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Abstract—The traditional demand-responsive paratransit sys-
tem plays an important role in connecting people to health
care, particularly those who are carless, low-income, senior,
underinsured/uninsured, or who have a disability. However, the
existing paratransit system usually has low service quality due to
long waiting times, low operation frequencies, and high costs. In
order to improve the service quality, we propose to design a new
demand-responsive paratransit system that offers public, Uber-
like options for non-emergency medical transportation. Mixed
integer programming models are thus developed to optimize the
system operations with the objectives of minimizing user waiting
times for riders as well as operating costs for operators. The
results produced in this paper will assist local departments of
transportation and transit agencies as they consider operational
strategies to meet non-emergency medical transport needs.

Index Terms—Demand-Responsive Paratransit, Mixed Integer
Program (MIP), Optimization, Operations, Ridesourcing

I. INTRODUCTION

There exist significant transportation barriers to health care
facilities (e.g., hospitals, dialysis centers, and urgent care facil-
ities) in the United States. A recent study found that, in 2017,
5.8 million Americans experienced delay in non-emergency
medical care due to a lack of transportation means [1]. These
people often have older age, lower incomes, disabilities, no
access to personal vehicles, and/or limited or even no health
insurance [2], [3]. Although the traditional demand-responsive
paratransit systems may provide these people with access to
health care facilities, the existing paratransit systems have
suffered from long waiting times, low operation frequencies,
and high costs [4].

In recent years, ridesourcing companies, such as Uber and
Lyft, have emerged as important providers of non-emergency
medical transportation services [2], [5]. In addition, health
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care providers are exploring the possibilities of using rides-
ourcing services to transport patients to and from medical
appointments [3]. Therefore, to meet the challenges of the
changing market and ridership decline, many transit agencies
are developing public, Uber-like options for non-emergency
medical transportation, where customers can schedule a round
trip from their home to a health care facility with preferred
pick-up and drop-off times minutes prior to an appointment,
or days in advance. However, how to design an efficient
and economical paratransit system to provide such demand-
responsive service remains largely unsolved.

One should note that the underlying problem, i.e., deploying
the fleet to meet the non-emergency medical transportation
needs in the most possibly efficient way, differs much from the
problem faced by Uber and Lyft, where they try to maximize
the profits by serving as many customers as possible in a
timely manner. More specifically, Uber and Lyft have a large
number of drivers that are scattered in the urban area. As a
result, it is generally very likely to find available drivers that
are close to customers. However, in our setting, we only a
small fleet of vehicles to serve customers from a relatively
large, rural area. In addition, non-emergency medical trips
have much tighter time-window constraints for drop-offs since
a late arrival to a health care facility is likely to result in a
void trip and rescheduled appointment. More importantly, as
paratransit is a service partially supported by the government,
social equity plays an indispensable role. That means trips
with a significantly longer travel distance have to be accepted
by the operators at an affordable price, while commercial
ridesourcing companies seldomly sacrifice their profits for
equity purposes. To this end, substantial needs emerge for new
models that are able to deploy the paratransit fleet efficiently
and economically to meet the health care travel demands.

The essence of this problem is the trade-off between oper-
ating and waiting times. On the one hand, operators seek to
minimize the total trip length, i.e., the total number of drivers’
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working hours, which affects the operating costs directly.
On the other hand, from the customers’ perspective, the
total waiting time, i.e., the difference between the actual and
scheduled drop-off and pick-up times, is of great importance.
Nevertheless, those two objectives cannot be achieved simul-
taneously in a straightforward way. If unlimited resources are
available, we can simply dedicate a vehicle to transport each
individual customer such that no waiting is ever needed, which
inevitably drives up operating costs. However, with a fixed
budget, we have to design a system that allows ridesharing to
ensure each customer is picked up and dropped off as required
while shortening the trip length as much as possible. The
routing aspect of ridesharing has to be taken into consideration,
which complicates the problem drastically.

