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Abstract—We derive an improvement for probably approxi-
mately correct (PAC) sublevel-set bounds for the multinomial
distributed discrete random variables. Previous bounds (includ-
ing Sanov’s Theorem) show that the Kullback Leibler (KL)
divergence between the empirical probability mass function (pmf )
and the true PMF converges with rate O(log(N)/N), where N
is the number of independent and identically distributed (i.i.d.)
samples used to compute the empirical pmf . We interpret the
KL divergence as bounding the probability that a multinomial
distributed random variable (RV) deviates into a halfspace
and construct improved uniform PAC sublevel-set bounds that
converge with rates O(log(log(N))/N). These results bound
the worst case performance for a number of machine learning
algorithms. Finally, the ‘halfspace bound’ methodology suggests
further improvements are possible for non-uniform bounds.

In this paper, we derive an improvement (on the conver-
gence rate) for various Probably Approximately Correct (PAC)
bounds (including Sanov’s Theorem) for multinomially dis-
tributed discrete random variables.

I. INTRODUCTION

Suppose Y is a discrete random variable, whose values
(outcomes) are from a finite set Y ,

{
b0, b1, . . . , b|Y|−1

}
.

Further, suppose Y is distributed according to the probability
mass function (pmf ) w ,

[
wb0 , wb1 , . . . , wb|Y|−1

]
, where

wy , P {Y = y} ∀y ∈ Y or Y ∼ w.
Suppose, we have a set S of samples (outcomes) from

N i.i.d. random variables Y 0, Y 1, . . . , Y N such that Y n ∼
w ∀n ∈ {0, 1, . . . , N − 1} and SN = {y0, y1, . . . , yN−1} is
the set of outcome values. We call w the ‘generator’ pmf .

From this set of samples S, we compute the sample (em-
pirical) pmf ŵ =

[
ŵb0 , ŵb1 , . . . , ŵb|Y|−1

]
, where

ŵy ,
1

N

N−1∑
n=0

1{yn=y}, ∀y ∈ Y. (1)

Both w and ŵ lie in the probability space PY , and we think of
ŵ as an estimate of w. We define the ‘empirical’ or ‘sample’
probability space PN as the set of all possible empirical pmf s
(i.e. PN = {ŵ ∈ PY :P {ŵ| SN} > 0} .

Define a region Γ ⊂ PY . We want to compute or bound the
probability that the sample estimate ŵ falls within this region
Γ i.e. P {ŵ ∈ Γ}. In this paper, we restrict the region Γ to be
the interior of a convex level-set that is based on the Kullback-
Leilbler (KL) divergence D(ẃ ‖w) ,

∑
y∈Y

ẃy ln
(
ẃy

wy

)
. That

is we want to establish a tight bound of the form
P {ŵ ∈ Γξ (w)} ≥ 1− δ, (2)

where the sublevel-set Γ , which is ‘centered’ on w with a
‘size’ ξ, is defined as

Γξ (w) , {ẃ:D(ẃ ‖w) ≤ ξ, ∀w ∈ PY}. (3)

The remainder of this paper is as follows: After briefly
describing some previous work, we develop a novel non-
asymptotic bound on a halfspace (region) within the proba-
bility space. The halfspace bound yields an interpretation of
Sanov’s Theorem as a sublevel-set bound. In Section V, we
develop a transparent methodology that invokes a plurality of
halfspace bounds to ‘wrap’ a convex level-set Γ◦ ⊂ Γξ (w).
We compute the convergence rate performance of the ‘new’
sublevel-set bound. We finish with some conclusions and
recommendations.

II. PREVIOUS WORK

Valiant [2] developed the probability approximately correct
(PAC) concept, where a PAC bound refers to a bound that
holds with a prescribed arbitrarily high probability. Langford
[3] developed and outlined the application of PAC-bounds
to machine-learning. Seldin and Tishby [4] derived PAC-
bounds and PAC-Bayesian bounds for discrete RVs, and this
paper significantly leverages that work. Our sublevel-set (PAC)
bound is closely related to PAC-Bayesian bounds (see Guedj
[5] for a survey and review).

III. HALFSPACE BOUND

We begin with the development of a multinomial halfspace
bound (MHB).

