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Abstract—We explore the problem of deriving a posteriori
probabilities of being defective for the members of a population
in the non-adaptive group testing framework. Both noiseless and
noisy testing models are addressed. The technique, which relies
of a trellis representation of the test constraints, can be applied
efficiently to moderate-size populations. The complexity of the
approach is discussed and numerical results on the false positive
probability vs. false negative probability trade-off are presented.

I. INTRODUCTION

It is widely acknowledged that large-scale testing and con-
tact tracing play a fundamental role in the containment of se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
outbreaks [1]. The task is nevertheless rendered difficult by
limitations in terms of test analysis facilities and trained
personnel. Moreover, the cost associated with accurate tests,
along with the shortage of required chemical reagents, poses
severe challenges in the implementation of a mass testing
policy [2]. To address the problem, an emerging trend is to
use group testing techniques [3] as a means of reducing the
test analysis time, effort, and costs [4]. Recently, the use
of group testing has been advocated to enable mass testing
in the context of the on-going SARS-CoV-2 pandemic, with
experimental campaigns implemented in a few countries [4].

Several flavors of group testing have been developed over
the years (we point the interested reader to [5] for a through
survey). A first, fundamental distinction is between the so-
called adaptive and non-adaptive group testing. In adaptive
group testing, the tests are performed in sequence, with pools
that are created based on the outcomes of the previous tests.
Simple examples of adaptive group testing strategies involve
the use of binary search trees [6]. On the contrary, in non-
adaptive group testing all pools are a-priori set, and tests are
carried out in parallel. Both approaches have advantages and
shortcomings: adaptive strategies can identify the status of
individuals with fewer tests. Nevertheless, considering the time
required to carry out each test, a pure adaptive strategy may
require more time to determine the status for the each member
of the tested population. Non-adaptive schemes require typi-
cally more tests to succeed, but they tend to be faster since
tests can be performed in parallel. Importantly, non-adaptive
group testing algorithms often display a non-trivial trade-off
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between the false positive and false negative probabilities (i.e.,
between the false alarm and the miss-detection probabilities).
To combine the advantages of both techniques, while mitigat-
ing their limitations, it is sometimes preferable to implement
a hybrid approach, where a first screening is performed via
a non-adaptive testing step, followed by an adaptive (or even
individual) testing step for the population members that are
identified as potentially infected. The first step has the role to
prune the sample population, delivering to the second step
a small fraction of the original set of individuals for the
additional testing. Approaches of this kind, which date back to
the original work of Dorfman [3], enable remarkable savings
in the number of tests. Several on-going investigations on the
use of group testing for SARS-CoV-2 screening follow this
line [7], [8].

In this paper, we address the problem of efficient a posteriori
probability (APP) detection of defective elements in a non-
adaptive setting. Our work falls along the lines of [9]–[11],
where belief propagation was used to the detect defective
elements. In particular, we investigate the use of a trellis
description of the test matrix to enable the use of the forward-
backward algorithm [12]. The technique is reminiscent of the
trellis representation of linear block codes based on the parity-
check matrix [12], [13], and allows obtaining APP estimates
for each element of the population with a complexity that
grows exponentially in the number of tests (rather than in the
population size). The approach can be applied to small and
moderate size test matrices and it may be considered as a
building block for more sophisticated group testing strategies
[14], [15]. It is developed for both noiseless and noisy group
testing settings.

The paper is organized as follows. Section II provides the
main definitions and the notation used in the rest of the
manuscript. Section III presents the trellis construction. The
application of the forward-backward algorithm (derived in
Appendix A) is discussed in Section IV, along with some
numerical examples. Conclusions follow in Section V.

