
Interpretable Hierarchical Bayesian Modeling of
Cell-Type Distributions in COVID-19 Disease

Sarah Parsons, Nathan P. Whitener, Sapan Bhandari and Natalia Khuri∗
Department of Computer Science

Wake Forest University, Winston-Salem, North Carolina, 27109
∗ Corresponding author: natalia.khuri@wfu.edu

Abstract—High-throughput sequencing of ribonucleic acid
molecules is used increasingly to understand gene expression in
organs, tissues, and therapies, at a single-cell level. To facilitate
the discovery of the heterogeneity and cell-specific factors of the
COVID-19 disease, we use an interpretable computational ap-
proach that derives cell mixtures from peripheral blood mononu-
clear cells of healthy donors, and influenza, asymptomatic, mild
and severe COVID-19 patients. Cell mixtures are generated using
hierarchical Bayesian modeling and are subsequently used as
features in the gradient boosting tree classifier. Balanced accuracy
of five-fold cross-validation was 68%, significantly higher than
expected by random chance. Moreover, 11 out of 19 donors’
samples were classified accurately. The main advantage of the
mixture-based approach compared to the traditional feature-
based classification, is its ability to capture associations between
genes as well as between cells.

Index Terms—COVID-19, extreme gradient boosting tree,
hierarchical Bayesian modeling, single-cell gene expression

I. INTRODUCTION

Cells are the basic building blocks of all organisms and,
due to the technological advances, they can now be stud-
ied individually. Single-cell sequencing of ribonucleic acid
(RNA) molecules (scRNA-seq), for example, has been used
to examine gene expression in single cells from cancer [1],
kidney [2], brain [3] and autoimmune [4] diseases, as well as
the coronavirus disease 2019 (COVID-19) [5]. These stud-
ies provided insights into cell-specific changes that occur
in different tissues, patients and conditions, as well as into
the heterogeneity and stochasticity of gene expression. The
majority of these studies are descriptive, that is they mainly
aim to elucidate the diversity of cells’ populations within
different samples. However, the overarching aim of scRNA-
seq is to be able to predict patient’s disease and response to
treatments. To create predictive models, supervised machine
learning (ML) may be used to automatically discover the
relationships between gene expression and types of individual
cells. Then, an entire sample of individual cells from a donor
may be classified into healthy or diseased, based on the relative
proportions of the diverse cell types, for example.

Data sets of scRNA-seq experiments have several challeng-
ing characteristics, such as zero-valued inflation, high dimen-
sionality and sample biases. To overcome these challenges, ex-
tensive data preprocessing is used to normalize, scale, reduce
and transform gene expression into low-dimensional represen-
tation [6]. However, such transformations render the data non-
interpretable, because the expressions of the individual genes

are lost during these manipulations. Therefore, to address
the loss of interpretability resulting from data preprocessing,
we represent cells as cell-type mixtures, derived from the
distributions of gene expressions within them. We show that
these cell mixtures can be used as features in the classification
of peripheral blood mononuclear cells (PBMCs). Furthermore,
we demonstrate that classifiers trained with cell mixtures and
with the standard cell embeddings, perform similarly in cross-
validation and in sample-out validation experiments. However,
cell mixtures preserve the information about gene expressions
within them, allowing for ease of interpretation and fine-
grained analyses.

II. PRIOR AND RELEVANT WORK

Here, we focus on COVID-19 disease and its prediction
from the scRNA-seq data. As the primary data source, we use
the immunophenotyping study of healthy donors, influenza,
asymptomatic, mild and severe COVID-19 patients [5]. In
prior work, cluster analysis was used to partition scRNA-seq
data into 22 clusters, followed by the manual annotation of
marker genes, differentially expressed in each cluster com-
pared to all other clusters, and 13 known immune cell-types
were derived. To identify immune genes correlating with the
disease status, different visualizations were constructed and
analyzed. Other scRNA-seq studies that followed, used the
same workflow to analyze their data.