Almost all routing problems are notoriously difficult and
mixed integer programming is one of the few exact solution
frameworks that can yield high-quality solutions in a reason-
able amount of time for small- to medium-sized problems. Ac-
tually, a very similar problem called the “dial-a-ride problem”
(DARP) has been studied for a long time in the operations
research community, whose objective is to minimize the total
traveling distance. Multiple models and algorithms have been
proposed to tackle this problem, and [6] and [7] serve as good
reviews on this topic. Traditional models for DARP try to
minimize the total traveling distance, which is not the primary
objective for paratransit services. Although a bunch of efficient
heuristics have been developed to yield high-quality solutions
(see [8], [9]) for DARP, we use an exact solution method in
view of the moderate problem size and the needs for optimal
solutions. More precisely, we approach this problem via the
3-index MIP model proposed in [10] with some modifications
tailed to our problem of interest, which will be elaborated in
Section III-A.

The main contributions of this study are summarized as
follows:

• We design a new, Uber-like paratransit service system
from the operator’s and the user’s perspectives, respec-
tively. The resulting problem is modeled as a mixed
integer program (MIP).

• We propose two new objective functions in the two afore-
mentioned situations, and add some application-specific
constraints on top of the DARP model to accelerate the
solution.

• We use a real-world data set as a case study and demon-
strate that our approach is able to significantly improve
the efficiency of the system.

The remainder of this paper is organized as follows: Section
II is devoted to the problem description and some basic
assumptions. In Section III, we present the proposed two MIP
models, i.e., the user model and the operator model. In Section
IV, we explain the data set used for our case study and report
the computational results. Section V concludes our paper with
pros and cons, and outlines future research directions.

II. PROBLEM DESCRIPTION AND ASSUMPTIONS

A. Problem Description

In this paper, we develop a Uber-like, door-to-door service
system for providing non-emergency medical transportation.
As shown in Fig. 1, each vehicle departs the depot to pick up
and drop off a set of customers as required by their scheduled
times and locations, and then returns to the depot after serving
all the designated requests. The departure and return times
for each vehicle are not necessarily the same. Usually, there
will be an associated service time at each pick-up or drop-
off location for boarding or alighting. All customers need
to book their trips by calling or making a request online in
advance, usually at least an hour before their desired pick-
up time. Working hours are divided into intervals of equal
length. Before the start of each working time interval, a group
of vehicles are selected from the fleet to form a group to serve
the requests within this time interval. The size of the group is
dependent on the number of requests received in this interval.

Fig. 1. Operating Policy

B. Assumptions

The assumptions made for modeling this problem are listed
as follows.
• The demand-responsive services are only available by

booking at least one hour in advance, so the optimization
can be done offline;

• A vi-minute difference between the actual and scheduled
pick-up/drop-off times at the location i is allowed;

• All customers have no attendants. In other words, only
one customer is served for each order;

• All vehicles meet the requirements of the Americans with
Disabilities Act (ADA).

III. MODELS

To provide a broader view for transportation and health
policymakers, we analyze this problem from both the opera-
tor’s and user’s perspectives, which results in two models: the
Operator Model (OM) and the User Model (UM). We first
introduce the notation used throughout the rest of the paper.

A. Notation

Let n denote the number of customers (orders) received
within the time interval of interest. The model is constructed
on a directed graph G = (N,A) with the node set N :=
{0, 1, ..., 2n + 1} and the arc set A. Nodes 0 and 2n + 1



represent the origin and destination depots, and subsets P =
{1, 2, ..., n} and D = {n, n + 1, ..., 2n} contain pick-up and
drop-off nodes, respectively. Let N0 = N \ {0, 2n+ 1}, then
A := {(i, j) : ∀i, j ∈ N0} ∪ {(0, j) : ∀j ∈ P} ∪ {(i, 2n+ 1) :
∀i ∈ D}. Let K = {1, 2, ..., p} be the index set of the vehicles
and vehicle k has capacity Ck. Each node i ∈ N has a load qi,
which is equal to 1 if i ∈ P , −1 if i ∈ D, and 0 otherwise. Let
di be the corresponding non-negative service time for i ∈ N .
A time window [ei, li] is enforced for each node i ∈ N to
make sure a vehicle will arrive within this time interval and
the travel time is ti,j for each arc (i, j) ∈ A.