Theorem III.1 Multinomial Halfspace Bound
Given the set SN = {y0, y1, . . . , yN−1} of outcomes from N
i.i.d. discrete random variables Y n ∈ Y and Y n ∼ w for n =
0, 1, . . . , N − 1. Let ŵ be the sample (empirical) pmf. When
given the halfspace Λ (oriented to include the pmf w∗ ∈ PY )
defined as

Λ (w∗,w) ,

ŵ ∈ PY :
∑
y∈Y

ŵy ln

(
w∗y
wy

)
≤ ξ

 (4)

where ξ , D(w∗ ‖w), then we have

P {ŵ 6∈ Λ (w∗,w)} ≤ exp(−ND(w∗ ‖w)) . (5)



Proof. Theorem III.1

Start with the probability that the empirical pmf ŵ (gen-
erated from the pmf w) does not ‘fall’ within the halfspace
Λ (w∗,w), that is

P {ŵ 6∈ Λ} =
∑
ŵ 6∈Λ

(
N

Nŵ

) ∏
x∈X

wy
Nŵy

.

(6)

We multiple and divide by
(
w∗y
wy

)Nw∗y
to get

=
∑
ŵ∈Λ

(
N

Nŵ

) ∏
y∈Y

wy
Nŵy

(
w∗y
wy

)Nw∗y(w∗y
wy

)−Nw∗y
. (7)

From the definition of the halfspace (eq. 4), we know that∏
y∈Y

(
w∗y
wy

)Nw∗y
≤
∏
y∈Y

(
w∗y
wy

)Nŵy

for all ŵ in the halfspace,

i.e.

≤
∑
ŵ∈Λ

(
N

Nŵ

) ∏
y∈Y

wy
Nŵy

(
w∗y
wy

)Nŵx
(
w∗y
wy

)−Nw∗y
. (8)

Canceling the wyNŵy term in the numerator and denominator,
we get

=
∑
ŵ∈Λ

(
N

Nŵ

) ∏
y∈Y

w∗y
Nŵy

(
w∗y
wy

)−Nw∗y
. (9)

We expand the summation to include entire discrete proba-
bility space, and get

≤
∑

ŵ∈PYN

(
N

Nŵ

) ∏
y∈Y

w∗y
Nŵy

(
w∗y
wy

)−Nw∗y
. (10)

Rearranging into two products yields

=
∑

ŵ∈PN

(
N

Nŵ

) ∏
y∈Y

w∗y
Nŵy

∏
y′∈Y

(
w∗y′

wy′

)−Nw∗
y′


.

(11)

Then, recognizing the multinomial pmf and that the summa-
tion over the discrete probability space is equal to one, i.e.∑
ŵ∈PN

(
N
Nŵ

) ∏
y∈Y

w∗y
Nŵy = 1, we get

=
∏
y′∈Y

(
w∗y′

wy′

)−Nw∗
y′

. (12)

We insert the exponentiation of the log function to render the
product as a summation, i.e.

= exp

∑
y′∈Y

−Nw∗y′ ln
(
w∗y′

wy′

)
. (13)

Finally, we recognize the definition of KL divergence (to
complete the proof),

= exp(−ND(w∗ ‖w)) . (14)
�

This halfspace bound is non-asymptotic (holds for any given
number of samples N ∈ [1,∞)). The MHB has the same form
as a well-known KL divergence bound for binary (binomial)
RVs [3].

Consider the halfspace Λ (w∗,w) and ŵ 6∈ Λ (w∗,w), then

D(ŵ ‖w) =
∑
y∈Y

ŵy ln

(
ŵy
wy

)
(15)

=
∑
y∈Y

ŵy ln

(
ŵy
w∗y

w∗y
wy

)
(16)

= D(ŵ ‖w∗) +
∑
y∈Y

ŵy ln

(
w∗y
wy

)
(17)

= D(ŵ ‖w∗) +
∑
y∈Y

(w∗y + ~ey) ln

(
w∗y
wy

)
(18)

= D(ŵ ‖w∗) +D(w∗ ‖w) +
∑
y∈Y

~ey ln

(
w∗y
wy

)
,

(19)

where −→e is an offset (
∑
y∈Y

~ey = 0). If ŵ is in the halfspace

Λ (w∗,w), then
∑
y∈Y

~ey log
(
w∗y
wy

)
≤ 0 (by definition, see eq.

