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Abstract—In this paper, we present results of processing
Dynamic Vision Sensor (DVS) recordings of visual patterns with a
retinal model based on foveal-pit inspired Difference of Gaussian
(DoG) filters. A DVS sensor was stimulated with varying number
of vertical white and black bars of different spatial frequencies
moving horizontally at a constant velocity. The output spikes
generated by the DVS sensor were applied as input to a set of
DoG filters inspired by the receptive field structure of the primate
visual pathway. In particular, these filters mimic the receptive
fields of the midget and parasol ganglion cells (spiking neurons
of the retina) that sub-serve the photo-receptors of the foveal-
pit. The features extracted with the foveal-pit model are used
for further classification using a spiking convolutional neural
network trained with a backpropagation variant adapted for
spiking neural networks.

Index Terms—dynamic vision sensor, neural filtering, spiking
neural network, classification, difference of gaussian, convolution,
foveal-pit

I. INTRODUCTION

Recent advances in deep learning [1], [2] have led to state-
of-the-art performance for varied classification tasks in natural
language processing, computer vision and speech recognition.
Traditional Artificial Neural Networks (ANN) use idealized
computing units which have a differentiable, non-linear acti-
vation function allowing stacking of such neurons in multiple
trainable layers. The existence of derivatives makes it possible
to carry out large scale training of these architectures with
gradient based optimization methods [3] using high computing
resources like Graphic Processing Units (GPU). However, this
prevents the use of such deep learning models for essential
real-life applications like mobile devices and autonomous
systems that have limited compute power.

Spiking Neural Networks (SNN) have been proposed as
an energy-efficient alternative to ANNs as they simulate the
event-based information processing of the brain [4]. These
bio-inspired SNNs follow an asynchronous method of event

processing using spiking neurons. The internal state of a
spiking neuron is updated when it receives an action potential
and consequently an output spike is fired when the membrane
voltage crosses a pre-defined threshold. Further, improvements
in neuromorphic engineering allow the implementation of
SNNs on neuromorphic hardware platforms [5] that lead to a
much higher efficiency in terms of power and speed compared
to conventional GPU based computing systems.

Although SNNs are considered as the third generation of
neural networks holding the potential for sparse and low-power
computation, their classification performance is considerably
lower than those of ANNs. This can be attributed to the fact
that gradient optimization techniques like the backpropagation
algorithm can’t be implemented in SNNs due to the discrete
nature of spiking neurons. A common technique for training
SNN models is the Hebbian learning inspired Spike Timing
Dependent Plasticity (STDP) that is used in several state-of-
the-art approaches [6], [7]. Other works like [8], [9] have
adapted the gradient descent algorithm for SNNs using a
differentiable approximation of spiking neurons. Our approach
also employs a similar modified backpropagation algorithm
proposed by Hunsberger et al. [10] that is implemented in the
Nengo-DL library [11].

As shown by Camunas-Mesa et al. [12], the efficiency
gain of SNNs from event-based processing can be further
improved through the use of inputs from event-based sensors
like a neuromorphic Dynamic Vision Sensor (DVS) [13].
Event driven sensors represent the information dynamically
by asynchronously transmitting the address event of each
pixel and hence avoid processing redundant data. However,
the classification accuracy drops drastically when using real
sensory data from a physical spiking silicon retina, since the
spike events are no longer Poissonian [14].

In our previous work [15], we had demonstrated the effect of
foveal-pit inspired filtering for synthetically generated datasets
like MNIST [3] and Caltech [16]. In this work, we present the
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Fig. 1. The two-stage architecture of the proposed DVS based spiking convolutional neural network. In the first stage, the DVS is stimulated with a pattern
of vertical white and black bars and the generated spike responses are processed using foveal-pit inspired DoG filters. The second stage is composed of the
convolutional and pooling layers which are used to classify the features extracted from the first stage.

results of applying similar neural filtering to data generated
by the DVS. In our proposed model, we process DVS outputs
using bio-inspired filters that simulate receptive fields of the
midget and parasol ganglion cells of the primate retina. The
DVS is stimulated with vertical black and white bars having
a constant displacement of 2 pixels from frame to frame. The
foveal-pit informed Difference of Gaussian (DoG) filters are
applied to the DVS recordings in order to capture the most
perceptually important information from the input data. The
use of DoG functions to model retinal filters was originally
proposed by Rullen et al. [17] and the receptive fields of the
foveal-pit are implemented as in Bhattacharya et al. [18].

