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Abstract—We consider dynamical group testing problem with
a community structure. With a discrete-time SIR (susceptible,
infectious, recovered) model, we use Dorfman’s two-step group
testing approach to identify infections, and step in whenever
necessary to inhibit infection spread via quarantines. We analyze
the trade-off between quarantine and test costs as well as disease
spread. For the special dynamical i.i.d. model, we show that
the optimal first stage Dorfman group size differs in dynamic
and static cases. We compare the performance of the proposed
dynamic two-stage Dorfman testing with state-of-the-art non-
adaptive group testing method in dynamic settings.

I. INTRODUCTION

Group testing, introduced by Dorfman [1] in 1943, is a

powerful tool to identify infected individuals in a population

using a minimum number of tests. In group testing, samples

from multiple individuals are mixed and tested together. If

disease prevalence in the population is low, mixed samples are

not contaminated with high probability, which in turn results

in gains in terms of number of tests.

Group testing algorithms where tests to be performed are

designed in advance are called non-adaptive, and algorithms

that use the results of previous tests are called adaptive [2].

Traditional group testing approaches assume that infections

are either i.i.d. in a population (i.i.d. model) or the number

of infections is known (combinatorial model) [2]–[4]. Both of

these assumptions are naive and do not hold in reality. Sparked

by the ongoing covid-19 pandemic, many recent works have

considered infection models with a community structure and

proposed algorithms that exploit the community structure in

order to reduce the required number of tests [5]–[8].

Another limitation of traditional group testing approaches

is the assumption that the infection status of individuals is

static, whereas in practice there is a time dimension to disease

spread. Using the SIR model [9], recent references [10], [11]

consider community-aware group testing for the dynamic case.

In [10], SIR model is based on a continuous-time Markovian

process and the aim is to estimate the states of individuals

while reducing the number of tests spent on each day using

an entropy reduction approach. Entropy reduction refers to the

idea that, in order to reduce the number of tests, entropy of

each testing stage should be maximized [12], [13]. In [11], SIR

model with a stochastic block model (SBM) is discretized and

a theoretical guarantee for the order-optimality of the number

of tests spent per day is given. In this paper, we consider a

similar discrete-time SIR model with some variations in the

community structure, introduce new ideas related to dynamic

group testing and analyze their implications.

A. Related Works

Our work is closely related to Dorfman’s group testing [1]

and the group testing problem studied in [11] with discrete-

time SIR-SBM. In [1], for an i.i.d. infection model, Dorfman

divides the population of size N into groups of size s and tests

these groups. This is the first stage of testing. In the second

stage of testing, individuals belonging to contaminated groups

are tested individually to find all infections. Dorfman finds the

optimum group size s∗ to minimize expected number of tests.

In [11], the population consists of communities, such that

the probability of infection spread within a community is

larger than the probability of infection spread across commu-

nities. With a discrete-time SIR model, infections, infection

spread, recoveries and interventions occur only at discrete time

instants (days). In addition, test results come with one day

delay; the result of a test registered on day d becomes available

on day d + 1. Based on these assumptions, [11] shows that,

given the test results of the previous day, the discrete-time SIR-

SBM reduces to a static group testing problem on the current

day. As a result, [11] applies existing results from non-adaptive

group testing [12] and shows them to be order optimal.

B. Our Contributions

We adapt Dorfman testing to discrete-time SIR-SBM intro-

duced in [11]. We demonstrate the benefits of using Dorfman’s

adaptive method compared to the non-adaptive method used

in [11]. As a stand-alone problem, we study the effects of

quarantining individuals in a positive first stage test in a Dorf-

man type two-stage adaptive method, and find the optimum

group size considering the opposing goals of minimizing the

number of tests versus not quarantining uninfected individuals

unnecessarily. The optimal group size so obtained is different

than the optimal Dorfman group size.

We then apply the quarantine idea to discrete-time SIR-

SBM. We analyze the trade-off between quarantine costs, test

costs, and quarantine’s effect on infection spread over time.