II. PRELIMINARIES

We consider a non-adaptive group testing problem where
m pooled tests are applied to a population of n elements.
The status of the population is described by the defectivity
vector x “ px1, x2, . . . , xnq where each element belongs to
t0, 1u. For the defectivity vector, we adopt an independent,
identically-distributed (i.i.d.) model where each element is
defective (i.e., it takes value 1) with probability δ, where δ is
referred to as the prevalence. We denote by s “ ps1, . . . , smq
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the syndrome vector, where si “ 0 if none of the elements
of x participating in the ith pool is defective while si “ 1
if at least one element participating in the pool is defective.
The tests are, therefore, non-quantitative. The allocation of
the population elements to the pools is described by an mˆn
binary test matrix A “ tai,`u, where ai,` “ 1 if and only if
the `th element of the population participates in the ith pool.
Compactly, we write

s :“ x_AT

where the _ operator between the vector x and the matrix AT

is defined to yield

si “
n
ł

`“1

px` ^ ai,`q .

Here, _ is the inclusive logical disjunction (“or”) and ^ is
the logical conjunction (“and”). We consider two models for
the tests. In a first (noiseless) model, the test vector t is equal
to the syndrome, t “ s, i.e., tests are error-free. In a second
model, we observe a noisy version of the syndrome, yielding a
test vector that is only statistically dependent on the syndrome
according to a generic distribution Qpt|sq. We further assume
the test vector to take values in t0, 1um. The random vectors
associated with x and t are indicated as X and T , respectively.
We denote the set of defectivity vectors compatible with a
syndrome s as

Xs :“
 

x|x_AT “ s
(

.

The decision taken on the status of the elements is x̂ (and X̂ is
the corresponding random vector). The false-alarm probability
is

PFA :“
1

n

n
ÿ

`“1

P

´

X̂` “ 1|X` “ 0
¯

and the miss-detection probability is

PMD :“
1

n

n
ÿ

`“1

P

´

X̂` “ 0|X` “ 1
¯

.

In the following, log is the natural logarithm, and wHpxq is
the Hamming weight of the vector x.

III. TRELLIS DIAGRAM CONSTRUCTION BASED ON THE
TEST MATRIX

In this section, we illustrate how the sets of defectivity
vectors Xs can be compactly represented through a trellis
diagram with n sections and at most 2m states per section. The
trellis construction follows the footsteps of the construction
introduced in [12], [13] to represent a linear block code based
on the code parity-check matrix.

We denote by S` the state at depth `, where the state can take
value in t0, 1, . . . , 2m ´ 1u. We further introduce the partial
syndrome vector at depth ` as s`. Observe that the syndrome
can be obtained as

s “
n
ł

`“1

`

x` ^ aT
`

˘

where a` is the `th column of the test matrix and the ^-
operation has to be intended as element-wise. Owing to the
associativity of the _ operator, we can obtain s “ sn
following the recursion

s` “ s`´1 _
`

x` ^ aT
`

˘

for ` “ 1, . . . , n, and where s0 :“ p0, 0, . . . , 0q. Follow-
ing this observation, we associate to each possible partial
syndrome s` the state at depth ` with index equal to the
decimal representation of the syndrome. Specifically, to a
syndrome s “ ps1, s2, . . . , smq we associate the state index
rssD “

řm
i“1 si2

i´1. Similarly, we retrieve the syndrome
associated with a state S as the binary expansion of the state
index through the operator rSsB, i.e., s “ rrssDsB. The trellis
construction proceeds as follow. At depth 0, the trellis admits
only state 0. At depth 1, two states rx1 ^ a1sD for x1 P t0, 1u
are allowed: it is easy to check that the first state is (again) state
0, and that the second state has index ra1sD. We then connect
state 0 at depth 0 to state 0 at depth 1 through a 0-labeled
edge (i.e., associated to x1 “ 0), and to state ra1sD through
a 1-labeled edge (i.e., associated to x1 “ 1). The construction
proceeds recursively: For each admitted state S`´1 at depth
` ´ 1, we draw an x`-labeled edge connecting to state S` if
and only if

S` “ rx` _ rS`´1sBsD .

The construction proceeds recursively until ` “ n. We refer to
the trellis obtained by following this procedure as the complete
trellis.

Example 1. Consider a setting where n “ 6 elements are
pooled according to the test matrix

A “

¨

˝

1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1

˛

‚.

The corresponding trellis diagram is depicted in Figure 1.

