-
tions E[(x1,NG

t − x̂1,NG
t )(x1,NG

t − x̂1,NG
t )T] → P̂.

This result follows from comparing the measurement model

yNG
t = C1x

1,NG
t + nt (35)

to the linear/Gaussian model (12) under the assumed choices
of C1 and V = I. While the additive white noise is uniform,
rather than Gaussian, it has E[nt] = 0 and E[ntnT

t ] = I.
The first statement follows from an induction on t. The latter
follows as the Riccati recursion relating the covariance matri-
ces of the error processes x1,NG

t − x̂1,NG
t and x1,NG

t − x̃1,NG
t

is identical to that derived in V-B. The same control cost is
achieved in both systems (cf. (29)).

It remains to bound the codeword length. Recall the discrete
RV z̃t, and define zt = C1(x1,NG

t −x̃1,NG
t ). At every time t, by

the SFE construction (cf. [10]) there exists a lossless, prefix-
free code that encodes z̃t with an expected length E[`(at)] ≤
H(z̃t∣dt)+ 2. Consider the joint Gaussian case and define r̃G

t

as in Sec. V. The next lemma is proved in [9, Appendix C].

Lemma VI.2 ( [2]). At every time t, we have

H(z̃t∣dt) ≤
n

2
log2

4πe

12
+ I(C1r̃

G
t ;C1r̃

G
t + vt). (36)

Let k = 2 + n
2

log2
4πe
12

. Our main result is the following.

Theorem VI.3. When the entropy encoder and decoder in
Fig. 4 use SFE coding adapted to the PMF of z̃t for all t, the
architecture achieves

lim sup
T→∞

1

T

T

∑
t=1

E[`(at)] ≤

lim sup
T→∞

1

T
I(xG

1∶T → yG
1∶T ∣∣x

G,2
1∶T ) + k. (37)

Proof. At every time t, SFE codeword has a length E[`(at)] ≤
1 + H(z̃t∣dt). Since x̃1,G

t is a measurable function of
xG,2

1∶t ,y
G
1∶t−1 we have that

I(x1,G
t ;yG

t ∣x2,G
1∶t ,y

G
1∶t−1) =
I(r̃G

t ;C1r̃
G
t + vt∣x2,G

1∶t ,y
G
1∶t−1). (38)

Since r̃G
t and vt are independent of (x2,G

1∶t ,y
G
1∶t−1), this implies

I(x1,G
t ;yG

t ∣x2,G
1∶t ,y

G
1∶t−1) = I(r̃G

t ;C1r̃
G
t + vt) (39)

Note that both r̃G
t ↔C1r̃

G
t ↔C1r̃

G
t +vt and C1r̃

G
t ↔ r̃G

t ↔
C1r̃

G
t + vt are Markov chains. Applying the standard data

processing inequality (twice) to I(r̃G
t ;C1r̃

G
t + vt) using both

of these chains allows us to conclude that

I(x1,G
t ;yG

t ∣x2,G
1∶t ,y

G
1∶t−1) = I(C1r̃

G
t ;C1r̃

G
t + vt). (40)

Thus, by Lemma VI.2

H(z̃t∣dt) ≤
n

2
log2

4πe

12
+ I(x1,G

t ;yG
t ∣x2,G

1∶t ,y
G
1∶t−1). (41)

Summing (36) over t, and applying (1) gives (37).

The Cesáro mean argument in (28) applied to (37) gives

lim sup
T→∞

1

T

T

∑
t=1

E[`(at)] ≤ k +
log det P̃min − log det P̂min

2
,

which is convenient for computing the bound via (31).
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Fig. 5. A generalized version of the path from encoder to decoder in the
model of Fig. 1. The minimum achievable rate for a system with the additional
“virtual" encoder/decoder pair lower bounds the minimum achievable rate for
a system without the additional virtual pair.

APPENDIX A
A FORMAL PROOF OF THE CONVERSE BOUND

Consider the system model in Fig. 1 at time t. By assump-
tion (cf. Sec. II), at is a prefix-free codeword, so if a1 ≠ a2,
P(at = a1) > 0 and P(at = a2) > 0 then a1 is not a prefix of
a2 and vice-versa. The codeword at is a discrete variable with
countable support chosen by the policy defined by kernel (a
conditional PMF)

PS(at∣x1
1∶t,x

2
1∶t,a1∶t−1), (42)

where we added the subscript S to denote the “encoder/sensor"
policy as in Fig 1. The control action is is chosen by the policy
defined via the probability measure

PC(ut∣a1∶t,x
2
1∶t,u1∶t−1), (43)

where we added the subscript C to denote the “de-
coder/controller" policy as in Fig 1.