For a special case of dynamic i.i.d. infection model, we find the

optimal dynamic Dorfman group size analytically, and show

that it differs from the static Dorfman group size.

We provide extensive numerical results: For the SIR-SBM

model, we compare the performance of the dynamic Dorfman

testing proposed here with the state-of-the-art non-adaptive

algorithm proposed in [11]. For the i.i.d. dynamic setting, we

show gains in terms of number of tests for static Dorfman

group size versus dynamic Dorfman group size.
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II. SIR-SBM MODEL AND DORFMAN ADAPTATION

A. Discrete-time SIR-SBM

We consider a population of size N , that is partitioned

into communities of size C each. On any day d ∈ N, each

individual i belonging to community j is in one of three

states: X
(d)
i,j ∈ {S, I,R} where S stands for susceptible,

I for infected and R for recovered. We assume R is an

absorbing state, whereas states S and I are transient. During

a day, the state of individuals may transition from S to I,

or from I to R according to SBM that is detailed below. At

time1 d = 0++, infection starts to spread among population

where each individual has i.i.d. infection probability, pinit.

On following days, infection spreads according to SBM with

parameters (N,C, q1, q2, pinit). Namely: If an individual is in

state I at d+, then during d++ it spreads infection to any of its

susceptible neighbors in the same community with probability

q1, and to members of other communities with probability

q2. Any individual who was infected at time d+, can recover

during d++ with probability r. The discrete-time SIR-SBM

captures the disease progression of continuous-time SIR-SBM

well [11]. Although we assume that discrete-time instances are

days, the model can be discretized with other time-units.

B. Test Results

Infection status of an individual is denoted by U
(d)
i,j , where

U
(d)
i,j = 1 iff X

(d)
i,j = I. A group test T takes samples from

a set of individuals GT and tests them at once. The result

of the test is yGT
=
∨

i∈GT
U

(d)
i,j , where

∨

stands for binary

OR operation. The tests are registered on each day at time d+,

shortly after that, during d++ new infections occur. The results

of the tests registered at d+ become available at (d+ 1)−. If

an individual is detected to be positive at time (d+ 1)−, it is

isolated from the population indefinitely.

C. Dorfman Adaptation

We use two-stage Dorfman testing on a daily basis to detect

infected individuals and isolate them from the population. On

the first day, we apply the first stage of Dorfman test. For the

first stage testing at d+ where d ≥ 1, only individuals from

the same community are grouped together. If an individual

belongs to a contaminated group at d+, it participates in the

second stage testing at (d + 1)+. Any person that belongs to

an uncontaminated group at d+ is assigned to a new group at

(d+1)+ and tested as part of the first stage testing of Dorfman

testing. If a person participated in the second stage testing at

d+ and was infected, we should learn the result at (d + 1)−

and isolate that individual indefinitely. On the other hand, if

that individual is not infected, it will be assigned to a new

group at (d+ 1)+ for a first stage Dorfman testing.

1In this paper, we use notations d−, d+, d++ to mean the following. Ony
any day, we have a fixed reference time, such as 9am. On day d, d− means
slightly before the reference time, e.g., 8:59am, when we receive the previous
day’s test results; d+ means slightly after the reference time, e.g., 9:01am,
when we take measurements and submit (register) tests; and d++ means the
time between the submission of the tests on day d until the test results are
received on day (d+1), i.e., the time duration after d+ and before (d+1)− .

We first briefly discuss why using Dorfman testing could

be more beneficial compared to non-adaptive group testing

used in [11]. First, note that the use of a non-adaptive testing

method, both for i.i.d. and non-i.i.d. priors, may result in

classification errors. Hence, the assumption of independent

infections argued in [11] does not hold when errors occur

in decoding. Definite defective (DD) algorithm makes sure

that no false-positive classification is made but it allows false-

negative classifications. Moreover, since this is a dynamic

problem with a time dimension, any error made at one step

potentially accumulates over time. Hence, some individuals

that get infected at (d− 1)++ cannot be found from the tests

registered at d+, which will be available at (d + 1)−. As a

result they will spread infection until they are identified as

infected. In fact, we will show with simulations how severely

cumulative-error problems may affect disease spread.