B. Decision Variables

• xijk (binary): equals 1 if vehicle k ∈ K uses arc
(i, j) ∈ A, otherwise 0;

• Bi (continuous): the time when vehicle k ∈ K arrives at
node i ∈ N ;

• Qi (continuous): Number of customers on vehicle k ∈ K
at node i ∈ N . Note the value should be integral, but it
suffices to declare it to be continuous due to the model
structure;;

• yi (binary): indicator for potential waiting at node i ∈ H;
where H is the set of all drop-off nodes of inbound trips
and pick-up nodes of outbound trips;

• z (continuous): objective to be optimized.

It should be noted that the first three variables, i.e., xijk,
Bi, and Qi, are decision variables for OM, while all these five
variables are decision variables for UM.

C. Operator Model

From the operator’s perspective, the goal is to serve the
customers in a most cost-effective way while ensuring that
each of them can arrive on time for the appointment and can
be picked up from the health care facility no later than the
scheduled time. Delayed or advanced pick-up’s (drop-off’s)
from (at) home will be acceptable. A trip from home to a
health care facility is called an inbound trip while one going
back home is an outbound trip. In this model, for a node i that
is the drop-off node of an inbound trip or a pick-up node of
an outbound trip, the li is set to the scheduled drop-off/pick-
up time. For the remaining nodes in N0, the li is set to Li/2
after the scheduled time, where Li is a predetermined number
denoting the length of the time window. The earliest arrival
time at a node i, denoted by ei, is set accordingly as Li/2
before the scheduled time to ensure that the length of the time
window is equal to Li.

In general, operators are more interested in the total op-
erating costs, so the objective is set to minimizing the total
operating time, T , of all vehicles as computed by (1). Con-
straints (2) and (3) collectively ensure that every customer is
visited only once and that the pick-up and drop-off nodes are
visited by the same vehicle. Constraints (4) to (6) are used
to guarantee that each vehicle starts at the initial depot and

finishes at the final depot. In scenarios where some of the
vehicles are not used, the vehicles leave the initial depot 0 and
travel directly to the final depot 2n+1 with 0 contribution to
the objective value. Constraints (7) to (12) model the load and
time relationships between successive nodes, where M1 and
M2 are two sufficiently large constants that ensure the validity.
For example, if

∑
k∈K xijk = 1, constraint (7) implies a

vehicle cannot arrive at node j earlier than Bi + tij + di if it
travels from node i to node j. On the other hand, if xijk = 0,
(7) does not enforce any restriction. Constraint (13) ensures
that each customer i will be picked up before dropped off.
Constraint (14) guarantees the each node i is visited within
a specific time window. Inequality (15) imposes the capacity
constraint.

min
∑
k∈K

B2n+1,k −B0k (1)

subject to∑
k∈K

∑
j∈N

xijk = 1, ∀i ∈ P, (2)

∑
j∈N

xijk −
∑
j∈N

xn+i,jk = 0, ∀i ∈ P, k ∈ K, (3)

∑
j∈N

x0jk = 1, ∀k ∈ K, (4)

∑
i∈N

xi,2n+1,k = 1, ∀k ∈ K, (5)

∑
i∈N

xjik −
∑
j∈N

xijk = 0, ∀i ∈ P ∪D, k ∈ K, (6)

Bj ≥ Bi + tij + di −M1

1−
∑
k∈K

xijk

 , ∀i, j ∈ N0, i 6= j, (7)

B2n+1,k ≥ Bi + ti,2n+1 + di −M1

(
1− xi,2n+1,k

)
, ∀i ∈ N0, k ∈ K,

(8)

Bj ≥ B0k + t0j + di −M1

(
1− x0jk

)
,∀j ∈ N0, k ∈ K, (9)

Qj ≥ Qi + qj −M2

1−
∑
k∈K

xijk

 , ∀i, j ∈ N0, i 6= j, (10)

Q2n+1,k ≥ Qi −M2

(
1− xi,2n+1,k

)
, ∀i ∈ N0, k ∈ K, (11)

Qj ≥ qj +M2

(
1− x0jk

)
, ∀i ∈ N, k ∈ K, (12)

Bi + ti,n+i + di ≤ Bn+i ∀i ∈ P, (13)
ei ≤ Bi ≤ li ∀i ∈ N, (14)
max {0, qi} 6 Qi 6 min {Qk, Qk + qi} ∀i ∈ N, k ∈ K, (15)
xijk ∈ {0, 1} ∀i ∈ N, j ∈ N, k ∈ K.

