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Abstract—The combination of deep neural networks and
Differential Privacy has been of increasing interest in recent
years, as it offers important data protection guarantees to
the individuals of the training datasets used. However, using
Differential Privacy in the training of neural networks comes
with a set of shortcomings, like a decrease in validation accuracy
and a significant increase in the use of resources and time
in training. In this paper, we examine super-convergence as a
way of greatly increasing training speed of differentially private
neural networks, addressing the shortcoming of high training
time and resource use. Super-convergence allows for acceleration
in network training using very high learning rates, and has been
shown to achieve models with high utility in orders of magnitude
less training iterations than conventional ways. Experiments in
this paper show that this order-of-magnitude speedup can also be
seen when combining it with Differential Privacy, allowing for
higher validation accuracies in much fewer training iterations
compared to non-private, non-super convergent baseline models.
Furthermore, super-convergence is shown to improve the privacy
guarantees of private models.

Index Terms—Machine Learning, Differential Privacy, Rényi
Differential Privacy, Deep Learning, Super-convergence

I. INTRODUCTION

Privacy-preserving data analysis is becoming increasingly
important as technologies for curating and collecting data
grow in their capacities at an ever increasing rate. To preserve
privacy of individuals in a dataset, Differential Privacy (DP),
a mathematically rigorous definition of privacy presented by
Dwork et al. [3|] has in recent years become the standard in
addressing privacy in data analysis and especially machine
learning.

However, while DP offers various, obvious benefits to ma-
chine learning in terms of privacy guarantees to the individuals
of a dataset, it also comes with a set of shortcomings. These
include that the training process consumes many more compu-
tational resources and takes a much longer time, furthermore
limiting the possible model architectures. Additionally, the
accuracy and therefore utility of differentially private models
is usually lower than that of non-private counterparts. So
as of now when training neural networks, a deep learning
practitioner would have to choose between a fast training,
better performing model with a more richer selection of
possible architectures which does not deliver any privacy
guarantees and one that offers privacy guarantees but performs
significantly worse in the other previously mentioned areas.
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Usually, this difference in performance is so large, that non-
private models have to be chosen purely for practical reasons.
A goal in the research of differentially private training of
neural networks is therefore close this gap between private
and non-private training.

Consequently, with this work we present a way that allows
for much faster training of differentially private deep learning
models, effectively eliminating the mentioned shortcomings to
a large degree. This is achieved through super-convergence, a
novel approach to learning rate scheduling, first developed by
Smith et al. [6]]. Super-convergence has been shown to allow
the training of neural networks orders of magnitude faster than
other common practices.

A. Context and related research project

Since much of research is based on collecting data from
a population, the recent increase in privacy concerns and
resulting governmental regulations can hinder research in its
effectiveness and speed. Differential Privacy addresses these
issues by promising to solve problems regarding privacy for
both the data contributor and the data consumer. For the data
contributor, i.e. individuals, it offers a strong guarantee that
their privacy is preserved and for the data consumer, i.e.
scientists conducting research, it offers a tool for easier access
to data, while eliminating concerns about leaking information
of individuals.

One of the many scientific efforts using Differential Privacy
for the aforementioned benefits is the Artificial Intelligence in
Rehabilitation (AIR) project [[1]. The project aims to develop
and apply artificial intelligence approaches to support citizens
in physical rehabilitation in Danish municipalities. In the AIR
project, models are trained on citizen specific and sensitive
data under EU’s General Data Protection Regulation (GDPR)
and must be kept private at all times. The work in this paper
has been conducted in connection to the AIR project, however
without specific data from the project being included in the

paper.
II. DIFFERENTIAL PRIVACY IN MACHINE LEARNING
A. Differential Privacy

The definition of Differential Privacy provides a way of
determining an upper-bound for the loss of privacy of a dataset
given some statistical query or function over the dataset. This



upper-bound is often referenced to as the privacy guarantee and
in its original form is quantified by one value, ¢, referenced
as the privacy budget [3].

Definition II.1 (e-Differential Privacy [2]). A randomized
algorithm M is e-differentially private if for all datasets Dy
and D differing on at most one element, and all possible
solutions, .S, of M applied on D; or Dy

PrIM(Dy) € 8] < ¢ - PriM(Ds) € S|

From the definition, it is apparent that for any adjacent
datasets, the difference in probability that the result of an
algorithm M has been reached with either one of the datasets
is bounded by e®. It follows that lower values of epsilon yield
better privacy guarantees, as for ¢ = 0, the probabilities are
equal.