4); therefore, we have alternative simple proof of the well-
known Pythagorean-like inequality [6]

D(ŵ ‖w) ≤ D(ŵ ‖w∗) +D(w∗ ‖w). (20)

IV. SANOV BOUND REVISITED

Using the MHB, we can easily prove Sanov’s Theorem [1].

Theorem IV.1 Sanov’s Theorem (see [1] section 11.4)
Given the set SN = {y0, y1, . . . , yN−1} of outcomes from N
i.i.d. discrete random variables Y n ∈ Y and Y n ∼ w for
n = 0, 1, . . . , N−1. Let ŵ be the empirical pmf of SN . When
given any region Γ ⊂ PY and w∗ is the ‘closest’ pmf among
all ẃ ∈ Γ to w in terms of the KL divergence

w∗ = arg min
ẃ∈Γ

D(ẃ ‖w), (21)

then we have

P {ŵ 6∈ Γ} ≤ (N + 1)
|Y|

exp(−ND(w∗ ‖w)). (22)

One difference between Theorem IV.1 and the Sanov the-
orem (as stated in [1] section 11.4.1) is that here Sanov’s
Theorem is claimed valid for any region (convex or not).
Proof. Theorem IV.1

Find the ‘closest’ pmf w∗ = arg min
ẃ∈Γ

D(ẃ ‖w) and define

ξ⊥ , D(w∗ ‖w). Now, for every possible ‘empirical’ pmf ŵ
that is not in the region Γ (suppose ŵ′ is one such pmf ),
we construct a ray from w towards ŵ′, that is ray1 ,
{ẃ: ẃ = tŵ′ + (1− t)w ∀t ∈ [0, 1]}. Then we find the pmf
w∗
′

along this ray1 such that D
(
w∗
′
∥∥∥w) = ξ⊥ (which

we know exists), and at that position, we place the halfspace
Λ
(
w∗
′
,w
)

. Let {Λ} be the set of all such halfspaces (one
for every ŵ 6∈ Γ ).

Given the MHB, we know that for each and every ŵ′ 6∈ Γ ,

P {ŵ′ 6∈ Λ} ≤ P
{
w∗
′
6∈ Λ

}
≤ exp(−Nξ⊥).

We invoke the Union Bound to bound the probability of ŵ
not being in the region Γ , as

δΓ , P {ŵ 6∈ Γ} ≤ |{Λ}| exp(−Nξ⊥) (23)



and solving for ξ, we get

ξ⊥ = D(w∗ ‖w) ≤ ln(|{Λ}|)− ln(δΓ )

N
. (24)

We know that there are less than (N + 1)
|Y| pmf s ŵ in

PN ; therefore, we arrive at

ξ⊥ = D(w∗ ‖w) ≤ |Y| ln(N + 1)− ln(δΓ )

N
, (25)

and solving for δΓ completes the proof of Theorem IV.1.
�

This proof of Sanov’s Theorem via the MHB reveals a
potential improvement because each halfspace could ‘cover’
many more than one single ‘empirical’ pmf (all the ŵ pmf s
not in the halfspace). The main result of this paper is con-
structing a method to ‘trim’ down the number of halfspaces
to potentially ‘tighten’ the Sanov bound.

V. IMPROVED SUBLEVEL-SET BOUND

In this section, we develop a bound for the sublevel-set
Γξ (w) (see eq. 3). Note: this sublevel-set is the ‘worst-case’
region regarding Sanov’s Theorem (i.e. it requires the greatest
number of halfspaces).

Theorem V.1 Sublevel-set Bound
Given the set SN = {y0, y1, . . . , yN−1} of outcomes from N
i.i.d. discrete random variables Y n ∈ Y and Y n ∼ w for
n = 0, 1, . . . , N − 1. Let ŵ be the empirical pmf of SN , and
select any δΓ ∈ (0, 1], then P {ŵ 6∈ Γξ (w)} ≤ δΓ for the
sublevel-set Γξ (w) (see eq. 3) with ‘size’

ξ ≥ 1

N

(
1

2
ln(2 |Y|)− 3

2
ln

(
δΓ
2

)
+ |Y| ln

(
log2(log2(N))

+ κ1

√
|Y|+ log2(κ2 |Y|) + 2

))
(26)

where κ1 = 2
√

24
(
1 +
√

2
)

and κ2 = 24.