We bound the expected length of the prefix-free codeword
at at every t by bounding the length of lossless prefix-free
source code that encodes at itself. Consider a modified version
of the system model (cf. Fig. 1) shown in Fig. 5. Another,
“virtual" encoder/decoder pair has been added between the
encoder/sensor and decoder/controller. We assume that at
every time t, the virtual encoder encodes at into a prefix-free
codeword ct. We refer to at as a “source codeword" and ct as
a “virtual codeword". At every timestep t, the virtual encoder
encodes at into the virtual codeword ct via computing

ct = Ct(at), (44)

for some deterministic measurable function Ct. Likewise, the
virtual encoder computes the reconstruction ât by computing

ât =Dt(ct), (45)

where again, for all t, Dt is a deterministic measurable
function. The virtual encoder and decoder are both memoryless
and do not access any SI. We insist that the virtual encoder and
decoder are lossless, namely that at

a.s.= ât. We think of Fig. 5
as “inserting" the virtual encoder and decoder blocks into Fig.
1. Note that virtual encoder and decoder policies do not effect
the measure induced on the random variables x1∶t,a1∶t,u1∶t

due to the assumption that Ct and Dt are deterministic and
that ât

a.s.= at.
The idea is that the insertion of an optimal “virtual" lossless

encoder/decoder between the sensor and controller produces
a codeword ct that has a length less than or equal to that
of at. More formally, at every time t we lower bound the
length of the codeword at by lower bounding the length of

the codeword ct under the optimal zero-error prefix free virtual
encoder and virtual decoder policies. If r is a prefix free binary
codeword, let `(r) denote its length. An “optimal" virtual
encoder and decoder policy (there may be more than one),
for some fixed sensor and controller policy, is defined as a
sequence of deterministic functions P ∗ = {C∗

t ,D
∗
t } where:

1) C∗
t maps at to ct and D∗

t maps ct to ât as in Fig. 5.
2) There is no probability of error, e.g. D∗

t (C∗
t (at))

a.s.= at
for all t.

3) Let At = {a ∈ {0,1}∗ ∶ P(at = a) > 0}. At every time
t, if a1, a2 ∈ At and a1 ≠ a2 then c1 = C∗

t (a1) is not a
prefix of c2 = C∗

t (a2) and vice-versa.2

4) At all t, E[`(ct)] is minimized among all other policies
satisfying (1), (2), and (3) above.

The above expectations and probabilities are taken with respect
to the measure induced by the sensor and controller policies
PS and PC and Fig. 1. In the language of [10, Chapter 5], the
constraints (1), (2), and (3) require that at any time t, C∗

t is
prefix-free code mapping the space At ⊂ {0,1}∗ to the space
of binary prefix-free codewords in {0,1}∗. In the next lemma,
we show that under the optimal virtual encoder and decoder
policies, we have

E[`(C∗
t (at))] ≤ E[`(at)], (46a)

or, in other words

E[`(ct)] ≤ E[`(at)], (46b)

where ct = C∗
t (at).

Lemma A.1. For all t there exists a Ct and Dt satisfying
(1)-(4) above and E[`(ct)] ≤ E[`(at)].

Proof. At every time t, the source codewords at are codewords
of a prefix-free code. Setting Ct and Dt equal to identity, e.g.

at = Ct(at) and ct = Ct(ct), (47)

gives

ct = at and ât = ct (48)

Under this policy, the virtual encoder sends the input at
directly and at = ct = ât. Thus there exist policies satisfying
the constraints that achieve equality in (46) and the result
follows.

Since for every t, C∗
t is a prefix-free code from At →

{0,1}∗, it follows from [10, Theorem 5.3.1] that

H(at) ≤ E[`(C∗
t (at))], (49)

which gives the result

H(at) ≤ E[`(at)]. (50)

We emphasize that (50) holds for every time t.

