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Abstract—This paper presents a method to compute the chan-
nel capacity of an observed (partially known) discrete memoryless
channel (DMC) using a probably approximately correct (PAC)
bound. Given N independently and identically distributed (i.i.d.)
input-output sample pairs, we define a compound DMC with
convex sublevel-sets to constrain the channel output uncertainty
with high probability. Then we numerically solve an ‘K-way’
convex optimization to determine an achievable information rate
RL(N) across the channel that holds with a specified high
probability. Our approach provides the non-asymptotic ‘worst-
case’ convergence RL(N) to channel capacity C at the rate of
O (

√
log(log(N))/N).

This paper presents a method to compute a communication
rate R through a discrete memoryless channel (DMC), where
uncertainty remains about the precise channel law (the set of
channel transition probabilities).

I. INTRODUCTION

Fig. 1. Given channel samples, determine ‘best’ R with high probability

We consider the scenario (see Fig. 1) where two engineers
(Alice and Bob) wish to establish a one-directional communi-
cation link across a discrete memoryless channel (DMC).

The channel is a ‘black box,’ and at each discrete time
instant, Alice can select and apply one of |X | input symbols
(or values) x ∈ X , where X is the set of all possible
input symbols X = {a0, a1, . . . , a|X |−1}. Each time a input
symbol x is applied to the input port an output symbol
y ∈ Y = {b0, b1, . . . , b|Y|−1} appears on the output port.

The DMC is modeled using the channel law w, which is a
vector of channel transition probabilities (ctps) indexed by the
channel input symbol x, i.e. w , [wa0 ,wa1 , . . . ,wa|X|−1

],

where wx , [wb0 | x, wb1 | x, . . . , wb|Y|−1 | x] and wy | x ,
P{Y , y |X = x} ∀x ∈ X and y ∈ Y . We call wx

the ‘generator’ pmf of the output given input x. Given a
fixed channel input x, the channel output RVs Y | X = x
are independent and identically distributed (i.i.d.). Define the
channel input pmf (u ∈ PX ), as u , [ua0 , ua1 , . . . , ua|X|−1

].
Similarly define v ∈ PY , a pmf over the output RV Y , as
v , [vb0 , vb1 , . . . , vb|Y|−1

] where vy , P {Y = y}.
When the channel law w is known, then the channel

capacity C is maximum communication rate such that there
exist a codebook with an arbitrarily small error rate (see [2]
or [1]), and

C , max
ú∈PX

I(ú ,w), (1)

where: (1) I(u ,w) ,
∑
x∈X

uxD(wx ‖v̀ (u)) is the mutual

information, (2) the expected output is v̀ (u) ,
∑
x∈X

uxwx,

and (3) the Kullback Leibler (KL) divergence [2] for discrete
RVs P and Q with respective pmf s p ∈ PY and q ∈ PY is

D(P ‖Q) = D(p ‖q) ,
∑
y∈Y

py log2

(
py
qy

)
. (2)

Suppose, Alice probes the channel by sending various
input values x ∈ X into the channel N times, and she
observes the output x ∈ X corresponding to each input to
construct the sample set of input-output pairs, i.e. SN =
{(x0, y0) , (x1, y1) , . . . , (xN−1, yN−1)}. Then, using this set
of samples SN , Alice computes the sample (empirical) pmf s
ŵx = [ŵb0 | x, ŵb1 | x, . . . , ŵb|Y|−1 | x], where

ŵy | x ,
1

Nx

N−1∑
n=0

1{yn=y ∧ xn=x} ∀y ∈ Y, (3)

and Nx =
N−1∑
n=0

1{xn=x} for each x ∈ X .

Both wx and ŵx lie in the probability space PY , and we
think of ŵx as an estimate of wx. We define the ‘empirical’
or ‘sample’ probability space PNx as the set of all possible
ŵx pmf s (i.e. PNx = {ŵx : P {ŵx| SN} > 0}.