Another definition given as direct consequence of defini-
tion is that of privacy loss.

Definition II.2 (Privacy Loss [3]]).

T <P7”[M(D1) = 5])
PriM(Ds) =¢]

The Privacy Loss incurred by observing an event £ can
be positive or negative, depending on whether the event is
more likely under = or under y. It can furthermore be shown,
that e-Differential Privacy ensures that for all adjacent x and
y, the absolute value of the privacy loss is bounded by the
privacy budget € [3].
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1) Influencing the privacy guarantee: A way of influencing
the privacy guarantee of a statistical query is by the addition
of randomly sampled noise (Laplacian, Gaussian, etc.). This
noise is parameterized by the uniqueness of the data in the
dataset with the query applied on it. Worded differently, for
some queries one might not need to add any noise, since the
query might not disclose any information about a specific
observation or individual in the dataset. For other queries on
the other hand, the L1-sensitivity of the query on the dataset
would need to be determined to calculate the additive noise
and subsequently also the ¢ [3]].

2) Composition: A property of Differential Privacy that be-
comes especially important in the context of machine learning
is composition. Composition in its most basic form, i.e. the
basic composition theorem [J3]], is the property that when two
algorithms with privacy budgets ¢; and ey are applied on a
dataset, the total privacy guarantee amounts to the summation
of 1 and &9 [3] [8].

B. Relaxed Definitions of Differential Privacy

Composition becomes more important, the more
differentially private queries are to be performed on a
dataset, since the privacy budget spent increases with every
query. In the case of machine learning, where it is not
uncommon that an input dataset is queried up to millions of
times in training, the privacy budget can increase drastically,

which in turn hurts the privacy guarantees that can be given.
Therefore, possible improvements to composition are very
valuable and have been a big focus for research in recent
years, as they possibly allow for a better selection of noise
such that one can increase the utility of a model while
spending less privacy budget. Such improved composition
theorems are usually based on different and relaxed definitions
of DP itself.

1) (e,6)-Differential Privacy: The first important relaxation
of definition was presented by Dwork [3]]. In it, a newly
introduced delta term encapsulates a density of probability, that
the bound given by ¢ does not hold. The extended definition
can be seen in Definition

Definition I1.3 ((¢, §)-Differential Privacy [3]]). A randomized
algorithm M is (g, §)-differentially private if for all adjacent
datasets Dy and D5 and all S C Range(M)

PriM(D,y) € S] < € - PriM(D2) € S|+

This relaxation was able to form the basis for a new
composition theorem, which allowed for better utility of sets
of differentially private queries on data, called the Advanced
Composition Theorem or Advanced Composition (AC). AC
works by evaluating the linear composition of expected
privacy loss of algorithms, which is then converted to a
cumulative budget ¢ with a high probability bound. Using
this advanced composition theorem, the composed privacy
budget € could be reduced significantly at the cost of a slight
increase of delta [8]].

2) Concentrated Differential Privacy and Rényi Differential
Privacy: Since this first relaxation of Differential Privacy,
much work has gone into finding reformulations and relax-
ations of the (e,9)-DP definition to improve AC, many of
which are variants of another relaxation called Concentrated
Differential Privacy (CDP) [5]. These variations to the defini-
tion achieve tighter guarantees, by virtue of their analysis of
cumulative privacy loss which takes into account that the pri-
vacy loss random variable follows a sub-Gaussian distribution
and is therefore strictly centered around an expected value.
Multiple compositions of differentially private mechanisms
therefore result in the aggregation of corresponding mean and
variance values of the individual sub-Gaussian distributions,
which in turn can be converted to a cumulative privacy budget
similar to AC. All in all, this reduces the noise that must be
added to the individual mechanisms [5] [8]].

In CDP, the metric for measuring the difference between
sub-gaussian distributions is the sub-gaussian divergence. CDP
uses different measures than € and § to quantify privacy and
can not be mapped back to (¢, d)-DP. However, as presented
by Mironov in [4], exchanging sub-gaussian divergence in
the definition by Rényi Divergence yields another definition,
which supports this mapping, known as Rényi Differential
Privacy (RDP). RDP defines Differential Privacy in terms of
bounding the divergence of two Distributions of a Mechanism



M over two adjacent datasets, using Rényi Divergence of a
specific order as the measure of difference. Thus, the definition
is as follows

Definition I1.4 (Rényi Differential Privacy [4]). A randomized
algorithm M is said to have ¢-Rényi Differential Privacy of
order & ((«v, €)-RDP), if for any adjacent datasets D; and Do
it holds that

Do (M(D1)|[[M(D2)) < e

As presented by Jayaraman et al. 2019 [8|], when comparing
(g,9)-DP and AC with three state of the art variants of CDP,
namely CDP, zero-CDP and RDP, computing privacy loss
using RDP provides the best performance, therefore allowing
the training of more accurate models with the least amount
of privacy spent when compared to the other variants. In their
work, they show RDP-based methods to require an order of
magnitude less privacy budget ¢ to the next best method (zero-
CDP) to achieve the same model utility. For this reason, for
the remainder of this paper, RDP will serve as the primary
definition of choice to analyze the composition of differentially
private functions applied on training datasets.