2This ensures that C∗

t , restricted to At is injective; a necessary condition
for there to exist a deterministic D∗

t such that D∗

t (C∗

t (at)) a.s.= at (cf.
condition (2)). It also ensures that the set of virtual codewords transmitted
with nonzero probability at time t are not prefixes of one another; define
C∗t = {c ∈ {0,1}∗ ∶ P(Ct(at) = c) > 0}, and let c1, c2 ∈ Ct. If c1 ≠ c2,
then c1 is not a prefix of c2 and vice-versa.



APPENDIX B
PROOF OF EQUIVALENCE BETWEEN (30) AND (31)

We begin by writing (30) in terms of P̂ only. It can
immediately be seen that the design variables C and V are
essentially slack. The constraint P̂−1 = P̃−1 +CT

1 V−1C1 can
be replaced with the constraints P̃ − P̂ ⪰ 0 and P̂ ≻ 0. The
new inequality constraint may be readily combined with the
equality constraint for P̃ (cf. (27b)) to derive a linear matrix
inequality (LMI) in P̂. Applying the matrix inversion lemma
to (27b) gives

P̃ − P̂ = W11 − P̂+
A11 (P̂ − P̂AT

21(A21P̂AT
21 +W22)−1A21P̂)AT

11. (51)

The right hand side of (51) is a Shur complement, and the
LMI constraint follows directly. Thus P̃− P̂ ⪰ 0 is equivalent
to the LMI

W + ĀP̂ĀT − [P̂ 0
0 0

] ⪰ 0. (52)

The corresponding C1 and V are not unique, and can be
found by factorizing P̂−1 − P̃−1.

It remains to simplify the rate cost. Using (27b) and
invoking the matrix determinant lemma twice, we

log det P̃ − log det P̂ = log det(P̂−1 + ĀTW−1Ā)+
log detW − log det(W22 +A21P̂AT

21). (53)

Introduce the slack variable Π. We have

log det(P̂−1 + ĀTW−1Ā) =
min

0⪯Π⪯(P̂−1+ĀTW−1Ā)−1
− log detΠ. (54)

Applying the matrix inversion lemma and the Shur comple-
ment formula to the constraint Π ⪯ (P̂−1+ĀTW−1Ā)−1 gives
the equivalent LMI

[P̂ −Π P̂ĀT

ĀP̂ W + ĀP̂ĀT] ⪰ 0. (55)

The preceding discussion demonstrates that

min
P̂,Π

log detW − log detΠ − log det (W22 +A21P̂AT
21)

2

s.t. P̂ ≻ 0,Π ⪰ 0,Tr(ΘP̂) + Tr(SW) ≤ γ,

W + ĀP̂ĀT − [P̂ 0
0 0

] ⪰ 0,

[P̂ −Π P̂ĀT

ĀP̂ W + ĀP̂ĀT] ⪰ 0.

(56)
achieves the same minimum as (30). This program is the
minimization of a convex objective with convex constraints.

APPENDIX C
PROOF OF LEMMA VI.2

The proof follows closely from [2]. Assume the definitions
of Sec. VI. It turns out that H(z̃t∣dt) admits a bound in terms
of the squared error rate distortion function of z [2, Lemma 1
c-d]. Let D = n∆2/12 = n. Define the rate distortion function

Rx(D) = inf
P(u∣x)∶E[∥x−u∥22]≤D

I(x;u). (57)

We have

H(z̃t∣dt) ≤
n

2
log2

4πe

12
+Rzt(D). (58)

It is known (cf. [10, Problem 10.8]) that if a Gaussian random
vector x has cov(x) = cov(z) then Rz(D) ≤ Rx(D).

We claim that

Rzt(D) ≤ I(C1r̃
G
t ;C1r̃

G
t + vt) (59)

Note that Θt = C1r̃
G
t is Gaussian and that, by Lemma VI.1

we have E[ΘtΘ
T
t ] = E[ztzT

t ] = C1P̃tC
T
1 and that E[Θt] =

E[zt] = 0. Thus Rzt
(D) ≤ RΘt(D). By the assumption that

V = I, we have E[vT
t vt] = n. Since D = n, RΘt(D) ≤

I(C1r̃
G
t ;C1r̃

G
t + vt), and (59) follows. Substituting this into

this into (58) establishes the Lemma.
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