As a corollary, solving eq. 26 for δΓ and setting ξ =
D(w∗ ‖w) results in an improved Sanov’s Theorem (for large
N ).
Proof. Theorem V.1

Fig. 1. Level Set Bound Schematic

Fig. 1 depicts the strategy. We want to bound
P {ŵ 6∈ Γξ (w)}} using a plurality of MHBs such that
each halfspace is positioned against (tangent to) an ‘inner’
level-set Γ◦ , {ẃ:D(ẃ ‖w) = ξ⊥}. We define a ‘shingle’
as

Φk ,
{
ẃ 6∈ Λk (w∗k,w) :D(ẃ ‖w) ≤ ξ⊥ + ξ‖

}
(27)

To construct a suitable set of shingles {Φ} to cover all pmf s
ŵ 6∈ Γξ (w), we need to determine which pmf s ŵ each shingle
with extent ξ‖ can cover.

We will divide the probability space into hyper-boxes Ξ
called ‘cells.’ Each cell’s position and dimension is designed
such that the ‘extent’ between any two pmf s within the cell
is less than ξ‖. The ‘extent’ is based on the KL Divergence;
therefore, the cell dimensions (in an Euclidean sense) vary
with the position of the cell within the probability space.

Suppose we have constructed a set of suitable cells.

ΞB

ΞA

ΞE

ΞC′

ΞC

ΞD

Fig. 2. Cell Cover Illustration

Fig. 2 depicts several situations regarding a cell Ξ and the
level-set Γ◦: case I = all pmf s ŵ of the cell are inside Γ◦,
case II = some pmf s ŵ of the cell are on the surface of Γ◦,
and case III = all pmf s ŵ of the cell are outside Γ◦

The ‘green’ cell (ΞA) is case I, all the pmf s ŵ lie within
the level-set Γ◦, and we do not require a shingle to cover any
of these pmf s. The ‘red’ cell ΞD is also case I.

The ‘orange’ cell ΞB is case 2, we can choose any pmf
ŵ ‘point’ within ΞB that is on the level-set Γ◦ and place the
shingle’s halfspace on that point. The shingle will ’shade’ all
the pmf s in the cell outside the shingle. The ’blue’ cell ΞE is
also case 2.

The ‘purple’ cell ΞC is case III, where all the pmf s in this
cell are outside of the Γ◦ level-set. We create a ‘scaled’ cell
ΞC′ by linearly scaling the endpoints of the cell ΞC towards
the pmf w such that one single point of the scaled cell ΞC′

touches Γ◦. The shingle will have an extent to cover all the
pmf s in the ‘gray’ scaled or reduced cell ΞC′ . And all pmf s in
the original ΞC lie in the ‘shadow’ of the ΞC′ cell’s shingle.

We don’t have to actually construct these shingles as know-
ing that they exist is sufficient.

The next step is to construct a set of cells to cover the entire
probability space.

Given N and $, Algorithm 1 outputs a set of {νi}V−1
i=0

increasing cell boundary values (to apply to each coordinate
dimension).



Algorithm 1: Cell Positions/Boundaries
Input: N ∈ N, $ ∈ (0, 1)
Output: set of points {νi}Vi=0

1 nc ← dlog2(log2(N))e;
2 no ← d−log2($)e;
3 ν0 ← 0;
4 i← 1;
5 for j ∈ {0, 1, . . . , nc} do
6 νi ← 2−no−2nc−j

;
7 i← i+ 1;
8 end
9 for k ∈ {0, 1, . . . , no} do

10 νi ← 2−no+k;
11 i← i+ 1;
12 while νi−1 + 2−no+ k

2 < 2−no+k+1 do
13 νi ← 2−no+ k

2 ;
14 i← i+ 1;
15 end
16 end
17 νi ← 1;

Fig. 3 illustrates the output from Algorithm 1. After se-
lecting no such that 2−no < $, the first ‘For’ loop (line: 5)
creates nc = dlog2(log2(N))e cell boundary values. Define
the y-component chi-square extent as χ2 (i) , (νi+1−νi)2

νi
.