Alice and Bob select δ, and our goal is to find an input
pmf u∗ (from the samples SN ) such that Alice and Bob
then could design and share a codebook (see Fig. 1) allowing
communication at or below the rate RL with an arbitrarily
low error rate. Because the observed samples SN may not
be ‘statically typical,’ there is a chance that the designed



codebook may fail to provide communication at rate RL;
however, our goal is to ensure that the probability of such
a codebook ‘failure’ is less than 1− δ.

For a DMC with known channel law w, the channel capacity
can be computed using the Blahut Arimoto (BA) algorithm [5].
However for our scenario, the plan is to construct sublevel-
sets that jointly contain the ‘true’ (yet unknown) channel law
with probability at least 1 − δ. These sublevel-sets form a
deterministic compound channel that we solve for the best
achievable communication rate RL.

The remainder of this paper is as follows. We review of
some relevant previous work, then we describe a novel sketch
proof of channel capacity using a multinomial halfspace bound
(MHB). Next, we show how to model channel uncertainty us-
ing probably approximately correct (PAC) sublevel-set bounds
based on the KL Divergence. These sublevel-sets formulate a
convex constraint optimization problem that we solve using
an iterative algorithm based on the Lambert-W function. Then
we describe some simulation results, and finally, we provide
conclusions and recommendations for future work.

II. PREVIOUS WORK

Lapidoth and Narayan provide a summary of results for
communication over uncertain channels [3], and recent results
for DMCs are covered by Csiszár, J. Körner [2]. Our approach
to model channel uncertainty relies on the compound channel
and the information spectrum approach of Han [4].

For a compound channel, the channel law w is confined to
a known region within the output probability space PY , say
w ∈ Γ , and the channel capacity is given by [3]

C = max
u∈PX

min
w∈Γ

I(u ,w). (4)

Further, if Γ is convex and closed, then one can swap the
order of the min and max yielding [3]

C = min
w∈Γ

max
u∈PX

I(u ,w). (5)

So for a convex Γ , one can determine the channel capacity
for each channel law w ∈ Γ and then select RL as the rate of
the worst case (minimum capacity) channel, and there exists a
codebook [3] that will support rates up to RL (simultaneously)
for any channel law w ∈ Γ .

We rely on the following three probabilistic bounds. The
first is the multinomial halfspace bound (MHB).

Theorem II.1 Multinomial Halfspace Bound [11]
Given the set SN = {y0, y1, . . . , yN−1} of outcomes from
N i.i.d. random variables Y n ∈ Y and Y n ∼ w for
n = 0, 1, . . . , N − 1. Let ŵ be the sample (empirical) pmf.
When given the halfspace Λ (oriented to include the pmf
w∗ ∈ PY ) defined as

Λ (w∗,w) , {ŵ ∈ PY :
∑
y∈Y

ŵy ln

(
w∗y
wy

)
≤ ξ} (6)

where ξ , D(w∗ ‖w) then

P {ŵ 6∈ Λ (w∗,w)} ≤ exp(−ND(w∗ ‖w)). (7)

Consider the ‘forward’ sublevel-set Γ fwd
ξ (w) (based on KL

divergence), which is ‘centered’ on w with a ‘size’ ξ and
defined as

Γ fwd
ξ (w) , {ẃ ∈ PY : D(ẃ ‖w) ≤ ξ}. (8)

From this we define a ‘typical set’ of empirical pmf s computed
from N i.i.d.samples generated from pmf w as
Tδ (w) ,

{
ŵ ∈ PY : P

{
ŵ ∈ Γ fwd

ξ (w)
}
≥ 1− δ

}
, (9)

and Sanov’s Theorem provide a bound on this typical set.