In comparison, we use an adaptive testing method which has

zero-error testing capacity C0 = 1. Hence, we do not make

classification errors. A minor problem introduced by Dorfman

testing is as follows: The infection status of individuals at

time d+ who are tested with a contaminated group cannot be

determined from the results available at time (d+1)−, hence

independence assumption of [11] cannot be used here. How-

ever, in order to determine an optimum Dorfman group size at

(d + 1)+, we have to know the number of infections present

in each community at d+. We approximate this number with

the expected number of infections IG,j for each contaminated

first stage group G with size s of community j as

E [IG,j |yG,j=1]=

∑s

x=1

(

s

x

)

px(1−p)s−xx

1−(1−p)s
=

sp

1−(1−p)s
(1)

where p is the probability of infection for each individual.

Using (1 + x)α ≈ (1 + αx), we have E[IG,j |yG,j = 1] ≈ 1.

Hence each contaminated group can be assumed to contain

a single defective individual. In conclusion, for an individual

from community j, who was susceptible at d+, the probability

of being infected at d+ 1, i.e., pd+1
j , can be approximated as

pd+1
j = 1− P[individual is not infected during d++] (2)

= 1− (1− q1)
Id
j (1− q2)

∑
j′6=j Id

j′ (3)

where Idj is the sum of number of contaminated first stage

groups and number of infected individuals in second stage tests

in community j at d+. Hence, pd+1
j is used to find the optimum

first stage Dorfman group size at (d+ 1)+ for community j.

Another complication introduced by Dorfman testing is

the amount of time each infected individual can potentially

spread the infection. Note that, an individual who was tested

together with an uncontaminated group at (d − 2)+ as part

of a first stage test and who gets infected during (d − 2)++

will participate again in a first stage test at (d − 1)+, and

will be individually tested at d+. As a result, we will remove

this individual from the population at (d + 1)−. Thus, this

individual will spread the infection during (d−1)++ and d++.

In the next section, we propose a novel quarantining approach

and its costs in dynamic group testing to address this issue.



III. DORFMAN TESTING WITH QUARANTINE COSTS

Traditional Dorfman testing finds a group size s for the first

stage such that the expected total number of tests over the first

and second stages is minimized. In a dynamical setting where

disease spreads over time, and test results are not available

immediately, the time between the first and second stage

test results is critical in slowing down the further spread of

infections. Hence, as a precaution, all individuals who belong

to contaminated first stage groups at time (d− 1)+ can be put

into quarantine from d− until (d + 1)−. Any individual who

is quarantined yet not infected will rejoin the population at

(d+1)−. Moreover, it is not necessary to test those individuals

at (d+1)+ since they were in quarantine during d++. Hence,

with quarantine, Idj in (3) decreases to number of contaminated

first stage groups of tests at d+. The decrease in Idj decreases

disease spread since pd+1
j also decreases. Moreover, as pd+1

j

decreases, number of tests spent also decreases since we can

mix more samples together in the first stage of Dorfman testing

at (d+ 1)+. However, quarantining individuals is a burden to

the functioning of the society, and even more so if many of

those individuals were not actually infected. As a result, in

a dynamic setting with Dorfman testing, there is a trade-off

between test costs and quarantine costs, as well as disease

spread. In this section, we analyze effects of this trade-off on

Dorfman group sizes.

Expected test cost of traditional Dorfman testing is,

E[Tj ] =
Nj

s
+Nj(1− (1 − p)s) (4)

where s is the first stage Dorfman group size, Nj is the size of

community j, and p is the infection prevalence rate. We model

the quarantine cost as an exponential function of the number

of people who were not infected but put into quarantine,

CQ,j(x) = ax (5)

where a > 1 is a design choice and x is the number of

people in community j who are quarantined unnecessarily. The

quarantine cost of each community is independent of others.