Fig. 3. Output from Algorithm 1

The nc ‘green’ cell ‘widths’ are doubly exponentially in-
creasing, and we have

χ2 (i) =

(
2−no−2nc−i−1 − 2−no−2nc−i

)2

2−no−2nc−i (28)

= 2−no

(
1− 2−2−nc+i−1

)2

≤ $ ∀i = 1, 2, . . . , nc

(29)
For the ‘purple’ cell boundary values, the algorithm’s sec-

ond ‘For’ loop (line: 9) creates no = d−log2($)e segments,
and each segment is further divided into cell boundary values
(via the While loop (line: 12)).

Segment k has widthk = 2−k+1−2−k for k = 1, 2, . . . , no,
and ‘purple’ cell boundaries within a segment are created with
constant increment values of inck =

√
2−k2−no (νj = 2−k is

the smallest cell boundary value within the segment). And
so for all νj ∈

[
2−k, 2−k+1

]
(i.e segment k), we have

χ2
y (j) =

((
νj + 2−no/22−k/2

)
− νj

)2
νj

(30)

≤
(
2−no/22−k/2

)2
2−k

= 2−no ≤ $. (31)

So all y-component chi-square extents are bounded by $.
To count the number of ‘purple’ cell boundary values, start

with a bound on the number of cell boundary values per
segment

nvalues/segment = dwidthj
incj

e ≤ d2
−k+1 − 2−k

2−no/22−j/2
e (32)

= d2no/2
1

2−j/2
e ≤ 2no/22−j/2 + 1. (33)

Summing over the no segments, we get

npurple =

no∑
k=1

(
2no/22−j/2 + 1

)
(34)

≤ no +

∞∑
j=1

2no/22−j/2 =
(

1 +
√

2
)

2no/2 + no.

(35)

So the total number of cell boundary points (component-
wise) is

ny = V − 1 ≤ nc +
(

1 +
√

2
)

2no/2 + no + 1 (36)

= dlog2(log2(N))e+
(

1 +
√

2
)

2d−log2(
√
$)e + d−log2($)e

(37)
We define a vector i ,

[
i0, i1, . . . , i|Y|−1

]
to in-

dex each cell and construct a set of cell indices I ,
{i: iy ∈ {0, 1, . . . , V − 2}}. Then we define each cell as
Ξi ,

{
ẃ: ẃy ∈

(
νiy , νiy+1

]}
∀y ∈ {0, 1, . . . , |Y| − 1} (38)

for all i ∈ I , and
{

Ξi

}
i∈I is the set of all cells. The total

number of cells (|Y| dimensions) is∣∣∣{Ξi

}
i∈I

∣∣∣ = (ny)
|Y|
. (39)

We assign one halfspace (i.e. shingle) per cell, so the log
number of halfspaces is bounded (after using dxe ≤ x+1) as

ln(|{Λ}|) ≤ |Y| ln
(

log2(log2(N))+

2
(

1 +
√

2
) 1√

$
− log2($) + 2

)
. (40)

As ‘chi-square divergence’ upper bounds ‘KL divergence’
[6], the worst case extent (KL divergence) across any cell Ξi,
is

ξ‖
(
Ξi

)
≤ χ2

(
Ξi

)
,
∑
y∈Y

(
νiy+1 − νiy

)2
νiy

1{iy 6=0} (41)

=
∑
y∈Y

χ2
y (iy)1{iy 6=0} ≤ $ |Y| ∀i ∈ I (42)

For cells with one or more components of their indices with



iy′ = 0, we know that ν0 = 0 and ν1 ≤ 1/N along that
y′-dimension, and so all possible ŵ pmf s within such a cell
have ŵy′ = 0. We construct a suitable halfspace and shingle
(and avoid dividing by zero in calculating χ2

(
Ξi

)
) by setting

wy = 0 whenever iy = 0 .
For a ‘scaled’ cell (see ΞC′ in Fig. 2), we shift the cell

boundary values as ν′iy = λνiy +(1− λ)wy for any λ ∈ [0, 1],
and then

χ2
(
Ξi,w, λ

)
=
∑
y∈Y

(
νiy+1λ− νiyλ

)2
νiyλ+ wy (1− λ)

(43)

≤
∑
y∈Y

(
νiy+1 − νiy

)2
λ2

νiyλ
= χ2

(
Ξi

)
λ, (44)

which shows that the extent of the scaled cell is not increased.
The cells are constructed without regard to the pmf w;

therefore, this sublevel-set bound is uniform over w. One
improvement (perhaps) could be to ‘tune’ Algorithm 1 (cus-
tomized the cell boundaries) for a specific pmf w.