Note that all paths reaching the final state rssD correspond to
the defectivity vectors in Xs. Note also that the trellis diagram
may present parallel edges between two states. The trellis
diagram can be used to efficiently obtain the APP Ppx`|tq for
each element in x via the forward-backward algorithm [12],
as it will be illustrated in Section IV. Before proceeding, we
will highlight some features of the trellis representation that
are important in the noiseless group testing setting.

Remark 1. In a noiseless group testing setting (i.e., where
t “ s), upon observing the test vector t the trellis diagram
can be expurgated by removing all paths that do not terminate
at the state rtsD. This can be done without incurring in any
loss of information. The paths removal leads to an expurgated
trellis diagram with a (possibly) reduced number of states.
The paths contained in the new trellis correspond to defectivity
vectors compatible with the syndrome s, i.e., all vectors in Xs.
Following Example 1, Figure 2 reports the trellis associated
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Fig. 1. Complete trellis diagram for the test matrix described in Example 1.
Dashed lines are used to denote 0-labeled edges, whereas solid lines are used
for 1-labeled edges.
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Fig. 2. Expurgated trellis diagram for the test matrix described in Example 1,
in the noiseless group testing setting, for the case where t “ p1, 0, 1q. Dashed
lines are used to denote 0-labeled edges, whereas solid lines are used for 1-
labeled edges.

to a final state rp1, 0, 1qsD “ 5. In a noiseless group testing
setting, following [13], we refer to the trellis obtained by
removing all paths that do not yield the observed syndrome
as the expurgated trellis.

By visual inspection of the expurgated trellis of Figure 2, we
see that the second, third, and fifth trellis sections contain only
0-labeled edges, i.e., x2 “ x3 “ x5 “ 0 with certainty. This
fact is not surprising, since, whenever a given test evaluates at
0, the elements in x participating in the test can be surely
marked as non-defective as foreseen, for example, by the
combinatorial orthogonal matching pursuit (COMP) algorithm
[5], [16]. In light of this, the following property holds.

Property 1. Denote by m0 the number of non-zero tests in t
(i.e., m0 “ wHptq), and by n0 the number of elements in x
which participate only in pools resulting in a non-zero test.
Then, in a noiseless group testing setting (i.e., where t “ s),
upon observing the test vector t the trellis diagram can be
reduced to a trellis with n0 sections and at most 2m0 states
per section.

We refer to the trellis following from Property 1 as the
reduced trellis associated with the test vector t. Figure 3
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Fig. 3. Reduced trellis diagram for the test matrix described in Example 1, in
the noiseless group testing setting, for the case where t “ p1, 0, 1q. Dashed
lines are used to denote 0-labeled edges, whereas solid lines are used for
1-labeled edges.

provides the reduced trellis for t “ p1, 0, 1q, for the test matrix
of Example 1. Note that, in a noiseless group testing setting,
the possibility of describing the whole set of defectivity vectors
with a reduced trellis possessing at most 2m0 states per section
enables dramatic savings on the average complexity of the
detection algorithm provided in the next section.

IV. DETECTION VIA FORWARD-BACKWARD ALGORITHM

Let us consider the general case of a noisy group testing set-
ting as described in Section II. We are interested in evaluating
the logarithmic APP ratio

LAPP

` :“ log

„

PpX` “ 0|T “ tq

PpX` “ 1|T “ tq



. (1)

By means of the complete trellis representation introduced in
Section III, (1) can be computed efficiently via the forward-
backward algorithm [12] as

LAPP

` “ log
ÿ

ps1,sqPEp0q

`

α`´1ps
1qγ`ps

1, sqβ`psq

´ log
ÿ

ps1,sqPEp1q

`

α`´1ps
1qγ`ps

1, sqβ`psq.
(2)

In (2), E pxq

` is the set of x-labeled edges in section `, and ps1, sq
denotes an edge connecting state s1 at depth `´1 with state s
at depth `. Moreover, the forward metric at state s and depth
` can be recursively computed as

α`psq “
ÿ

s1

α`´1ps
1qγ`ps

1, sq (3)

and the backward metric at state s1 and depth ` can be obtained
as

β`ps
1q “

ÿ

s

β``1psqγ``1ps
1, sq (4)

with
γ`ps

1, sq “

"

1´ δ if ps1, sq P E p0q

`

δ if ps1, sq P E p1q

` .