Here, we extend generative mixture modeling into a five-
class predictor to identify the healthy, influenza, asymptomatic,
mild, and severe COVID-19 samples. As the backbone learn-
ing algorithm, we adopt the decision tree induction, which
builds a tree-like graph structure with a root node having no
incoming edges. All other nodes have exactly one incoming
edge. A node with outgoing edges is referred to as a test node,
and the leaves of the tree are known as the decision nodes.
In the decision tree methodology, the classification process
is modeled using a set of hierarchical decisions about the
features. These decisions are known as the split criterion, a
test of one or more features in the training data, which divides
the data into two or more parts. Finally, each decision node is
assigned to one class, depending on the response of the tests
at the internal nodes [7].

Among different decision tree classifiers, gradient boosting
trees have been shown to achieve high performance in nu-
merous application domains. Gradient boosting is the process
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of combining weak-learning decision trees into an optimal
model [8]. A weak decision tree is the one that predicts
class labels slightly better than random chance, and thus,
it is not useful by itself. However, when weak learners are
combined, the model improves its performance. Moreover, the
final model may include features that have been ignored in one
of the weak-learning decision trees, also resulting in higher
classification performance [9]. To make ensemble learning
of decision trees more efficient and flexible, a parallel tree
boosting system, called XGBoost, was designed and ported to
a variety of programming languages and platforms.

Among the many advantages of XGBoost, is its insensi-
tivity to data normalization and built-in estimation of feature
importance [10]. While boosting trees can be trained using
high-dimensional data sets, for efficiency, feature selection
and reduction are typically performed first. In scRNA-seq,
preprocessing consists of the selection of 700 to 2000 highly
variable genes, followed by the principal component analysis
and the harmonization of principal components to eliminate
experimental biases [6]. At the end, 2 to 20 harmonized
features are derived from over 10,000 original genes, and
these features are used in clustering and classification tasks.
Unfortunately, such data manipulations lead to the loss of
interpretability in the predictive models because gene ex-
pression values are encoded into low-dimensional harmonized
embedding vectors.

In this work, we make two contributions. Firstly, we show
the utility of ML in the classification of PBMC samples
into multiple conditions. Secondly, we show that XGBoost
classifiers can be successfully trained using cell-type mix-
tures derived via generative hierarchical modeling. Rather
than masking original information about gene expression, our
method automatically extracts and highlights important gene
expression patterns.

III. DATA AND METHODS

A. Data Acquisition and Preprocessing

We used publicly available scRNA-seq data from a recent
immunophenotyping study [5]. In the study, PBMCs were
extracted from healthy donors, and from patients with severe
influenza and COVID-19 disease. Single cells were isolated
from each sample and their active RNA molecules were
sequenced.

We downloaded three files from the Gene Expression Om-
nibus (GEO) at the National Center for Biotechnology Infor-
mation, using accession number GSE149689. These files con-
tained cell identification, gene names, and transcript counts,
respectively. We used the Seurat package [6] to combine these
three files into one matrix comprising transcript counts. Next,
we filtered out all genes that were detected in fewer than 5%
or greater than 95% of the cells. Using GEO information, we
annotated cells with their donor information, such as age, sex,
disease type and status. We also created a categorical label for
each cell, denoting one of five conditions. Specifically, cells of
healthy donors were assigned a categorical label 0, influenza

cells were assigned 1, and asymptomatic, mild and severe
COVID-19 cells were assigned labels 2, 3, and 4, respectively.

For comparison, we also executed the standard Seurat
preprocessing of the count matrix [6]. Specifically, the count
matrix was log-transformed, and 720 highly variable genes
were selected. Next, principal component analysis and data
harmonization were performed to create harmonized cell em-
beddings of size 20.