In addition, to tighten the LP relaxation and accelerate
the computation, we also include the following two sets of
constraints whose validity is straightforward.

B2n+1,k ≥ B0k, ∀k ∈ K. (16)

D. User Model

User experience is mostly dependent on the difference
between the scheduled and actual drop-off times of inbound
trips and pick-up times of outbound trips. Thus, from the
user’s perspective, the goal is to minimize the sum of those
differences. In reality, late arrival is less favorable than early
arrival, especially, when significant delay occurs. To adjust the
model away from excess lateness, a uniformly large penalty



is incurred when the actual pick-up time is delayed more
than a threshold T . To model such situations, we introduce
a binary variable yi as an indicator that takes a value of 1
if the lateness is more than T , and equals to 0 otherwise.
Let si be the scheduled time at node i, and β and M3 be
two large constants. Then the following constraint models the
aforementioned situations.

Bi − si ≤ T (1− yi) +M3yi, ∀i ∈ H, (17)

The validity is due to the fact that yi is forced to be 1 when
Bi − si > T , while it can either be 0 or 1 if Bi − si ≤ T .

Our objective is computed as the sum of the time difference
or the potential penalty for excess delay, which can be modeled
as follows.

min z

s.t. z > max

{
β
∑
i∈H

yi,
∑
i∈H
|Bi − si|

}
(18)

Note (18) is non-linear, which can be split into three linear
constraints (19) to (21):

z > β
∑
i∈H

yi, (19)

z >
∑
i∈H

(Bi − si), (20)

z >
∑
i∈H

(si −Bi). (21)

The complete user model will also need the constraints (2) to
(15). It should be noted that for i ∈ H , ei and li are set to 0
and 1440, respectively. For other nodes, the ei and li are set
in the same way as in OM.

E. Discussion

The validity of the load and time constraints (7) to (12)
is ensured by sufficiently large constants M1, M2 and M3.
However, the larger these constants are, the looser the lower
bound (the optimal values of the LP relaxation) tend to
be. Thus, we would like to pick the smallest valid con-
stants. In view of M1 ≥ max {Bi −Bj + ti,j + di}, M2 ≥
max {Qi −Qj + qi} and M3 ≥ max {Bi − si}, we set M1

to max {li} − min {ei} + max {tij} + max {di}, M2 to the
maximum vehicle capacity, and M3 to max {li} −min {si}.

IV. COMPUTATIONAL EXPERIMENTS

In this section, we present the numerical results evaluating
the performance of our proposed models, OM and UM, which
are solved by the state-of-the-art MIP solver Gurobi version
9.1.0. All experiments are implemented in Python and run
on a workstation with Red Hat Enterprise Linux version 8.1,
Intel(R) i9-9900K CPU @ 3.60GHz (8 physical cores, i.e.,
16 threads) and 64 GB of RAM. The time limit is set to an
hour for each experiment, and all solver parameters are set to
default.

Fig. 2. Heatmap of trip-generation distribution

A. The Data

We have access to the medical and nutritional purposes
demand-responsive trips data collected by Anson County
Transportation System (ACTS) in 2019. The data includes
information about the scheduled and actual pick-up/drop-off
timestamps and locations (i.e., latitude and longitude coordi-
nates), appointment timestamps, odometer readings, cost billed
($), dates, and use of mobility aids (e.g., wheelchairs). Since
timestamps at pick-up and drop-off locations were manually
recorded by drivers, errors were introduced inevitably. We treat
trips with the same origin and destination, and those with travel
distance less than 0 as outliers and remove them. We also
remove incomplete data points, i.e., ones with missing values.
After data cleaning, the total number of data points is 22,870
which consist of trips that took place on 261 different dates in
2019, and the average travel demand (origin-destination [OD]
pairs) per day is 90. In addition, the trip starting times range
from 3:00 am to 8:00 pm, and a major proportion (55.1%) of
the trips took place between 9:00 am and 1:00 pm. Spatially,
as shown in Fig. 2, most trips took place within Anson County,
North Carolina, especially in Wadesboro and Morven, while a
small fraction of the trips occurred outside Anson County, e.g.,
Monroe, Charlotte, and Durham. Moreover, around 65% of the
trips are short-to-medium-length trips with a travel distance
less than 20 km (12.4 miles), while around 12% are longer
than 50 km (31.1 miles). Among all the trips, the shortest one
is 0.13 km while the longest distance is 216 km. We use the
Distance Matrix API from Google Map API to estimate the
travel time and distance for each OD pair.