For analytical tractability purposes, we make a mild assump-

tion that the first stage groups in each community j are also

independent. Although this undermines the exponential nature

of the cost introduced in (5), without this assumption, optimum

Dorfman size would depend on community size, which is not

desirable for finding cost per person. However, the assumption

still captures exponential behavior and the trade-off between

quarantine versus test costs which is our main point here.

Based on this assumption, the expected quarantine cost is,

E[CQ,j ]=
Nj

s

(

s−1
∑

i=1

(

s

i

)

ps−i(1− p)iai

)

(6)

=
Nj

s

(

ps
s
∑

i=0

(

s

i

)(

a−ap

p

)i

−(1−p)sas−ps

)

(7)

=
Nj

s

(

ps
(

1 +
a−ap

p

)s

−(1−p)sas−ps
)

(8)
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Fig. 1. Test cost optimization versus test and quarantine cost optimization.

=
Nj

s
((a− ap+ p)s − (a− ap)s − ps) (9)

Next, instead of minimizing the test cost in (4) alone, we

minimize the weighted average of the test cost in (4) and

the quarantine cost in (9), where α is a design choice that

determines the relative importance of test and quarantine costs,

E[Tj ]+αE[CQ,j ]

Nj

=
1

s
+(1−(1−p)s)

+
α

s
((a−ap+p)s−(a−ap)s−ps) (10)

Fig. 1 shows a comparison between the normalized Dorfman

test cost alone, and weighted Dorfman test and quarantine

costs, for (a, α) = (1.3, 2). We plot optimal group sizes for

each p that are logarithmically spaced between [10−3, 10−1].
On the left y-axis, we show optimal group sizes obtained

by optimizing (4) and (10), respectively. On the right y-axis,

we show optimized normalized test and quarantine costs. As

each unnecessarily quarantined individual has an exponential

effect, we see that normalized quarantine cost of optimized

(4) is greater by orders of magnitude than optimized (10),

whereas normalized test costs are still of the same order.

Hence, in settings with moderate a and small to moderate

p, optimizing (10) instead of (4) decreases quarantine cost

substantially without effecting test cost as much.

A. Experimental Results

We consider the system model introduced in Section II with

parameters SBM (1000, 50, 0.012, 0.0004, 0.02) and r = 0.1.

First, we experimentally show how a non-adaptive method

like CCA cannot overcome the cumulative error introduced

by dynamic settings if it uses comparable number of tests as

dynamic Dorfman testing. Normally, on day d with popula-

tion size Nd for CCA algorithm, we would have to choose

number of tests as 4e(1 + δ)µ lnNd. However, as mentioned

in Appendix of [11], the number of tests that will be used

during initial days will be at least as large as N and group
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Fig. 2. CCA method, cumulative infection trajectories.
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Fig. 3. Dynamic Dorfman testing without quarantine.

testing will offer no advantage. Hence, for the purpose of

comparing adaptive Dorfman algorithm with CCA, here we

choose Td = 1.6eµ lnNd, which is on average more than

what Dorfman testing would have used on a daily basis

with these system parameters. Fig. 2 shows total number of

infected people during a 50 day testing period for 200 different

trajectories. Here, approximately 13% of these trajectories end

up with disease explosion due to cumulative errors.

Next, we examine how Dorfman testing performs for the

same SBM setting for 1000 different trajectories. In Fig. 3,

experimental results for Dorfman testing are displayed where

we do not quarantine people who belong to contaminated

groups and isolation is only applicable for individuals who test

positive in the second stage. Without a quarantine procedure,

71% of population contracts the disease, which is undesirable.