B. Hierarchical Bayesian Model

To represent each cell as a cell-type mixture, we applied a
three-level hierarchical Bayesian modeling. Specifically, we
modeled each cell as a mixture of distinct populations or
clusters of identifiable cell-types (n=20), and each cluster was
modeled as an infinite mixture over an underlying set of cluster
probabilities, characterized by the distribution of transcript
counts within them.

Assuming that there are K latent clusters within the data,
V unique genes and D cells in the data set, we first assign a
gene distribution to each cell, denoted as βk for each cluster k.
Here, each βkw is the likelihood that gene w will be expressed
in cluster k. Next, a cluster distribution, θd, will be generated
for each cell d, where θdk is the likelihood that cell d will
be assigned to cluster k. At last, we assign each gene w
in cell d to cluster k with a probability θdk, and draw gene
w′ from distribution βk. The generative modeling process is
summarized as follows.

1) Draw gene distributions βk ∼ Dirichlet(η).
2) Draw cluster distributions θd ∼ Dirichlet(α).
3) For each gene w in cell d:

a) Draw cluster assignment zdn ∼ Cat(θd).
b) Draw gene wdn ∼ Cat(βzdn ).

Cat(·) represents a categorical distribution, η and α are
two hyper-parameters of Dirichlet distributions, where η has
a length of V , and α has a length of K. The generative
process described above is known as the Latent Dirichlet
Allocation, a popular method for identifying latent topics
within a collection of texts [11]. Unstructured text data has
characteristics similar to scRNA-seq data, such as data sparsity
and high dimensionality.

C. Experimental Design

The practical task of our problem domain is to develop
a system for the classification of scRNA-seq samples into
different classes. Given this task and the prior knowledge in
the form of paired observations of cells’ features and cell
types, a classifier can be trained using XGBoost. We used
categorical accuracy in the assessment of XGBoost’s learning
performance. Specifically, we encoded categorical class labels
(healthy, influenza, asymptomatic, mild and severe COVID-19)
into one-hot vectors and calculated the percentage of predicted
labels that matched with the actual values of the encoded
labels.

We compared our mixture-based classifier with a classifier
trained with harmonized cell embeddings, and performed
two computational experiments. In the first experiment, we
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estimated the accuracy of each classifier using five-fold cross-
validation. In five-fold cross-validation, we divided the data
into k partitions of the same size [12]. For each partition, we
trained the model on the k − 1 partitions, and evaluated the
model on the ith partition. Then, the average of the k per-
formance scores and their standard deviations were computed.
Cross-validation experiments are beneficial for determining if
the model’s performance had notable variance depending on
the data splits. For our experiments, we have chosen the value
of k to be 5, such that each training and validation set were
large enough to be representative of the entire data set.

To estimate the performance of the trained classifiers, we
computed two metrics, namely, normalized mutual information
(NMI) and balanced accuracy adjusted for chance. To compute
NMI, let A = {a1, a2, a3...ak} and B = {b1, b2, b3...bk}
designate the ground truth labels and the cluster labels across
k classes, respectively. In our application, k is 5. Then, NMI
can be calculated as follows: NMI = (2×I(A,B))/(H(A)+
H(B)), where I(A,B) is the mutual information of A and B,
computed as I(A,B) =

∑K
i=1

∑K
j=1(|ai∩bj |/N)×(log(N×

(|ai|∩ |bj |))/(|ai|×|bj |)), and H(A) and H(B) are the entropy
of partitions A and B: H(A) = −

∑K
i=1

(ai/N)× log(ai/N),
H(B) = −

∑K
i=1

(bi/N)× log(bi/N). N is the total number
of cells. NMI is a metric that is independent of the absolute
values of the labels, that is a permutation of the labels in A
and B does not change the score. NMI scores range between
0 and 1, and higher scores indicate better performance.