B. Experiment Description

We used the trips that took place on January 3, 2019 as a
case study. The total number of trips for this day is 58 (32
inbound trips to health care facilities and 26 outbound trips)
and the scheduled times range from 5:00 am to 4:00 pm.
We implement the OM and UM on an hourly basis, which
results in 11 different time intervals. The transit fleet size of
ACTS is 14, and the capacity of each vehicle ranges from 7
to 18. As mentioned in Section II-A, we take the number of

https://developers.google.com/maps/documentation/distance-matrix/overview


TABLE I
MODEL SUMMARY

Period # of
orders

UM OM

Vars IntVars Constrs CPU (s) Vars IntVars Constrs CPU (s)

5 am - 6 am 1 52 26 56 0.001 49 25 56 0.002
6 am - 7 am 6 782 731 516 0.029 769 725 501 0.579
7 am - 8 am 10 2086 2015 1172 0.638 2065 2005 1145 55.610
8 am - 9 am 7 1048 992 656 0.052 1033 985 638 4.750
9 am - 10 am 1 52 26 56 0.001 49 25 56 0.002
10 am - 11 am 8 1356 1294 815 0.995 1337 1285 791 6.176
11 am - 12 pm 5 556 510 392 0.062 545 505 380 0.188
12 pm - 1 pm 12 2978 2897 1596 75.030 2953 2885 1563 45.917
1 pm - 2 pm 3 224 188 192 0.006 217 185 186 0.016
3 pm - 4 pm 2 118 87 116 0.003 113 85 113 0.021
4 pm - 5 pm 3 224 188 192 0.009 217 185 186 0.092

vehicles used within a time interval as an input parameter u.
In actual situations, the transit agency can flexibly select the
number of vehicles served within the time interval I . In this
study, however, in order to consistently compare the results,
we set u to 5 uniformly and I to one hour. We also assume
that all vehicles are identical with a maximum capacity of 7.
In addition, we set the boarding time to be 7 minutes and
alighting time to 5 minutes. According to ACTS, all vehicles
were parked around their office location (i.e., the depot):
2485 US-74, Wadesboro, NC 28170. We also assume that all
customers must allow a 30-minute time window for each pick-
up and drop-off. We set q0 = q2n+1 = 0, qi+qn+i = 0, ∀i ∈ P
and d0 = d2n+1 = 0. The depot nodes, 0 and 2n+1, actually
do need a specific time window, but for consistency, (a0, b0)
and (a2n+1, b2n+1) are both set to (0, 1440). Note all numbers
related to time windows have been converted into minutes.

C. Results

Table I presents statistics about the models: Number of or-
ders, number of variables, number of constraints, and solution
time. All the cases can be solved to optimality within an hour.
Table II summarizes the results of the UM and OM. For a
better understanding of the trade-off involved, we compute the
UM objective (without the large penalty for excess lateness)
using the solution yielded by the OM and vice versa. For
convenience, we use A B to denote the value computed by
the objective function of model A at the solution yielded by
model B. Thus, UM Raw, UM UM, UM OM in Table II are
the UM objective values (

∑
i∈H |Bi − si|) evaluated at the

existing operational data, the solutions yielded by UM and
OM, respectively. The number in each bracket represents the
reduction compared to UM Raw. OM UM, OM OM are the
OM objective values evaluated at the solutions yielded by
UM and OM, respectively. Lastly, V UM and V OM are the
number of vehicles actually used by UM and OM, respectively.