Theorem II.2 Sanov’s Theorem (see [1] section 11.4)
Given the same as Thm. II.1 then given any region Γ ⊂ PY
and w∗ the ‘closest’ pmf among all ẃ ∈ Γ to w in terms of
the KL divergence

w∗ = arg min
ẃ∈Γ

D(ẃ ‖w) (10)

then

δΓ , P {ŵ 6∈ Γ} ≤ (N + 1)
|Y|

exp(−ND(w∗ ‖w)). (11)

Solving for δΓ , we get a sublevel-set bound, where

ξ (N, |Y| , δ) = D(w∗ ‖w) ≤ |Y| ln(N + 1)− ln(δΓ )

N
(12)

sets the ‘size’ of the typical set Tδ (w).
The following theorem sharpens the ‘Sanov’ sublevel-set

bound.

Theorem II.3 Sublevel-set Bound [11]
Given the same as Thm. II.1 and select any δΓ ∈ (0, 1], then
P {ŵ 6∈ Γξ (w)} ≤ δΓ for the sublevel-set Γξ (w) (see Eq. 8)
with ‘size’

ξ ≥ 1

N

(
1

2
ln(2 |Y|)− 3

2
ln

(
δΓ
2

)
+ κ3+

|Y| log
(

log2(log2(N)) + κ1

√
|Y|+ log2(κ2 |Y|) + 2

))
(13)

where κ1 = 2
√

24
(
1 +
√

2
)

and κ2 = 24

Given the sample estimate ŵx, we define the admissible
set to include all pmf s that may have generated ŵx with high
probability as

Aδ (ŵ) , {ẃ ∈ PY : ŵ ∈ Tδ (ẃ)}, (14)
and the admissible region is equivalent to the ‘reverse’ level-
set (also based on KL divergence) defined as

Γ rev
ξ (ŵ) , {ẃ ∈ PY : D(ŵ ‖ẃ) ≤ ξ} (15)

for ξ = ξ (N, |Y| , δ).

III. DMC CAPACITY REVISITED

In the section, we sketch a novel proof of channel capacity
of the DMC to help motivate our approach. We start with the
‘equal-divergence’ property of the channel output pmf v∗ that
achieves channel capacity.

Consider,



C , max
u∈PX

∑
x∈X

uxD(wx ‖v (u)) (16)

= max
u∈PX

min
v∈PY

∑
x∈X

uxD(wx ‖v) (17)

= min
v∈PY

max
u∈PX

∑
x∈X

uxD(wx ‖v) (18)

= min
v∈PY

max
x∈X

D(wx ‖v). (19)

Eq. 17 is a result of

∑
x∈X

uxD(wx ‖v (u)) =
∑
x∈X

uxD(wx ‖v′)−D(v (u) ‖v′)

= min
v′∈PY

∑
x∈X

uxD(wx ‖v′), (20)

and in Eq. 19, we see that for any u∗ that achieves C, then
D(wx ‖v∗) = C for all ux > 0.

Fig. 2. Channel capacity: known channel law

The Blahut Arimoto (BA) algorithm [5] outputs a non-
unique u∗ that achieves channel capacity C, along with the
unique average output pmf v∗.

In Fig. 2, each ctp wx (of the channel law w) is plotted as
a ‘red dot.’ The ‘green curve’ marks the level-set Γ fwd

ξ=C (v∗)
(see Eq. 8), where the ’size’ ξ of the level-set is set to the
channel capacity C.

We construct a ‘random’ codebook Ψ with M L-long
codewords, as follows. For each codeword ψm,∀m ∈
{0, 1, . . . ,M − 1}, we draw L input values, so ψm,l ∼ u∗ for
l = 0, 1, . . . , L− 1. Suppose that the codeword ψm′ (one row
of the codebook) is sent across the channel, and we observe
the channel output r = {rl}L−1

l=0 .
At the decoder, we want to test the channel output against

every possible codeword to see which one matches. An error
occurs whenever either: (1) no codeword matches channel
output, (2) more than one codeword matches the channel
output, or (3) the wrong codeword matches the channel output.
To test whether codeword ψm′′ was sent, We gather and sort
channel outputs into groups (one group for each x ∈ X )
consisting of all observed channel outputs hypothesized to be
generated by ctp wx, and then we compute the ‘empirical’

pmf on each group (indexed by x), i.e.