Because our data set was imbalanced in class label distri-
bution, we also used balanced accuracy, which avoids inflated
performance estimates. This metric weighs raw accuracy ac-
cording to the inverse prevalence of true class labels. Specif-
ically, given the predicted class label, ŷi for sample i, we
compute balanced accuracy as I∑

ŵi

∑
1(ŷi == yi)ŵi, where

I(x) is an indicator function. The range of balanced accuracy
scores is 1

1−numclasses
to 1. When adjusted for chance, bal-

anced accuracy reports relative increase from 1
numclasses

, and
the higher the score of the balanced accuracy, the better the
performance.

In the second experiment, we studied the performance of
each classifier using sample-out validation. Specifically, we
removed all cells belonging to one donor, trained a classifier
using remaining cells and predicted cell types of the withheld
donor’s sample. To assign a single class label to each withheld
sample, we find the cell-type with the largest proportion and
use it as a sample label. This process was repeated for each
donor in our data set.

IV. RESULTS

A. Cell Type Classification

We trained two gradient boosting tree classifiers using the
XGBoost package [10]. The first (proposed) classifier used
as features, cell-type mixtures from our hierarchical Bayesian
modeling and the second classifier used harmonized cell
embeddings computed by the Seurat package [6].

In the five-fold cross-validation experiments, performance
was similar. The first classifier, built using cell-type distribu-
tions, achieved the average NMI score of 0.4813±0.0046 and
the average balanced accuracy of 0.6834± 0.0040. The NMI
score of the second classifier was 0.4788 ± 0.0075 and its
balanced accuracy score was 0.6926± 0.0067, respectively.

Next, we examined cross-validated performance for each
class separately (Table I). The proposed classifier had high
accuracy in predicting healthy (0.8148), influenza (0.8144) and
mild COVID-19 (0.7838). However, classification of severe
COVID-19 cells was less accurate, with a balanced accuracy
of 0.7320, and even lower balanced accuracy of 0.5886 was
seen for asymptomatic cells.

The standard classifier had a similar performance, except for
the influenza and asymptomatic COVID-19 samples. Balanced
accuracy of classifying healthy, mild and severe COVID-
19 samples differed from the proposed classifier, by 1% to
2%. However, approximately 5% decrease was noted in the
classification of influenza cells and almost 8% increase in
the classification of asymptomatic COVID-19 samples, when
harmonized cell embeddings were used to train XGBoost.

TABLE I
PER-CLASS CLASSIFICATION ACCURACY. FOR EACH CELL TYPE, SHOWN

ARE THE NUMBER OF CELLS AND THE NUMBER OF DONORS,
CLASSIFICATION ACCURACY OF THE PROPOSED AND STANDARD

APPROACHES, AS WELL AS THE DIFFERENCE BETWEEN THE PROPOSED
AND STANDARD CLASSIFICATION ACCURACY.

Label Cells Donors Proposed Standard Difference
Healthy 16,147 4 0.8148 0.8288 0.0140
Influenza 9,054 5 0.8144 0.7597 -0.0548
Asymptomatic 3,505 1 0.5886 0.6719 0.0833
Mild COVID-19 14,772 5 0.7838 0.8006 0.0168
Severe COVID-19 6,742 5 0.7320 0.7078 -0.0242

Similarly, misclassification patterns did not differ between
the two classifiers (Table II). Notably, about 14% of healthy
cells were misclassified as mild COVID-19, and a similar
proportion of mild COVID-19 cells were misclassified as
healthy cells. About 7% of the severe COVID-19 cells were
assigned mild status, and a similar percentage of mild cells was
assigned to the severe COVID-19 class. Misclassified influenza
and asymptomatic cells were distributed equally across all
other classes.

In the sample-out validation experiments, we repeatedly
removed all cells of a single donor, trained classifiers using
remaining cells and predicted class labels of the withheld cells.
Majority rule was then applied to assign a unique class label to
the entire sample. Overall, both classifiers predicted correctly
11 out of 19 samples (Fig. 1).