In Fig. 4, we show how these results change if we apply

quarantine to contaminated groups based on the first stage re-

sults and individuals who are not infected yet quarantined join

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

900

1000

0

100

200

300

400

500

600

700

800

900

1000

Fig. 4. Dynamic Dorfman testing with quarantine without quarantine cost.
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Fig. 5. Dynamic Dorfman testing with quarantine and its cost.

the population once their individual test results are available

next day. Note that disease progression is decreased since an

individual who gets infected during (d − 2)++ can spread

infection during (d− 1)++ instead of during both (d− 1)++

and d++. As a result, number of tests spent decreases since

pd+1
j decreases. Although the results are promising since we

spend a small amount of tests and only 7% of the population

contracts the disease, unnecessary quarantine numbers are

quite large which is undesirable.

Finally, when we use the objective in (10) instead of that

in (4), and and choose (a, α) = (1.5, 2), we obtain the results

shown in Fig. 5. We observe that we can decrease quarantine

costs substantially while increasing test costs. Also note that,

total disease spread has increased from 7% to 10% since fewer

uninfected individuals spend one day in quarantine during

outbreak which results in vulnerability to contract the disease.

Thus, (10) introduces a useful tool to trade-off quarantine

costs, test costs, and disease spread.



IV. OPTIMIZING GROUP SIZES FOR DYNAMIC MODEL

WITH I.I.D. INFECTIONS OVER TIME

In static Dorfman testing, the expected number of tests is

minimized for a single day. For a dynamical model, on each

day, group size for the first stage testing directly affects the

number of people participating in the first stage of testing on

the next day. Hence, optimizing the test cost for a single day

may not be optimal for the entire horizon of testing. In this

section, we investigate this problem for a tractable i.i.d. setting.

A. System Model

Here, we consider the following simplified i.i.d. infection

model: Each day, each individual that has not been infected so

far can get infected i.i.d. with probability p. Any individual that

has been infected is isolated indefinitely once it is classified

as infected via Dorfman testing.

B. Test Costs

Let Nd denote the number of people entering the first stage

Dorfman testing on day d. Together with the second stage

testing of these individuals, the expected number of total first

stage tests on day d and second stage (individual) tests that

will be registered on day d+ 1 is,

E [Td|Nd] =
Nd

sd
+Nd(1 − (1− p)sd) (11)

and therefore,

E [Td] =
E [Nd]

sd
+ E [Nd] (1 − (1− p)sd) (12)

where sd denotes the first stage group size on day d. Nd

is a random variable which depends on Nd−1
1 and sd−1

1 as

well as p, where sd−1
1 denotes [s1, . . . , sd−1] and similarly for

Nd−1
1 . To express Nd in terms of these variables, let hd−1 be

the number of uncontaminated groups found from results of

day d − 1 and gd−2 be the number of contaminated groups

found from results of day d− 2. Note that (hd + gd)sd = Nd.

Also, let hd−2,k be the number of negative individuals of a

contaminated group k, which were tested together with some

infected individuals on day d−2 as part of Dorfman first stage

testing and let h−

d−2,k denote the individuals who do not catch

the infection before the second stage test on day d − 1. We

can express Nd in terms of these variables as,

Nd = hd−1sd−1 +

gd−2
∑

k=1

h−

d−2,k (13)

Then, we find expectation of each of these variables as,

E [hd−1|Nd−1] =
Nd−1

sd−1
(1− p)sd−1 (14)

E [hd−1] =
E [Nd−1]

sd−1
(1− p)sd−1 (15)

E [gd−2|Nd−2] =
Nd−2

sd−2
(1− (1− p)sd−2) (16)

E [gd−2] =
E [Nd−2]

sd−2
(1− (1 − p)sd−2) (17)
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Fig. 6. Optimization of a single day versus optimization of the entire horizon.