Recall that the level-set Γξ (w) must encase the shingles
over all the cells, and the KL divergence from the pmf w to
the level-set Γξ (w) equals the KL divergence from w to the
‘inner’ level-set Γ◦ (ξ⊥) plus the extent of the shingle ξ‖.

As N increases ξ⊥ decreases, and the shingles (always
touching against Γ◦) move inward towards pmf w; however,
we also need the cell extents ξ‖ to decrease and shrink Γξ (w).

To accomplish this, we shall construct a ‘bounding box’
over the entire set of cells to squeeze (or shrink) every cell to-
wards the pmf w. The bounding box ‘rules-out’ ‘distant’ areas
of the probability space according to the following Chernoff-
Hoeffding relative-deviation-about-the-mean concentration in-
equality (see [7] Appendix A).

If X0, X1, . . . , XN are i.i.d. RVs with values in [0, 1], and
X ,

∑
x∈X

Xx, then for any ε > 0

P {X ≷ (1± ε)E{X}} < exp
(
−ε2 E{X}/3

)
. (45)

Define δ1 , exp(−εE{X}/3) and γ ,
√
− log(δ1)

2N . Select
one component of the pmf ŵ (i.e. ŵy) to be the RV X
and wy = E{X}, then after substituting into the ‘relative-
deviation’ concentration inequality, we have

P
{
ŵy ≤ max

(
wy − γ

√
6wy, 0

)}
≤ δ1 (46)

P
{
ŵy ≥ min

(
wy + γ

√
6wy, 1

)}
≤ δ1. (47)

We define a ‘trajectory’ with parameter γ ∈ [0, 1] that sets
the position of each cell boundary value within the bounding
box as

ν′ (γ,wy, iy) , νiy min
(
wy + γ

√
6wy, 1

)
+
(
1− νiy

)
max

(
wy − γ

√
6wy, 0

)
. (48)

To ensure that ŵ does not lie outside of any of the 2 |Y|
‘sides’ of the bounding box with probability greater than
δbb, we need for each concentration inequality to hold (be
valid) with probability δ1 = δbb

2|Y| . Solving the concentration

inequality (eq. 45), we get

γ =

√
ln(2 |Y|)− ln(δbb)

2N
. (49)

Our plan is to set the parameter $ of Algorithm 1 such that
the extents are within the rate γ2 for all γ ∈ (0, 1].

The y-component-wise chi-square extent of cell Ξi (along
the trajectory) is

χ2
y (γ,wy, iy) ,

(ν′ (γ,wy, iy)− ν′ (γ,wy, iy))
2

ν′ (γ,wy, iy)
. (50)

Define the function

g (w, γ) , max
iy∈{1,2,...,V−1}

χ2
y (γ,wy, iy)

γ2 (νiy−νiy )
2

νiy

. (51)

Fig. 4. Trajectory Convergence Bound

Fig. 4 shows a 3D plot of g (w, γ). Over all trajectories and
cells, we find (skipping the algebra) that

G0 = max
γ∈(0,1]
w∈(0,1]

g (w, γ) = 24.