The processed features are then used to perform the clas-
sification using a Spiking Convolutional Neural Network
(SCNN). The SCNN architecture is inspired by two previous
works viz. Diehl et al. [7] and Kheradpisheh et al. [6], while
the model is implemented as in Gupta et al. [15]. Each
input is presented to the network for a total duration of 60
timesteps and the predictions are assigned based on the volt-
ages measured from the output neurons. The empirical results
demonstrate that the application of neural filtering to DVS
recordings leads to an improvement of 35% in classification
accuracy compared to the unfiltered DVS spike responses. Out
of the filtered scenarios, the highest performance of 100% is
achieved using the off-center parasol ganglion cells.

The rest of the paper is organized as follows: Section II
describes the architecture of the proposed model including
the response generation and filtering, Section III provides
the results of the experiments and Section IV contains the
conclusion and future directions.

II. METHODOLOGY

The overall architecture of our model consists of two
main stages: the first stage is made up of the DVS response
generation and neural filtering of output spikes; the second
stage consists of performing classification using the SCNN.
The proposed model is shown in Fig. 1 and each of the
individual stages are covered in detail in the following sub-
sections.

A. Dynamic Vision Sensor Responses

We have used a 128 × 128 sized neuromorphic DVS
developed by Serrano-Gotarredona et al. [13] to capture non-
synthetic visual data. Each pixel of the DVS processes the
input continuously and emits a spike based on the variation in
the illumination impinging upon it [19]. A sample illustration
is provided in Fig. 2 using a sinusoidal input stimulus having
a frequency of 10Hz. The first row depicts the pixel’s illumi-
nation over time whereas the remaining two rows capture the
emission of spikes over the same duration corresponding to
changes in illumination. An increase in illumination leads to
a positive spike whereas a decrease in illumination leads to a
negative spike as seen in the last row of Fig. 2.

Fig. 2. Illustration of the DVS spike response generated using a sinusoidal
input stimulus. The first row represents the pixel’s illumination over time.
The second row depicts the positive spikes whereas the last row represents
the negative spikes corresponding to a decrease in illumination [19].

For our experiments, the DVS was placed in front of
a monitor displaying a pattern of equally wide black and
white vertical bars as shown in Fig. 3. The bars were moved
horizontally across the screen such that a displacement of 2
pixels is applied from frame to frame. The number of bars
were varied from 2, 4, 8, 16, 32, 64 to 128 and these K = 7
categories correspond to the final labels for our multiclass
classification problem. The events generated by the DVS were
captured in the Address Event Representation (AER) format
using the jAER software [20].



Fig. 3. The DVS setup to record spike responses when presented with a
simple pattern moving across a computer screen as visual stimulus.

B. Retina-inspired filtering

The DVS recordings generated from the first stage of our
model are passed to a set of neural filters simulating the
primate visual system. As proposed by Kheradpisheh et al. [6],
we have used DoG functions to implement these biologically
inspired filters sub-serving the retinal foveal pit. The foveal pit
is a circular region of 200 µm diameter that lies at the center
of the foveola. This region also has the highest visual acuity
in the primate retina and is most accessible to incoming light.
The fovea is sub-served by a ganglion cell layer composed of
midget and parasol cells. The retinal ganglion cells are the only
spiking neurons of the primate visual system and their axons
transmit the received information from the retina to other parts
of the brain.

Algorithm 1: Algorithm for filtering the DVS spike
response using foveal-pit inspired DoG functions.