ŵx (m′′) ,
1

lx (m′′)

L−1∑
l=0

rl1{ψm′′,l=x}, (21)

where each group has lx (m′′) ,
L−1∑
l=0

1{ψm′′,l=x} channel

output samples.
When m′′ matches m′, then each empirical pmf ŵx (m′′)

should be near the ‘generator’ ctp wx. So we position a
halfspace Λ (wx,w) ‘just inside’ wx, and then as L → ∞
each and every ŵx (m′′ = m′) (i.e. matched) should likely
fall within the ‘shaded’ area (outside the halfspace i.e. the
decoding region).

When m′′ does not match m′, then ŵx (m′′ 6= m′) ∼
v, ∀x ∈ X . An error occurs whenever each and every
ŵx (m′′ 6= m′) falls into the ‘shaded’ decoding area. The
MHB bounds the probability that ŵx (m′′ 6= m′) incorrectly
falls into the decoding area as less than exp(−lxD(wx ‖v∗)).
So the probability of a decoding error ψm′′=m′ (one mis-
matched codeword) is

εm ≤
∏
x∈X

exp(−lxD(wx ‖v∗)) (22)

= exp

(∑
x∈X
−lxD(wx ‖v∗)

)
. (23)

Recall Eq. 16 and the equal-divergence property, so
D(wx ‖v∗) = C, ∀x ∈ {u∗x > 0}, so

= exp

(∑
x∈X
−lx C

)
(24)

= exp(−L C). (25)

As there are M − 1 incorrect (mismatched) codewords for
code rate R (M = exp(L R)); therefore, the probability that
any of these incorrect codeword decodes as valid (via the
Union Bound) is

ε (L) ≤
M−1∑
m=0

εm (26)

= (M − 1) exp(−LC) (27)
≤ exp(L R) exp(−L C) (28)
≤ exp(−L (C −R)). (29)

so if R < C, lim
L→∞

ε (L) = 0.
�

IV. COMPOUND KL SUBLEVEL-SET CHANNEL

Now consider when the channel law w of the DMC is not
known precisely, but rather we know that each ctp wx is within
a subset (region) of the probability space, i.e wx ∈ Γx (for
each input x).

Fig. 3 illustrates a compound DMC. We want to determine
a pmf u∗ that achieves the maximum information rate R.
As with the DMC, we place halfspaces (decoding regions)
against the ‘gray shaded’ sublevel-set Γ fwd

ξ=R (v). Not all ctps



Fig. 3. Compound DMC

in the ‘orange’ region Γa3 lie outside of Γ fwd
ξ=R (v) and so

the input value a3 will not be used within the codebook to
achieve rate R. For the non-convex ‘green’ Γa2 and ‘blue’ Γa1
the ‘decoding’ halfspaces are positioned to not overlap their
respective region. The shape of the ‘gray shaded’ sublevel-set
controls the ‘orientation’ of the halfspace; therefore, the pmf
w∗ may not always lie against the surface of the associated
non-convex region. For Γa2 ,Γa2 , and Γa2 , each ‘true’ ctp is
known to be within the respectively region. For our situation
(depicted by the ’red’ Γa0 ), we define a convex region that
contains the ctp wa0 with high probability.