Recall that the cells were constructed such that ξ‖
(
Ξi

)
≤

χ2
(
Ξi

)
≤ $ |Y| (see eq. 41); therefore, if we set $ = 1

G0|Y| ,
then we have

χ2
y (iy, wy, γ) ≤ 1

|Y|
γ2 ∀γ ∈ (0, 1] . (52)

So a bound on the extents of each shingle over all specified
trajectories (after inserting eq. 49) is

ξ‖ = χ2
(
Ξi, γ

)
≤ γ2 (53)

=
1

2N
(ln(2 |Y|)− ln(δbb)) = O

(
1

N
(log(|Y|))

)
, (54)

and inserting the selected $ value into eq. 40, we get the log
total number of halfspaces,

ln(|{Λ}|) ≤ |Y| ln
(

log2(log2(N)) + κ1

√
|Y|+ log2(κ2 |Y|) + 2

)
(55)

where κ1 = 2
√

24
(
1 +
√

2
)

and κ2 = 24.
The probability δΓ must be distributed to ensure that each

and every halfspace (shingle) is accounted for along with
the concentration inequalities that ‘size’ then bounding box.
Define parameter % ∈ [0, 1] and set δbb = (1− %) δΓ and



δhs = %δΓ . The δhs probability is divided evenly over each
and every halfspace, and we compute the required ‘size’ ξ⊥
of the level-set Γ◦ as

ξ⊥ =
1

N
(ln(|{Λ}|)− ln(δhs)) (56)

=
1

N

(
|Y| ln

(
log2(log2(N))

+ κ1

√
|Y|+ ln(2)κ2 |Y|+ 2

)
− ln(δhs)

)
(57)

where κ1 = 2
√

24
(
1 +
√

2
)
, κ2 = 24. Using log(x+ y) =

log((x/y + 1) y) ≤ x/y + log(y), we get

ξ⊥ ≤
1

N

(√
|Y|
κ1

log2(log2(N))+

|Y| ln
(
κ1

√
|Y|+ log2(κ2 |Y|) + 2

)
− ln(δhs)

)
= O

(
1

N

(√
|Y| log(log(N)) + |Y| log(|Y|)

))
, (58)

which proves that ξ⊥ is within the O(log(log(N))/N) cover-
gence rate.

Finally, we set ϑ = 1/2 and sum ξ⊥ and ξ‖ to determine the
overall sublevel-set Γξ (w) such that P {ŵ 6∈ Γξ (w) ≤ δΓ },
with ξ = ξ‖ + ξ⊥, i.e.

ξ =
1

N

(
1

2
ln(2 |Y|)− 3

2
ln

(
δΓ
2

)
+ |Y| log

(
log2(log2(N)) + κ1

√
|Y|+ log2(κ2 |Y|) + 2

))
(59)

�

Fig. 5. Convergence Results

Fig. 5 shows an example of Thm. V.1 sublevel-set bound’s
convergence (for |Y| = 10 and δ = 0.01). The ‘Sanov’ curve
O(log(N + 1)/N) follows eq. 25. The ‘single halfspace’
curve is O(1/N) for reference. The ‘new bound’ curve (see
eq. 59) lies between a curve with O(log(log(N + 1))/N)

and O(log(log(log(N + 1)))/N), and this example demon-
strates the new bound’s convergence rate as better than
O(log(log(N + 1))/N).

VI. CONCLUSIONS

In summary, we improved the PAC sublevel-set bound’s
convergence rate (for discrete RVs) from O(log(N)/N) to
O(log(log(N))/N) (for large N ). Further, we developed a
transparent methodology for leveraging a plurality of halfs-
paces to construct bounds (including the sublevel-set bound).
For some practical scenarios or applications, we expect that the
number and positions of the halfspaces can be further tuned
to tighten the overall bound.

Several improvements are likely possible. For example:
(1) in eq. 45 (in favor of simplification), we did not take
advantage of an asymmetric concentration that is tighter, (2)
the algorithm for computing cell boundary values is sub-
optimal because we focused on providing a ‘simple’ analytical
function to count the number of cells, (3) one may be able to
drop |Y| to |Y| − 1 using arguments in [4], and (4) a more
efficient algorithm is likely feasible to further trim the number
of required halfspace bounds (rather than place a bound at
every cell). While these improvements may tighter the bounds,
we believe that the the convergence rate (as N increases) will
match the same ‘big-Oh’ order as the bounds provided here.

Finally, examining eq. 58, we see that many cells are
required to cover the entire |Y|-dimensional probability space
(to cover all ‘directions’ that ŵ could falls relative to the
generator pmf w); however, if for a specific scenario the
number of cells (and halfspaces and/or shingles) could be
greatly reduced if one is only interested in whether ŵ falls
within a convex subspace of the probability space.
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