1: kernel = dog func(mat dim, cent dev, circ shift)
2: [ma, na] = size(input)
3: [mb, nb] = size(kernel)
4: filt out = zeros(ma, na)
5: r1 = ceil(mb/2)
6: s1 = ceil(nb/2)
7: for i = 1 to i = ma do
8: for j =1 to j = na do
9: i1 = max(0, i-r1);

10: for r = max(1, r1-i+1) to r = mb do
11: i1 = i1 + 1
12: j1 = max(0, j-s1)
13: for s = max(1, s1-j+1) to s = nb do
14: j1 = j1 + 1
15: filt out(i, j) += kernel(r, s) * input(i1, j1)
16: end for
17: end for
18: end for
19: end for
20: return filt out

The midget and parasol ganglion cells have two types
of centre surround receptive fields — on-centre-off-surround

and off-centre-on-surround. We have modelled these receptive
fields using DoG functions as specified in Bhattacharya et
al. [18]. The off-center midget cells have a matrix size of
5 × 5 with standard deviation of 0.8 whereas the on-center
midget cells are of size 11×11 with standard deviation of 1.04.
Similarly, the off-center parasol cells have a size of 61 × 61
with a standard deviation of 8 while the on-center parasol cells
are of size 243×243 with a standard deviation of 10.4. These
DoG functions are then applied to the DVS spike responses
using Algorithm 1.

C. Convolutional Network Architecture

The asynchronous DVS recordings generated from the pre-
vious stage are split into individual frames for training our
frame-based classifier composed of convolutional layers. This
modified dataset is created following the procedure of Stro-
matias et al. [21] to produce an analog vector representation.
The SCNN architecture used in our work consists of three
convolutional and pooling layers which are made up of Leaky
Integrate and Fire (LIF) neurons.

TABLE I
DIMENSIONS OF THE SCNN LAYERS.

Layer No. of filters Input size Kernel size
Conv1 8 (128, 128) 3
Pool1 - (128, 128) 2
Conv2 16 (64, 64) 3
Pool2 - (64, 64) 2
Conv3 32 (32, 32) 3
Pool3 - (32, 32) 2
Flatten - (16, 16) -
Dense - (1, 8192) -
Outputs - (1, 7) -

Traditional deep learning architectures use sigmoid neurons
which are differentiable non-linearities, whereas the spiking
neurons used in SCNNs are non-differentiable. Hence, we use
a differentiable approximation of the spiking neurons during
training and the actual spiking neurons during inference as
proposed by Hunsberger et al. [10]. Since we use a rate-
based approximation during training, the model is run only
for a single timestep whereas during testing with the spiking
neurons, the model is run for 60 timesteps to collect the
cumulative spike output over time.

The convolution is carried out on the 128 × 128 input
arrays using filters of size 3 × 3. The first, second and third
convolutional layers of the SCNN are made up of 23, 24 and 25

filters respectively, followed by a pooling operation after each
convolution. The synaptic connections between the neurons
of these layers are modelled as the trainable weights of the
network which are optimized by minimizing the loss function
of the overall SCNN. The exact dimensions of the individual
layers are provided in Table I.

D. Training and Inference

For our multiclass classification problem with K = 7
categories, we convert the outputs of the last pooling layer
into a 1-D vector using a flatten operation. This is followed



by a dense layer with all-to-all connectivity having K neurons
which generates a K × 1 output vector. A softmax classifier
is used to transform these output values into a set of K
probabilities:

Y(X,W ) =
ewixi

K
j=1 e

wjxj

∀i = 1, · · · , K (1)

where xi ∈ X and wi ∈ W are the inputs and weights of the
dense layer respectively, and Y is the prediction probabilities
that sum to 1. The Negative Log Likelihood (NLL) loss for
the overall network is computed using the one-hot encoded
output labels L and the softmaxed probabilities Y with NLL
defined as:

O(X,W ) = − 1

M

M∑

i

K∑

j

Fi(j) ∗ log(Y(X,W )) (2)

where M is the mini-batch size, Fi(j) = 1 when j = Li

and zero otherwise. The SCNN is trained end-to-end using
a spiking approximation of the backpropogation algorithm
adapted for SNNs. This is done by minimizing the NLL loss
using the procedure described in Gupta et al. [15] with a
duration of 3 epochs and a mini-batch size of 20.