Standard classifier correctly identified all healthy samples
(3, 9, 10, and 12), while our proposed classifier incorrectly
assigned influenza status to sample 10. All mild COVID-19
samples (1, 2, 6, and 19) were correctly predicted by the stan-
dard classifier. Our proposed approach assigned erroneously
a healthy status to sample 6, while correctly classifying the
remaining three samples. Both classifiers missed asymptomatic
patient 7 and labeled this sample as mild COVID-19. There
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TABLE II
CONFUSION MATRICES OF THE PROPOSED AND THE STANDARD XGBOOST CLASSIFIERS. PROPORTION OF CELLS PREDICTED FOR EACH CLASS ARE

SHOWN IN ROWS. COLUMNS DENOTE TRUE CLASS LABELS.

Healthy Influenza Asymptomatic COVID-19 Mild COVID-19 Severe COVID-19
Labels Proposed Standard Proposed Standard Proposed Standard Proposed Standard Proposed Standard
Healthy 0.8148 0.8288 0.0577 0.0585 0.075 0.0696 0.1325 0.1147 0.0366 0.0438
Influenza 0.0748 0.0945 0.8144 0.7597 0.0234 0.0108 0.0171 0.0296 0.0206 0.026
Asymptomatic COVID-19 0.0355 0.0237 0.0093 0.0041 0.5886 0.6719 0.0424 0.0379 0.0233 0.0252
Mild COVID-19 0.1393 0.1213 0.0179 0.0205 0.085 0.0856 0.7838 0.8006 0.0719 0.0743
Severe COVID-19 0.0307 0.0403 0.0179 0.0221 0.0534 0.0676 0.0652 0.0598 0.732 0.7078

were several disagreements in the prediction of severe COVID-
19 samples (5, 8, 11, 15, and 16). Surprisingly, both classifiers
labeled sample 5 as asymptomatic, and the standard classifier
mislabeled sample 8 as a mild COVID-19 sample. Samples
15 and 16 were correctly labeled by both classifiers. Finally,
influenza samples proved to be challenging to classify as
well. Samples 4, 17 and 18 were predicted as healthy by
both classifiers, and sample 14 was incorrectly labeled by the
standard classifier.
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Healthy Influenza Asymptomatic COVID-19

Mild COVID-19 Severe COVID-19

Fig. 1. Results of sample-out validation experiments. Shown are stacked bar
plots depicting predicted cell type within each sample. Proportions of the
predicted cell types are shown on the y-axis and each sample is represented
by a bar. X symbols denote misclassified samples.

In summary, both classifiers had high NMI scores and
balanced accuracy greater than the chance performance of
0.20. However, standard encoding of the data in the form of
harmonized embeddings provided no interpretable insights. On
the other hand, our proposed approach is amiable to in-depth
analyses post-classification, as shown next.

B. Analysis of Cell Mixtures

For brevity, we refer to cell-type mixtures as clusters. Cell
clusters comprised unique distributions of cells (Fig. 2). For
example, clusters 6, 16, 18, 19 and 20 comprised mostly cells
from healthy samples, and clusters 8, 11 and 17 had influenza
cells. Cells from mild COVID-19 were overrepresented in
clusters 7, 10 and 13, while severe COVID-19 cells were found

in clusters 4, 5, 14, and 15. Finally, asymptomatic COVID-19
cells were detected in clusters 1, 13 and 15, and they were
completely absent from several clusters, such as cluster 8, 12,
14, and 18, for example.

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5

cluster 11 cluster 12 cluster 13 cluster 14 cluster 15

cluster 6 cluster 7 cluster 8 cluster 9 cluster 10

cluster 16 cluster 17 cluster 18 cluster 19 cluster 20

Healthy Influenza Asymptomatic COVID-19

Mild COVID-19 Severe COVID-19

Fig. 2. Composition of cell clusters. Shown are pie charts for each cluster
(cell-type mixture) comprised cells from healthy, influenza, asymptomatic,
mild and severe COVID-19 samples.