Based on the observed channel samples, we define a com-
pound channel where the ctps are known to be constrained
within a set of closed convex admissible regions (see Eq. 5)
with high probability. Then we solve for the lower bound on
the channel rate RL ≤ C, as

RL , min
w−x ∈Aδ(ŵx)
∀x∈X

max
u−∈PX

I
(
u− , w−

)
, (30)

where
w− =

[
w−x
]
x∈X . (31)

Consider the K-way minimization of an objective function
f [7], i.e.

f∗ = min
x1∈Γ1

. . . min
xK∈ΓK

f (x1, . . . , xK) . (32)

If every Γk is a compact convex set, and f is both continuous
(with continuous derivatives on Γ1 × · · · × ΓK) and bounded
from below, then an alternating minimization procedure (a
cyclic process where every individual variable is minimized
in turn repeatedly) shall converge to f∗ (see [7]).

Our objective function Eq. 30 is bounded below by R = 0,
and it is convex and continuous in {w−x }x∈X with continuous
derivatives along the convex constraints (the admissible sets
are continuous level-sets); therefore, an alternating minimiza-
tion procedure will converge to the solution RL.

For each step of the alternating minimization, we select an
input value x, and we want to determine

w−x = arg min
w′x∈Γ rev

ξ (ŵx)
D(w′x ‖v)

Temporarily dropping the index x (to simplify notation),

consider solving
w∗ = arg min

w′∈Γξ(ŵ)
D(w′ ‖v)

using an Lagrange multiplier equation (with the constraint∑
y∈Y

w∗y = 1 to force the solution to be a pmf ), i.e.

L (w, ω′, µ′) = D(w ‖v) + ω′ (D(ŵ ‖w)− ξ)

+ µ′(
∑
y∈Y

wy − 1). (33)

To minimize, we take the partial derivative of the La-
grange function, then set to zero (to find a critical point w∗)
∂L(w,ω′,µ′)

∂wy
= 0. So the a critical point is a solution to the

equation
∂L (w, ω′, µ′)

∂wy

∣∣∣∣
w=w∗

= 1 + ln

(
w∗y
vy

)
− ω′ ŵy

w∗y
+ µ′ = 0,

and satisfying the constraint
∑
y∈Y

w∗y = 1 , we get

w∗y (ω) =
1

Z

ŵy

W0

(
ω
ŵy
vy

) ,whereZ =
∑
y′∈Y

ŵy′

W0

(
ω
ŵy′

vy′

)
where W0 is the ‘zero-branch’ of the Lambert W function [9].
Since the second partial derivative is greater than zero

∂2L (w, ω′, µ′)

∂w2
y

∣∣∣∣
w=w∗

=
1

w∗y
+ ω

ŵy(
w∗y
)2 ≥ 0 ∀y ∈ Y,

whenever ω > −w
∗
y

ŵy
, the critical point w∗ is a local minimum

for all ω ≥ 0 (ŵ and w∗ are pmf s; and therefore, ŵy ≥ 0 and
w∗y ≥ 0). We choose ω to satisfy the constraint D(ŵ ‖w∗) =
ξ, and because the constraint is and convex (with continuous
derivatives) over w∗, the local maximum is a global maximum.
We using a line search algorithm to find and set w− = w∗.

Fig. 4. Connection between critical points and the Lambert W function

Our solution w∗ lies on the ‘yellow’ portion of the curve
in Fig. 4. The Lambert W function is on the left side and
the probability space containing the solution is on the right.
Various branches of the Lambert W function yield different
solutions to points on the admissible region.

Algorithm 1 is a K-way optimization that sequentially
‘cycles’ over all input values x to update the w−x pmf s and
the pmf v∗ (via the BA algorithm). If there is not significant
movement in v∗ over one entire cycle, the algorithm declares
convergence.