E [hd−2,k] = sd−2

(

1−
p

1− (1− p)sd−2

)

(18)

E

[

h−

d−2,k|hd−2,k

]

= hd−2,k(1− p) (19)

E

[

h−

d−2,k

]

= sd−2(1− p)

(

1−
p

1− (1− p)sd−2

)

(20)

Hence, by taking expectation of (13), we obtain,

E [Nd] = E [hd−1] sd−1 + E [gd−2]E
[

h−

d−2,k

]

(21)

= E [Nd−1] (1− p)sd−1

+ E [Nd−2] (1− (1− p)sd−2 − p)(1 − p) (22)

Assuming that testing will take place between day 1 and day

t, where individual testing stage of day t will happen on day

t+ 1, the total expected number of tests can be expressed as,

E [Ttot] =

t
∑

d=1

E [Td] (23)

=

t
∑

d=1

E [Nd]

sd
+ E [Nd] (1− (1− p)sd) (24)

This equation, in turn, can be solely expressed in terms of

E [N1] = N1 and p by using (22) iteratively. Thus,

E [Ttot] = f(N1, p, s
t
1) (25)

After E [Ttot] is found, we can optimize this cost over st1.

Let s∗d denote the optimum value for day d. By inspecting (22)

and (24), we see that s∗t does not depend on st−1
1 even though

E [Nt] depends on st−1
1 since E [Nt] appears as normalization

term. As a result, s∗t is uniquely determined by the value of

p. Once this is done, s∗t−1 can be found using s∗t and p. This

can be iteratively done for all s∗d going backwards from s∗t to

s∗1. Once we find s∗1, we proceed with the first stage Dorfman

testing for day d = 1. After that, on day d = 2, we obtain the

first stage results of day d = 1 and we have to optimize the
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Fig. 7. CCA versus Dorfman testing for i.i.d. infection model with Td =
0.8epNd log(Nd).

cost in (24) for st2 where h1 (and g1) is no longer a random

variable. We observe that h1 impacts E [Nd] for d ≥ 2. But

this results in the same optimum values for st2 since each s∗d
only depends on std+1 and h1 can only add a normalization

factor for E [Nd] for d ≥ 2. The same argument can be done

for realization of h−

d−2,k on day d for each k. Hence, no matter

what realization comes out for hd−1 and h−

d−2,k, s∗d will be the

same as initial optimum value found from (25), which means

we do not have to worry about realizations of h1, . . . , ht−1

and h−

1,k, . . . , h
−

t−2,k.

C. Experimental Results

In Fig. 6, we compare the performance of optimizing Dorf-

man group sizes on a daily basis using (11) with optimizing

(25). Here, we choose N = 1000, t = 20, p = 0.12. The

curves show that by optimizing (25) we can get some benefits

in terms of number of tests spent. Although optimum values of

(25) are different from (11), rounding the group sizes to integer

values removes some of the benefits of optimizing (25).

In Fig. 7 and Fig. 8, we compare the performance of

Dorfman testing using (25) with dynamic non-adaptive group

testing (CCA) using two different number of tests per day, Td,

values. The infection model is as stated above, i.e., each day

infections occur i.i.d. with N = 1000, t = 50, p = 0.035.

Here, we also show daily population size Nd, as well as the

number of people that have not been detected for more than

2 days for the CCA algorithm (note that Dorfman testing

requires at most 2 days to find infected individuals). For CCA,

if we chose the number of tests as Td = 0.8epNd lnNd, then,

Dorfman testing outperforms CCA. If we decrease 0.8 factor

to 0.7 as in Fig. 8, the number of undetected people explodes

for the CCA algorithm.

V. CONCLUSION

In this paper, we introduced an adaptation of Dorfman group

testing for dynamical settings with disease spread over time.

We investigated the benefits as well as complications of the
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Fig. 8. CCA versus Dorfman testing for i.i.d. infection model with Td =
0.7epNd log(Nd).

proposal adaptation, and compared its performance to that of

a state-of-the-art non-adaptive testing method. By introducing

the quarantine concept and its costs, we showed how optimal

Dorfman group sizes can change, and investigated the trade-off

between the test cost, quarantine cost, and disease progression.

This theoretical quarantine modeling is similar to practically

implemented close-contact tracing in communities during the

ongoing covid-19 pandemic, where accurate tests like PCR

may result in delays, during which time the individuals may

be presumed potentially infected, and may be asked to be

quarantined. We also showed that optimum dynamic Dorfman

group sizes can differ from the static case in i.i.d. settings.
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