Next, we examined distributions of cell clusters in different
conditions. Specifically, for each cluster of cells, we computed
their representation in healthy, influenza, and asymptomatic,
mild and severe COVID-19 samples (Fig. 3). Several pat-
terns emerged. First, influenza cluster distribution differed
from distributions of other conditions. Cluster distributions
were similar between healthy and mild COVID-19 samples,
as well as between severe and asymptomatic COVID-19
samples, respectively. Healthy samples comprised cells from
all clusters, with the exception of cluster 5. Cluster 5 was
also not detected in influenza nor asymptomatic samples.
However, cells from cluster 5 were abundant in mild and
severe COVID-19 samples. Similarly, cells from clusters 4
were found in small quantities in healthy, influenza, and
asymptomatic samples, and in greater proportion in mild and
severe COVID-19 samples. Cells from cluster 1, 11 and 15
were also underrepresented in healthy samples. On the other
hand, cells from cluster 3, 6, 18, 19 and 20, were abundant
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Fig. 3. Distribution of clusters in cell samples. Shown are bar plots of the proportions of cells in each cluster, detected in healthy, influenza, asymptomatic,
mild and severe COVID-19 samples. Cell-type mixture or cluster identification are on the y-axes and their proportions are on the x-axes.

in healthy and mild COVID-19 samples, yet were barely
detectable or absent in all other samples.

As mentioned, influenza samples had distinct cluster dis-
tributions. About 70% of cluster 17 cells were found among
influenza samples, followed by over 50% of cells from clusters
8 and 11, and in a much lesser proportion, from clusters 9 and
12.

Asymptomatic cells were all derived from a single donor
and, hence, had a very small proportion in each cluster. The
most dominant cluster was cluster 1, also found in similar
abundance in mild COVID-19 patients, followed by clusters
13 and 15. Clusters 8, 12, 14, 17 and 18 were not detected
among asymptomatic cells.

Although similar to healthy samples, yet distinct from
severe COVID-19 samples, mild COVID-19 cells were rep-
resented by over 50% of cells from clusters 7 and 10, and
over 40% of cells from clusters 4, 5, 6, 13, 18 and 19. Similar
to the asymptomatic sample, cluster 12 was completely absent
in mild COVID-19 samples, and clusters 8, 11, and 17 were
found in small quantities.

Interestingly, over 40% of cluster 12 cells, which were
absent among asymptomatic and mild COVID-19 samples and
detected in moderate quantities, were found in severe COVID-
19 samples. Moreover, clusters 15 and 16 were dominant in
severe COVID-19 and underrepresented in all other samples.

To better understand the contribution of each cluster to sam-
ple type, we computed proportions of each cluster in samples
of individual donors and performed a two-way clustering of
donors and cell clusters (Fig. 4). Interestingly, most of the
clusters were present in all donors’ samples. We hypothesize
that cell types in these clusters may not carry information
important for the prediction of the disease. On the other hand,
inter-donor differences were observed in 9 out of 20 clusters.
These differences led to four distinct groupings of donors.

The first group encompasses 3 influenza and 1 severe
COVID-19 donors (donors 13, 14, 15, and 18), characterized
by a large proportion of cells from clusters 1, 3, 9 and 11.
The second group contains cells from three donors with mild
COVID-19, two influenza and one healthy donor. These cells
come from clusters 1, 2, 3, and 19. Three severe COVID-19
and one asymptomatic donor form the third group of donor
cells. Finally, the last group contains mixed cell populations,
with cells of healthy, mild and severe COVID-19 donors. No-
tably, two outlier donors were observed in the first (influenza