Algorithm 1: Modified BA algorithm
Input: {ŵx}x∈X ,N ,|Y|,δ,tol ∈ (0, 1)
Output: RL,{w−x }x∈X ,v−RL ,u−RL

1 ξ ← ξ (N, |Y| , δ);
2 t← 0, converged← False;
3 (u∗,v∗, C ′)← BA ({ŵx});
4 while converged == False do
5 converged← True;
6 for x ∈ X do
7 w−x ← arg min

w′x∈Γ rev
ξ (ŵx)

D(w′x ‖v) ;

8 (ú, v́, C ′)← BA ({w−x });
9 if ‖v́ − v∗‖2 > tol then

10 v∗ ← v́, u∗ ← ú;
11 converged← False;
12 end
13 end
14 t← t+ 1;
15 end
16 v−RL ← v∗, u−RL ← u∗, RL ← C ′ ;

Fig. 5. Lower bound on the channel rate

Figure 5 shows output of Algorithm 1. The‘red curves’
depict the level-sets of the admissible regions {Aδ (ŵx)}x∈X .
The output pmf v∗ is plotted as a ‘green dot,’ and the worst-
case channel w− is plotted as ‘blue plus-signs.’ The ‘green
curve’ is the surface of Γ fwd

ξ=RL
(v∗).

From this output, we can design a codebook based on RL
and u∗ that will provide reliable communication if the true
channel law w lies within the admissible regions.

V. HIGH PROBABILITY BOUND

We want all |X | sublevel-sets Γ rev
ξ (ŵx) (i.e. the admissible

regions) to ‘contain’ the ‘true’ ctp wx with high probability
(≥ 1 − δ). Since there are |X | inputs, we set δ1 = δ

|X | and

‘tune’ the P
{
wx 6∈ Γ rev

ξ (ŵx)
}
≤ δ1

We use a sublevel-set bound to ‘size’ (i.e. ‘tune’) the
admissible regions, by setting the ξ parameter of Γ rev

ξ (ŵx)
using either: (1) the ‘log’ sublevel-set bound (based on Sanov’s

Theorem) Eq. 12

ξlog (Nx, |Y | , δ1) = O

(
1

Nx
|Y| log(Nx)

)
, (34)

or (2) the ‘loglog’ improved sublevel-set bound [11] Eq. 13

ξloglog (Nx, |Y | , δ1) = O

(
1

Nx

(√
|Y| log(log(Nx)) + |Y| log(|Y|)

))
.

(35)

Finally, we consider the rate of convergence as the number
of samples increases. Given Pinsker’s Theorem [6], we know
that √

2D(ŵx ‖wx) ≥ |ŵx −wx|1 ≥ ‖ŵx −wx‖2. (36)
and√

2D
(
ŵx

∥∥w−x ) ≥ ∣∣ŵx −w−x
∣∣
1
≥
∥∥ŵx −w−x

∥∥
2
. (37)

The (deterministic) admissible regions are ‘sized’ such that
D
(
ŵx

∥∥w−x ) = ξ (Nx, |Y | , δ1) (38)
and ŵx falls outside the typical set with probability ≤ δ1 if

D(ŵx ‖wx) = ξ (Nx, |Y | , δ1) . (39)
So (simultaneously) both ‖ŵx −w−x ‖2 ≤

√
ξ (Nx, |Y | , δ1)

and ‖ŵx −wx‖2 ≤
√
ξ (Nx, |Y | , δ1) with probability ≥ 1−

δ1; therefore,∥∥wx −w−x
∥∥

2
=
∥∥ŵx −w−x

∥∥
2

+ ‖ŵx −wx‖2 (40)

≤ 2
√
ξ (Nx, |Y | , δ1) with prob. ≥ 1− δ1.

(41)

Recall (Eq. 19) and that v∗ has equal-divergence from
all w−x with ux > 0; therefore, v∗ converges to v at
the same rate. And so the overall convergence rate as N
increases is O(

√
ξ (N, |Y | , δ1)), and specifically the con-

vergence rate when using ξlog is O( 1
N log(N)), and the

convergence rate when using ξloglog is O( 1
N log(log(N))).