The initial condition for the recursion (3) is α0p0q “ 1 and
α0ps

1q “ 0 for s1 “ 1, . . . , 2m ´ 1, whereas for the backward
recursion (4) it is βnpsq “ Q pt | rssBq for s “ 0, . . . , 2m´ 1.
For sake of completeness, the derivation of (2), as well as of
(3), (4), is provided in the Appendix.

Remark 2. For the special case of a noiseless group testing
setting, the likelihood Q pt | sq takes value 1 for t “ s, and it



is 0 otherwise. It follows that the forward-backward algorithm
can be run on the expurgated (or on the reduced) trellis
associated with the syndrome s, by initializing the backward
metric to βn prssDq “ 1. Note also that (1) can be obtained,
in the noiseless setting, by observing that PpX` “ 0|T “ tq
and PpX` “ 1|T “ tq are

PpX` “ 0|T “ tq “
ÿ

xPXt
x`“0

δwHpxqp1´ δqn´wHpxq (5)

and

PpX` “ 1|T “ tq “
ÿ

xPXt
x`“1

δwHpxqp1´ δqn´wHpxq. (6)

In this case, the forward-backward algorithm can be seen as
an efficient way to attack the enumeration problem entailed
by (5), (6).

A decision about each element in x can be obtained by
applying a threshold test to (1), i.e.

LAPP

`

x̂`“0

ż
x̂`“1

Λ (7)

or, by recasting (7) as a log-likelihood ratio (LLR) test, as

L`

x̂`“0

ż
x̂`“1

Λ1 (8)

where

L` :“ log

„

PpT “ t|X` “ 0q

PpT “ t|X` “ 1q



and
Λ1 “ Λ´ log

„

1´ δ

δ



.

The test (8) is optimal in the Neyman-Pearson sense. More-
over, for fixed δ and a given noise model Qpt|sq, the forward-
backward algorithm is deterministic, since it associates to
each test vector t a fixed logarithmic APP ratio vector
pLAPP

1 , LAPP
2 , . . . , LAPP

n q. It follows that, for a given threshold
Λ, the final decision x̂ is fixed and only a discrete set
of pairs pPMD, PFAq can be achieved, with the operating
points linearly interpolating two pairs pPMDpΛ1q, PFApΛ1qq

and pPMDpΛ2q, PFApΛ2qq achievable through randomized tests.
In the noiseless setting, by fixing the threshold Λ to a large
value, we recover the COMP algorithm [5], [16].

Borrowing from the jargon of detection theory, the receiver
operating characteristic (ROC) curves (displaying the probabil-
ity of successful detection 1´PMD vs. the probability of false
alarm PFA as the threshold Λ varies) for a 7ˆ64 test matrix is
given in Figure 4. The curves have been obtained via Monte
Carlo simulations. The test matrix is based on the parity-check
matrix of a p64, 57q extended Bose–Chaudhuri–Hocquenghem
(BCH) code in cyclic form, where the Hamming weight of
each row is 32. The ROC curves are provided for a prevalence
δ “ 0.015 and for both noiseless and noisy settings. In the
noisy case, the noise model mimics the observation of the
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Fig. 4. ROC curve for a 7 ˆ 64 test matrix A, where A is given by the
parity-check matrix of a p64, 57q extended BCH code in cyclic form, where
the Hamming weight of each row is 32.

syndrome through a binary symmetric channel with crossover
probability ε, i.e.,

Qpt|sq “
m
ź

i“1

Qpti|siq

with Qp0|0q “ Qp1|1q “ 1´ ε and Qp1|0q “ Qp0|1q “ ε. In
particular, two crossover probabilities are considered, ε “ 0.05
and ε “ 0.1. In the noiseless setting, by setting Λ to a large
value we obtain the working point of the COMP algorithm,
characterized by a zero miss-detection probability. The impact
of imperfect tests is remarkable already for a test accuracy of
95% (ε “ 0.05), where to achieve a 98% success rate in the
detection the rate of false alarms has to be as high as 30%.