C. Differentially private training of machine learning models

Making machine learning training differentially private re-
quires adding noise at some point in the process. The most
prominent way of adding noise in training of deep neural
networks is Gradient Perturbation. This method adds noise to
the gradients of the loss function at each time the gradients are
passed backwards through the network to update the network
parameters during training. Additionally, the gradients are
clipped in L2-norm, to provide a sensitivity bound on the
gradients [9].

When adding noise in the training algorithm itself, a crucial
component of training becomes the tracking of the total
amount of noise added, i.e. privacy budget spent, throughout
the process. Introduced by Abadi et al. [9] in 2016, one of the
most commonly used methods of tracking the spent privacy
for the training of a deep learning model is the moments
accountant. The moments accountant keeps track of the bound
on the moments of the privacy loss random variable, utilizing
that the privacy loss is itself dependent on the moments of the
randomly added perturbation noise.

The accountant computes the log moments of the privacy
loss random variable, which compose linearly, and uses these
moments together with the standard Markov inequality to
bound the tail probabilities of the privacy loss. In its original
form, this procedure was based on improvements to the strong
composition theorem, based on the already mentioned AC.
In its recent implementations that are incorporated in the
most popular Differential Privacy libraries for deep learning,
the moments accountant is used in combination with RDP-
composition to analyze the spent privacy budget [17] [16].
This is therefore also the method of choice for tracking the
privacy budget in this paper.

ITI. SHORTCOMINGS OF DIFFERENTIALLY PRIVATE
LEARNING

As mentioned, Differential Privacy comes with some draw-
backs when used in machine learning. This work focuses
specifically on the drawbacks of decreased model utility and
increased model training time.

A. Decreased model utility

One shortcoming of differentially private learning is de-
creased predictive performance. Differentially privately trained
models are in most cases inferior to the utility of their non-
differentially private counterparts.

When using the original moments accountant with gradient
perturbation, most machine learning models required very
large values for €. In previous approaches, e.g. the model
presented by Shokri Et al. [[10], the utility of the model was the
priority, with a disregard for the size of ¢. This yielded a model
that needed an € comparable to the number of parameters of
the deep neural network, in the order of hundreds of thousands,
at which point the size of the ¢ cripples any privacy guarantees
of the model.

There has been substantial developments in differential
private deep learning since then, leading to the most re-
cent version of the moments accountants based on RDP for
composition. These make it possible to reduce the total loss
in privacy over many iterations of training a deep neural
network, such that the upper-bounds on privacy i.e. the privacy
budget is much tighter, from hundreds of thousands, or even
millions down to e.g. 50 for a large multi-class classification
such as CIFAR-100 or less than 10 for a smaller multi-class
classification problem such as MNIST [_8]. However, it is still
the case that the utilities of differentially private models are
substantially worse than their non-private counterparts.

B. Increased training time

Gradient perturbation is currently the standard for training
differentially private deep neural networks and while this
method of training is able to yield much better privacy guar-
antees than other methods, it also comes with the drawback
that to obtain the best possible epsilon, gradients needs to be
perturbed on a single sample basis, i.e. training the deep neural
network with a batch size of 1. This dramatically increases
the training time by orders of magnitude, from minutes or
seconds to train a non-private model with a larger batch size
to hours and days for a private variant of the same model. It
also eliminates the use of GPUs in training, since they offer
no direct benefit over CPUs when training with such a small
batch size. A considerable amount of the work in the field
of private deep learning apply dimension reduction techniques
such as Principal Components Analysis (PCA) in combination
with smaller network architectures to combat these increased
training times [8] [9] [L1].