�

VI. RESULTS

To test the convergence rate, we generated a set of random
channels, where the number of channel inputs was fixed at
|X | = 3 and the number of channel outputs was varied as
|Y| ∈ Y = {5, 7, 10, 15, 20, 25, 30, 35}. Each ctps wx of
the channel law was drawn i.i.d. according to an uniform
Dirichlet distribution [10] with hyperparameter α = 0.8 or
wx ∼ Dir (α), where

Dir (α) ∝
∏
y∈Y

wy | x
α−1 ∀y ∈ Y (42)

to yield the set of eight test channel laws W , {w|Y|}|Y|∈Y
We want to determine the ‘tightness’ of our level-set bounds

against the true probability that a ctp wx is within an optimally
‘sized’ admissible region; however, as numerical integration
over high dimensional channel output probability spaces is
intractable, we used Monte Carlo integration to approximately
‘size’ each sublevel-sets to the optimal value. Specifically, we
generated M = 8000 ctp samples from a Dirichlet distribution
[10] with hyperparameter α = 1 or wx ∼ Dir (ŵx, Nx, α),



where
Dir (ŵx, Nx, α) ∝

∏
y∈Y

wy | x
Nxŵx+α−1 ∀y ∈ Y (43)

and then adjusted the ξ parameter of the sublevel-set until
bMδ1c of the M ctp samples fell outside the sublevel-set
Γ rev
ξ (ŵx). Then we used these sublevel-sets as the convex

regions in solving for RLmc(N,w|Y|) (the rate from using
Monte Carlo integration).

We compare RL
mc(N,w|Y|) to the RL sublevel-set rate

bounds: RLlog(N,w|Y|) and RLloglog(N,w|Y|).
We ran algorithm on each of the test channel using param-

eters δ = 0.01, and N0 ∈
{

10 · 2k
}

19
k=0, where every input

was was sampled N0 times (so the total number of samples
per test channel was |X |N0.

Fig. 6. Convergence as the number of samples increases

Fig. 6 shows one curve for each test channel as the number
of samples N is increased. The Rlog/Rmc curves are the ratio
of sublevel-set bound RLlog(N,w|Y|) ‘over’ the Monte Carlo
estimate RL

mc(N,w|Y|), and Rloglog/Rmc is similarly the
ratio of sublevel-set bound RLloglog(N,w|Y|) over the Monte
Carlo estimate.

We see is that the Rloglog/Rmc curves ‘flatten out’ (for
N > 1000 samples, and so the ‘loglog’ sublevel-set bound
appears to track (match) the optimal convergence rate within
a constant. While ‘loglog’ sublevel-set bound shows some
constant lost (the ratio is not = 1) as N increases, the ’log’
(Sanov-based) sublevel-set bound diverges from the optimal
estimate as N increases).

Fig. 7. Convergence as the channel output space increases

Fig. 6 shows one curve for each test channel as the number
of channel outputs |Y| increases (each curve represents N
held constant, there is one curve for each N ∈

{
10 · 2k

}
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k=0).

We see a small increasing loss as |Y| increases. So both the
‘log’ and ‘loglog’ levelset bound(s) appear to be ‘gradually’
diverging from to the optimal Monte Carlo estimate as |Y| in-
creases. We hope to investigate whether further improvements
can remedy this in the future.

VII. CONCLUSION AND FUTURE WORK

We developed and demonstrated an algorithm that es-
tablishes a high probability lower bound on the maximum
information rate through an observed DMC. In addition, we
provided a novel transparent proof of the channel capacity
of a DMC. Further development of our approach may gain
additional insight on the compound DMC, and the finite-block
length regime for the DMC.

We expect that this approach could be extended to develop
a high probability upper bound on the maximum information
rate through an observed DMC, and with other modifications,
one could establish both high probability lower and upper
bounds on the mutual information given the channel samples.

We provided some evidence that our approach is near
optimal (it appears to have the same ‘bigOh’ rate of conver-
gence) as the number of observed samples increases, but more
investigation is required to reduce the ‘gradually’ rising loss
when the number of channel output symbols is increased.
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