As shown in Table I, in many cases, UM has slightly more
variables and constraints than OM. We observed that when

the number of trips is smaller than 8, both models can be
solved in seconds. However, as the number of trips increases,
solving OM becomes more time-consuming, but still less than
1 minute. It is worth mentioning that while solving UM for
most instances is efficient, for period 12 pm - 1pm, the CPU
reaches more than 75 seconds. A possible explanation is that
this period has the greatest number of orders; and compared to
other periods, the spatial and temporal distributions of orders
in this period are more uneven, which largely increases the
CPU computing time.

The third column of Table II shows the time difference
of nodes in H calculated by the raw data, which varies
significantly across different time periods. For example, from
7 am to 8 am, the difference is 190 minutes for 10 trips, while
from 12 pm to 1 pm, it is 926 minutes for 12 trips. In addition,
based on the raw data, the average time difference for each trip
is 35.7 min. In contrast, our proposed UM yields substantially
better results where the average is reduced to 0.9 min for each
trip. The UM can also improve this metric by around 97.4%.
As mentioned, we evaluate the time difference of the solution
yielded by OM, which is shown in the fifth column of Table
II. In addition, we observe that there are some instances (e.g.,
time period 6 am - 7 am) whose time difference of OM is
worse than that of the benchmark, which is probably due to
the modeling logic of OM described in Section III-C. More
specifically, from the operator’s perspective, the operating
policy is to ensure all customers reach and leave hospitals
on time while minimizing the total operating time. Hence, in
order to lower the total operating time, fewer vehicles will be
used and more ridesharing will occur, resulting in an increase
in customers’ in-vehicle time and thus an increase in the time
difference.

According to the results shown in Table II, it is clear that
the total operating time of OM (4124 minutes) is less than that
of UM (5090 minutes). However, this improvement is not very
significant, which indicates that UM does not sacrifice much
on the total vehicle operating time even though its objective is



TABLE II
RESULTS OF THE UM AND OM.

Period # of orders UM Raw (min) UM UM (min) UM OM (min) OM UM (min) OM OM (min) V UM V OM

5 am - 6 am 1 15 0 (15) 9 (6) 30 30 1 1
6 am - 7 am 6 96 0 (96) 116 (–20) 547 408 3 2
7 am - 8 am 10 190 0 (190) 187 (3) 1173 516 5 3
8 am - 9 am 7 163 0 (163) 48 (115) 553 359 5 1
9 am - 10 am 1 10 0 (10) 30 (–20) 33 33 1 1
10 am - 11 am 8 68 8 (60) 145 (–77) 760 502 5 3
11 am - 12 pm 5 135 0 (135) 23 (112) 571 267 5 2
12 pm - 1 pm 12 926 45 (881) 126 (800) 956 736 5 5
1 pm - 2 pm 3 228 0 (228) 20 (208) 261 220 3 2
3 pm - 4 pm 2 83 0 (83) 38 (45) 65 61 2 1
4 pm - 5 pm 3 156 0 (156) 69 (87) 141 100 3 1

Total 58 2070 53 (2017) 811 (1259) 5090 4124 38 23

to minimize the total time difference. Since improving users
experience is of great importance to transit agencies, it is
advisable for key stakeholders like cities and transit agencies
to leverage the proposed UM when planning new, demand-
responsive paratransit systems. Moreover, another finding is
that UM generally uses more vehicles than OM, which is
reasonable since using fewer vehicles will reduce the total
operating time and lead to more cost-effective operations of
the paratransit system.

V. CONCLUSION

This paper designs a novel, Uber-like paratransit system
from both the operator’s and the user’s perspectives, which
is solved by using a MIP approach. Compared to the current
paratransit service, the developed UM can not only consid-
erably reduce the time difference between the actual and
scheduled times (i.e., a 97.4% reduction), but can also achieve
a satisfying total operating time. In other words, the UM
prioritizes the user experience without significantly sacrificing
the operations efficiency. Cities, local departments of trans-
portation, and transit agencies should consider adopting the
UM when they develop new strategies to meet non-emergency
medical transport needs.

The paper has some limitations. For the computational
experiments, we only use the data from a single day. More data
from multiple days should be used to test the proposed models.
Furthermore, all vehicles are considered to be identical in the
experiments. But in reality, the capacity of the vehicles may be
different and only a fraction of the fleet are ADA accessible.
Therefore, future work will be focused on producing more
realistic results by taking these elements into consideration.
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