IV. ADDRESSING THE SHORTCOMINGS

Just like € is a composite of the privacy loss for each update
of the models parameters, one might consider the utility of the



model a composite of each update of the parameters. Given
that a lot of effort has been put into minimizing the total
composition of € across the training of these private models,
this work focuses on the task of maximizing the composite
utility of a privately trained model, while at the same time
minimizing the training time to reach this utility. This problem
can therefore be stated as a maximization problem of trying
to maximize model utility contingent on minimal training, and
it can be approached like a hyperparameter tuning problem.
Therefore, in this work it was decided to target learning rate
scheduling as the focus of the following experiments as a
means of accelerating model learning at training time. Learn-
ing rate as a hyperparameter is both independent from the
gradient perturbation and thus does not affect the composite
privacy loss and there have also been great advances in very
high learning rate scheduling research, enabling deep neural
networks to converge on a high utility solution orders of
magnitude faster than the classic low and static or low and
close to static learning rate - a phenomenon known as super-
convergence.

A. Super-Convergence

Super-convergence is a phenomenon discovered by Leslie
Smith et al. [6] in 2018, with which neural networks can be
trained one to several orders of magnitude faster than with
standard training methods.

This work presented several learning rate schedules, one of
which is the one cycle learning rate schedule. In this approach,
the learning rate is changed continuously throughout training,
the first and the last values being very small learning rates and
the middle values being very large learning rates.

While one might think that this would cause models to be
more prone to overfitting, the opposite is the case. The method
has been shown to work as a type of regularization, and has
been demonstrated to achieve competitive validation accuracy
scores on tasks like MNIST and ImageNet with a reduction
in the number of training iterations by 85% [6].

V. EXPERIMENTS AND RESULTS

This chapter shows the results of three experiments of using
super-convergence in differentially private training of neural
networks. The first experiment compares the utility, i.e. the
validation accuracies of the trained models as a function of the
number of training epochs, the second experiment compares
the utility of the models as a function of the privacy guarantees
€, and finally the third experiment shows insights in how the
privacy guarantees of the trained models develops as a function
of the number of training epochs.

A. Experimental Setup

Throughout the experiments, we evaluate differentially pri-
vate convolutional neural networks using gradient perturbation
for a non-convex learning problem. Per experiment, two CNN
models are compared, one of which uses a conventional
learning rate schedule of decreasing the learning rate by an
order of magnitude on validation loss plateau and the other

utilizing the lcycle learning rate policy proposed by Smith et
al. to achieve super-convergence [7].

The experiments were conducted on the MNIST dataset
for multi-class classification [[13]], consisting of 70000 28x28
images of handwritten digits. The images were split into a
training and validation set of 60000 and 10000 images re-
spectively. The experiments are implemented in Python using
the PyTorch deep learning library [14]. The models in all
experiments are convolutional neural networks (CNN) with a
total of five layers, consisting of two 2D convolutional layers,
one 2D Dropout layer and two fully connected linear layers.
The hyperparameters of the model, namely the learning rate,
and the number of epochs, were trained using the Bayesian
Optimization and Hyperband (BOHB) [12] as well as the de-
velopment tool Weights and Biases, to automate and supervise
the tuning process [[15].

When comparing differentially private models, the model
utility is represented by their validation accuracy. When
comparing differentially private models with a non-private
baseline model, it is represented as accuracy loss. Accuracy
loss normalizes the model’s validation accuracy with respect
to the non-private baseline (¢ = oo) as such

Accuracy of Private Model

Accuracy Loss =1 — -
Accuracy of Non-Private Model

Finally, the privacy guarantees for each of the models are
determined by the moments accountant method using RDP-
based composition. In this regard, two different implementa-
tions were used to demonstrate technology independence, the
first being the newly developed official PyTorch Differential
Privacy library Opacus, as well PyVacy, an open source project
which was the most used Differential Privacy library for
PyTorch before the release of Opacus [[17] [18].

B. Experiment 1 - Training resource use and model utility

The first experiment demonstrates the differences in
training resource usage and achieved utility between a
super-convergent DP model and a conventionally DP model.
Resource usage is in this case presented as the amount of
epochs i.e. training iterations used in the training process,
which encapsulates both computational resources and training
time spent.

The results can be seen in Figure |1|and show that the model
trained with super-convergence achieves a validation accuracy
of 92.7% in only 1 epoch, while the non-superconvergent
model reaches 90.5% in 25 training epochs.

This experiment demonstrates that that using super-
convergence on the differentially private CNN allows the
model to converge in a fraction of the epochs of the conven-
tional approach while yielding a higher validation accuracy.
As mentioned by [6] [7], the use of high learning rates
accomplishes regularization of the model, therefore adding to
the regularization by gradient perturbation, that the model is
exposed to to begin with. This results in a model that is on
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Fig. 2. Learning rates throughout the training process of Exp. 1

par and even better performing on the validation set, which is
visible in the improved accuracy.