For the inference stage, we pass the input images from
the testing corpora and measure the voltages (mV) of the
output layer neurons. These values are generated using the
probe function of the Nengo-DL library and represent the pro-
gressively increasing membrane potentials. Thus, the neuron
having the highest voltage over a 60 ms simulation time period
is assigned as the predicted class for that epoch.

III. EXPERIMENTAL METHODS AND RESULTS

The filtered spikes responses from the 128×128 sized DVS
sensor was split into individual frames for each recording to be
passed as input to the subsequent convolutional network. This
resulted in a total of 3552 images for the unfiltered scenario
and a collection of 3503 images for the filtered recordings. In
each case, the images were then partitioned in the ratio of 9:1
to create the corresponding training and testing corpora.

Generation of the DVS spikes responses along with the
filtering was implemented entirely in Matlab, while the SCNN
and its various layers were coded in Python using the Nengo-
DL library [11]. The generated .mat files of the dataset were
loaded into the Python network using the Scipy library [22]
and the experiments were carried out on the GPU accessed
via Google Colaboratory [23].

A. Quantitative Effects of Filtering

To assess the effects of incorporating the neural filtering on
DVS recordings, we ran two experiments with the SCNN for a
total duration of 60 timesteps. The empirical results are sum-
marized in Table II. For the first scenario of using unfiltered
DVS frames, the model achieves an accuracy of 65% which
is significantly lower than the values in the remaining rows
that correspond to the filtered DVS inputs. This demonstrates
that introducing the foveal-pit inspired neural filtering into our
retinal model leads to a considerable improvement of 35%

even for simplistic visual patterns such as those in our dataset.

TABLE II
ACCURACIES (%) FOR THE FRAME-BASED DVS INPUT

Scenario Cell - Type CircShift Accuracy
Unfiltered - - 65.0 %

off-center midget 77.5 %
Filtered on-center midget 0 85.0 %

off-center parasol 92.5 %
on-center parasol 87.5 %
off-center midget 77.5 %

Filtered on-center midget 1 85.0 %
off-center parasol 100.0 %
on-center parasol 85.0 %

Amongst the filtered outputs, the parasol ganglion cells have
a comparatively higher increase in accuracy compared to the
midget cells. Since the parasol cells have larger dimensions
and capture the overall background information, they lead to
a significant improvement in classification of distinct patterns
without intricate details. Thus, the parasol cells lead to a larger
performance gain achieving a highest accuracy in the shifted
case, as our dataset is composed of only vertical black and
white bars. On the other hand, midget cells have smaller
dimensions which allows them to capture only the finer details
of an image and hence they contribute lesser to the overall
increase in classification accuracy.

From Table II, we can also observe that the variations in
accuracy for filtering with different ganglion cell types is
almost comparable for both the cases of with and without
any circular-shift; circular-shift refers to the case where the
DoG filters are circular shifted to ‘wrap’ on the raster at all
four edges. This reduces artifacts due to edges. The alternative
scenario is zero padding at all four edges. The circular-shift
value in the Table II is set to 1 indicating all cases where
filtering was performed using circular shift at edges, and is
set to 0 otherwise.

B. Qualitative Effects of Filtering

For analysing the qualitative effects of neural filtering, we
generated raster plots using the analog vector representation
of DVS responses as shown in Fig. 4. The neuron numbers
range from a value of 0 to 16384 as they represent the pixels of
the 128×128 sized electronic retina used in our experiments.
The blue markers depict a positive event corresponding to an
increase in illumination as the moving edges go from black to
white. On the contrary, the red markers represent a negative
event and indicate a decrease in illumination as the edges go
from white to black.