Figure 5 reports the ROC curves for the same conditions
considered in the previous example, for the case where the
9 ˆ 84 test matrix is given by the incidence matrix of an
order-9, 3-uniform complete hypergraph (i.e., each column has
Hamming weight 3 and the the matrix A is composed by the
set of all possible weight-3 columns).

An open question relates to the test matrix design cri-
teria that, for given matrix dimensions, provide the best
miss-detection vs. false-alarm probability trade-off under the
forward-backward detection algorithm.

V. CONCLUSIONS

In this paper, we addressed the problem of deriving a
posteriori probabilities of being defective for the members
of a population in the non-adaptive, non-quantitative group
testing framework, both in the noiseless and noisy settings. The
approach relies on a trellis representation of the test constraints
and it can be applied efficiently to testing matrices involving a
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Fig. 5. ROC curve for a 9 ˆ 84 test matrix A, where A is the incidence
matrix of an order-9, 3-uniform complete hypergraph.

moderate number of tests. The peculiarities of the technique,
when applied to the noiseless setting, are discussed, empha-
sizing the implications on the complexity of the algorithm.
Numerical results on the false positive probability vs. false
negative probability trade-off are presented. The approach
may be applied also to the scheme of [14], [15], where
the algorithm can be employed at the level of the signature
matrices. An open research direction is to find (classes of)
test matrices capable of providing the best miss-detection vs.
false-alarm probability trade-off under the forward-backward
detection algorithm.

APPENDIX A
DERIVATION OF THE FORWARD-BACKWARD ALGORITHM

By Bayes’ rule, rewrite (1) as

LAPP

` “ log
ÿ

ps1,sqPEp0q

`

P
`

S`´1 “ s1, S` “ s,T “ t
˘

´ log
ÿ

ps1,sqPEp1q

`

P
`

S`´1 “ s1, S` “ s,T “ t
˘

and observe that

P
`

S`´1 “ s1, S` “ s,T “ t
˘

“

(a)
“ P

`

T “ t |S`´1 “ s1, S` “ s
˘

P
`

S`´1 “ s1, S` “ s
˘

(b)
“ PpT “ t |S` “ sqP

`

S`´1 “ s1, S` “ s
˘

(c)
“ PpT “ t |S` “ sqP

`

S` “ s|S`´1 “ s1
˘

P
`

S`´1 “ s1
˘

where (a) follows from Bayes’ rule, and (b) is due to the fact
that the final state depends on the state at depth `´ 1 through

the state at depth `. Furthermore, (c) is obtained again by
application of Bayes’ rule. We introduce the shorthand

α`´1ps
1q :“ P

`

S`´1 “ s1
˘

β`psq :“ PpT “ t |S` “ sq

γ`ps
1, sq :“ P

`

S` “ s|S`´1 “ s1
˘

.

Observe that

P
`

S` “ s|S`´1 “ s1
˘

“

"

1´ δ if ps1, sq P E p0q

`

δ if ps1, sq P E p1q

` .

and that

α`psq “ PpS` “ sq
(a)
“
ÿ

s1

P
`

S`´1 “ s1, S` “ s
˘

(b)
“
ÿ

s1

P
`

S` “ s|S`´1 “ s1
˘

P
`

S`´1 “ s1
˘

“
ÿ

s1

α`´1ps
1qγ`ps

1, sq

where (a) is due to the total probability theorem, and (b) is
due to Bayes’ rule. Similarly,

β`ps
1q“P

`

T “ t|S` “ s1
˘

(a)
“
ÿ

s

P
`

T “ t, S``1 “ s|S` “ s1
˘

(b)
“
ÿ

s

P
`

T “ t|S` “ s1, S``1 “ s
˘

P
`

S``1 “ s|S` “ s1
˘

(c)
“
ÿ

s

PpT “ t|S``1 “ sqP
`

S``1 “ s|S` “ s1
˘

“
ÿ

s

β``1psqγ``1ps
1, sq

where (a) is again due to the total probability theorem, (b) from
Bayes’s rule, and (c) by observing that the final state depends
on the state at depth ` through the state at depth `` 1.
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