The super-convergent model in this case was trained with a
Icycle policy using a maximum learning rate of 15.62, while
the non-superconvergent model used a learning of 0.05 at the
start, which decreased by three orders of magnitude throughout
the training process. The learning rate schedules are displayed
in Figure

C. Experiment 2 - Privacy guarantees and model utility

The second experiment evaluates the models utilities against
the privacy guarantees. Again, a CNN using the aforemen-
tioned plateau based learning rate schedule is compared to
a CNN using the lcycle learning rate super-convergence
approach. In this case, utility is measured as accuracy loss
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Fig. 3. Accuracy Loss as a function of privacy guarantees in Exp. 2

against a non-private baseline CNN of the same architecture,
which achieved an accuracy of 99.1%.

The privacy guarantee is parameterized by (g, 9)-
Differential Privacy, however § is held constant at 1075,
which is considered standard practice [3]] for differentially
private machine learning with a dataset of the given size
of MNIST. This leaves ¢ as the variable to quantify the
difference between the compared models.

The results can be seen in Figure [3] The super-convergent
model exhibits an accuracy loss of 6.3% with a privacy budget
of ¢ = 1.75 spent during training. The non-super-convergent
model shows an accuracy loss of 9.8% compared to the
baseline, with the spent privacy budget at € = 7.27.

None of the two differentially private CNN’s accomplished
as high a validation accuracy as the baseline, as can be seen
by none of the models achieving an accuracy loss of zero.
However, with accuracy loss in both cases being below 0.1,
the models obtain almost similar accuracies and around that
of the study Abadi et al. [9]. The major difference between
the models is the privacy guarantee expressed in epsilon, with
the model trained using super-convergence able to achieve a
lower accuracy loss while also having a more than four times
lower epsilon, yielding better privacy guarantees.

D. Experiment 3 - Privacy guarantees and training epochs

The previous two experiments demonstrated the utility
of the CNN models as a function of epochs and privacy
guarantees, respectively. The third and final experiment
examines the epsilon as a function of the number of training
epochs for two differentially private CNN models.

The results can be seen in Figure [Z_f} The two models, that
reached very similar, comparable validation accuracies with
93% and 92% for the super-convergent CNN and the regular
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CNN respectively, show privacy budget spent of € = 1.75 and
€ = 5.025 respectively.

The results show that in this case of two models with virtu-
ally same utility, the privacy guarantee of the superconvergent
model is about three times as strong after training. As is visible
in the plot, this is can be mostly attributed to the short training
duration, which is an order of magnitude lower in terms of the
amount of epochs.

VI. DISCUSSION

In summary, the experiments show strong results in regards
to using super-convergence to accelerate private training of
neural networks. They demonstrate that the use of a lcycle
learning rate policy with high maximum learning rates can
lead to models of the same or even higher utility, while taking
considerably less time to train and also offering better privacy
guarantees in the process.

One thing to note however is that, while the strength of
Differential Privacy is that it offers guarantees for the upper
bound of leaked private information, the utility of machine
learning models usually depends on finding a very specific
set of hyperparameters, which often requires many iterations
of hyperparameter tuning using sophisticated search methods.
Adding Differential Privacy to deep learning in turn even
increases the amount of hyperparameters that have to be
optimized for. So while the experiments covered in this paper
do show great promise for the use of super-convergence
in the private network training, it cannot be used to make
guarantees in terms of which training approach is the best,
but should merely be viewed as a suggestion to which parts
of the hyperparameter space to explore. Especially because the
theory of super-convergence is still in its early development
and not yet fully understood in the scientific community.

VII. CONCLUSION

In conclusion, the experimental results show that differen-
tially private models trained using super-convergence perform
just as well or better in terms of validation accuracy as the non-
super-converging variants. The super-convergent models take
more than an order of magnitude less time and computational
resources to train while consuming only a fraction of the
privacy budget. Therefore, the gap between non-private and
private neural networks in terms of validation accuracy, and
training resource use can be decreased significantly using this
method. This improves the usability of differentially private
models greatly and expands the possible model architectures
of differentially private models, all while providing both better
privacy guarantees and model utility.

While these experimental results are promising, the robust-
ness of this approach when applied to other learning problems,
e.g. regression or larger multi-class classification, has yet to
be demonstrated on differentially private models. We therefore
see these problems as candidates for future work on the topic.
However, super-convergence has been demonstrated to work
on regular models for these problems and we are therefore
optimistic in its applicability.
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