Figure 4(a) illustrates the unfiltered scenario which has
the least distinction between positive and negative events of
the input stimulus. This lack of differentiation between black
and white bars of the visual pattern also leads to a drop in
the classification accuracy which was previously observed in
Table II. Further, in the filtered raster plots of Fig. 4, we note
that all the ganglion cell filters capture edges more effectively
compared to the unfiltered case as there is a clear distinction



in the positive and negative events of the filtered raster plots.
This improved distinction also leads to a higher classification
performance as seen in Section III-A.

Amongst the outputs of the filtered DVS responses, Fig. 4(b)
and Fig. 4(c) represent the cases having a circular-shift value
of 0 while Fig. 4(d) and Fig. 4(e) correspond to a circular-
shift value of 1. The variation in filtered responses are almost
similar for these two cases as seen in Table II. However, the
result obtained using the unshifted parasol cell in Fig. 4(c)
has lesser clarity between the positive and negative events and
hence contains less distinguishable edges than in Fig. 4(e)
using the circular-shifted filter. Thus, the best classification
accuracy of 100% in Section III-A was achieved using the
circular-shifted parasol filter as it captures the changes in
illumination more effectively.

Additionally, we observe that the plots generated using
midget ganglion cells leads to a noisier qualitative output than
those using the parasol ganglion cells. This is because the
midget cells have smaller dimensions and are able to pick up
only the finer details of an image. But since the simplistic vi-
sual patterns used in our experiments lack any intricate details,
the midget cells contribute lesser to the overall improvement
in the classification performance. Thus, the highest accuracies
in Table II are obtained using the parasol cells as they capture
the larger and more significant information contained in the
input data.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel method for process-
ing the DVS spike responses of a visual pattern with foveal-pit
inspired DoG filters that simulate the primate retinal system.
The pattern was composed of varying number of vertical white
and black bars of different spatial frequencies moving at a
fixed velocity. The outputs from the sensor are applied as
input to the bio-inspired neural filters that model the receptive
field structure of midget and parasol ganglion cells of the
foveal-pit. These processed features are passed as input to
our spiking convolutional neural network architecture which
classifies the frame-based version of the filtered responses
into seven corresponding categories. The SCNN is composed
of convolutional and pooling layers and is trained with a
modified backpropogation algorithm using a differentiable
approximation of spiking neurons [10].

The proposed model demonstrates the effect of applying
neural filtering to real DVS data generated from a neuromor-
phic vision sensor. This builds upon our previous work [15]
that depicted the results of foveal-pit inspired filtering for syn-
thetically generated datasets like MNIST [3] and Caltech [16].
Our model achieves a promising performance of 92.5% using
the unshifted off-center parasol ganglion cell and an accuracy
of 100% in the circular-shifted scenario, which is an improve-
ment of 35% over the classification using unfiltered DVS
responses. The empirical results indicate the importance of
the foveal-pit inspired neural filtering in redundancy reduction
of the DVS inputs and in discarding irrelevant background
information.

(a) Unfiltered scenario

(b) Filtered: Unshifted midget

(c) Filtered: Unshifted parasol

(d) Filtered: Circular-shifted midget

(e) Filtered: Circular-shifted parasol

Fig. 4. Raster plot of the (a) unfiltered DVS spike response and filtered DVS
response using the off-center (b) unshifted midget cell (c) unshifted parasol
cell (d) circular-shifted midget cell (e) circular-shifted parasol cell.



For our proposed network, the asynchronous DVS record-
ings generated from the first stage of the model were converted
to an analog vector representation for training the frame-based
classifier composed of convolution layers. As future work, we
plan to adapt our spiking convolutional network architecture
to directly process event-based data and evaluate the effects
of the bio-inspired neural filtering on continuous outputs of
a neuromorphic DVS. Also, the dataset used in this work
is limited in terms of variation in the inputs as well as the
size of the training and testing corpora. Hence, we would like
to further verify the effect of the DoG filters on DVS spike
responses of larger and more complex datasets.
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