19 9 20 13 12 4 14 5 17 8 7 15 10 18 6
18  influenza
14  influenza
13  influenza
15  severe COVID-19
16  severe COVID-19
9  healthy
19  mild COVID-19
12  healthy
3  healthy
7  asymptomatic COVID-19
5  severe COVID-19
8 severe COVID-19
11 severe COVID-19
17 influenza
10 healthy
4  influenza
6  mild COVID-19
1  mild COVID-19
2  mild COVID-19

0.0 0.2 0.4
Fraction

3 11 1 2 16clusters

donors

Fig. 4. Two-way clustering of cells. Shown is a heatmap of two-way clustering
of cells of 19 donors and cells of 20 mixtures or clusters. Donor-wise (rows)
and mixture-wise (columns) dendrograms are drawn. Color scale represents
proportions of each cluster in donors’ samples, with gray and red colors
denoting low and high proportions, respectively.

donor 18) and fourth (severe COVID-19 donor 15) groups,
each possessing donor-specific distributions of cells.

C. Interpretation of Cell Mixtures

To demonstrate a more advanced analysis of interpretable
insights from the data set, we computed XGBoost feature gains
of cell mixtures.

Consider for example, cluster 4, comprising 60 cells derived
mostly from mild and severe COVID-19 donors (Fig. 5).
When used as a feature in the XGBoost classifier, cell mixture
of cluster 4 had the largest average gain in the five-fold
cross-validation experiments. We examined the top 30 genes
deemed most important to the cell mixture of cluster 4. Among
these genes, were thyroid peroxidase (TPO), prostaglandin
D2 receptor 2 (PTGDR2), and TNFRSF4, for example. TPO
is an enzyme that plays an important role in the produc-
tion of thyroid hormones, and thyroid dysfunction has been
reported in around 15% of patients with mild to moderate
COVID-19 [13]. PTGDR2 is preferentially expressed in T
helper cells, where it mediates the pro-inflamatory response
and lymphopenia in COVID-19 disease, and predicts disease
morbidity and mortality [14]. Finally, TNFRSF4 is a known
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immunoregulatory gene, involved in immunoresponse during
COVID-19 disease [15].

Similar analyses can be performed for the remaining 20
clusters, resulting in an additional evidence for prior reports
about COVID-19 disease or in new insights.

The main limitation of our approach is that, similarly to
cluster analysis, the number of mixtures must be determined
by the user. Although some metrics, such as perplexity and
coherence, had been proposed to find the number of mixtures
automatically, they fail to guide the modeling process. For in-
stance, we observed that as the number of mixtures increases,
they become less populated (contain fewer cells).

V. CONCLUSION

Analysis of gene expression in single cells has become an
important tool for the study of cell-specific changes that occur
in different patients, disorders and diseases. Current data trans-
formations, such as harmonized cell embeddings, may result in
noninterpretable models. In this work, cell-type assignment is
made using hierarchical Bayesian modeling. These cell-type
mixtures are then used as features in the gradient boosting
tree classifier that achieved, in five-fold cross-validation, a nor-
malized mutual information of 48% and a balanced accuracy
of 68%. In sample-out classification, our approach predicted
correctly 11 out of 19 single cell samples. These results are on
par with the baseline gradient boosting tree classifier that uses
harmonized cell embeddings as features. The main advantage
of our approach is its interpretability and transparency, and
its application is not limited to PBMC data. Future work

will focus on designing and implementing a user interface
to support the fine-grained examination of genes expressed in
each cell mixture.

ACKNOWLEDGMENT

This research was partially supported by the Pilot Grant
from Wake Forest Center for Biomedical Informatics. The au-
thors thank Tian (Simon) Yun and Cody Stevens for technical
assistance and acknowledge the Distributed Environment for
Academic Computing (DEAC) at Wake Forest University for
providing HPC resources that have contributed to the research
results reported within this paper. URL: https://is.wfu.edu/deac

REFERENCES

[1] M. Bartoschek, N. Oskolkov, M. Bocci, J. Lövrot, C. Larsson, M. Som-
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