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Abstract

This paper proposes regenerative particle Thompson sampling (RPTS), a flexible variation
of Thompson sampling. Thompson sampling itself is a Bayesian heuristic for solving stochastic
bandit problems, but it is hard to implement in practice due to the intractability of maintaining
a continuous posterior distribution. Particle Thompson sampling (PTS) is an approximation
of Thompson sampling obtained by simply replacing the continuous distribution by a discrete
distribution supported at a set of weighted static particles. We observe that in PTS, the weights
of all but a few fit particles converge to zero. RPTS is based on the heuristic: delete the decaying
unfit particles and regenerate new particles in the vicinity of fit surviving particles. Empirical
evidence shows uniform improvement from PTS to RPTS and flexibility and efficacy of RPTS
across a set of representative bandit problems, including an application to 5G network slicing.

1 Introduction

A bandit problem is a sequential decision problem that elegantly captures the fundamental trade-off
between the exploitation of actions with high rewards in the past and the exploration of actions
that may produce higher rewards in the future. Thompson sampling (TS) is a Bayesian heuristic
for solving bandit problems with an assumption that the rewards are generated according to a
given distribution with a fixed unknown parameter. TS maintains a posterior distribution on the
parameter and selects an action according to the posterior probability that the action is optimal.
The biggest advantage of TS is its ability to automatically handle setups with a complex information
structure, where knowing the performance of one action may inform properties about other actions.
Also, it has strong empirical performance [5]. Theoretical performance guarantees of TS have
been established for some bandit problems [12, 1, 2, 8]. However, efficient updating, storing,
and sampling from the posterior distribution in TS are only feasible for some special cases (e.g.
conjugate distributions). For general bandit problems, one has to resort to various approximations,
most of which are complicated and have restrictive assumptions.

Particle Thompson sampling (PTS) is an approximation of TS based on the following idea: re-
place the continuous posterior distribution by a discrete distribution supported at a set of weighted
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static particles. Updating the posterior distribution then becomes updating the particles’ weights
by Bayes formula, followed by normalization. PTS is flexible: it applies to very general bandit
setups. Also, PTS is very easy to implement. However, it may seem on the surface that the crude
approximation may bring down the performance of TS significantly, because the set of particles
in PTS is finite and static and may not contain the actual parameter. Intuitively, the perfor-
mance of PTS can be improved by using more particles. However, that comes with an increasing
computational cost.

The main contributions of this paper:

• We provide an analysis of PTS for general bandit problems, without assuming that the set of
particles contains the hidden system parameter. The main result is a drift-based sample-path
necessary condition on the surviving particles, illuminating the phenomenon that fit particles
survive and unfit particles decay.

• We propose an algorithm, regenerative particle Thompson sampling (RPTS), to improve PTS.
The heuristic is: periodically replace the decaying unfit particles in PTS with new generated
particles in the vicinity of the survivors. Empirical results show that RPTS algorithms out-
perform PTS uniformly for a set of representative bandit problems. RPTS is very flexible
and easy to implement.

• We show an application of PTS and RPTS to network slicing, a 5G communication network
problem, and demonstrate their efficacy through simulation.

The remainder of this paper is organized as follows. Section 2 lists some related work. Section
3 introduces the general setup and notation of stochastic bandit problems and PTS. Section 4
provides a sample-path analysis of PTS. Section 5 introduces RPTS and presents some simulation
results. Section 6 shows an application of PTS and RPTS to network slicing. Section 7 concludes
the paper and mentions some potential future work.

2 Related Work

See [4] and [15] for a survey and recent developments in bandit problems.
Upper-confidence-bound (UCB) algorithms [3, 7] have certain theoretical guarantees for some

simple bandit models. KL-UCB [7] even meets a lower bound on regret established in [14]. Empiri-
cally, UCB algorithms are not very competitive in the non-asymptotic regime due to their inefficient
exploration and inability to take advantage of the problem structure for complex bandit problems.

Reward-biased maximum likelihood estimation (RBMLE) [16, 11] reduces to an indexed pol-
icy like UCB and performs well compared to state-of-art algorithms. But for many problems in
which the actions give information about the parameter in complicated ways, there is no efficient
implementation of RBMLE.

Thompson sampling (TS) [20] has strong empirical performance [5] and can handle rather
general and complex stochastic bandit problems [8, 19]. Note that there are certain problems for
which TS does not work well [19] and it is still an active area of research to identify such problems
and design algorithms to solve them.

TS can be implemented efficiently in setups where a conjugate prior exists for the reward
distribution. In cases where a conjugate prior is not available, one need to resort to approximations
of TS, such as Gibbs sampling, Laplace approximation, Langevin Monte Carlo, and boostrapping
[19]. These approximations are either complicated, or rely on restrictive assumptions.
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[17] proposes ensemble sampling, which is related to the idea of PTS because it aims to maintain
a set of particles (called “models” in the paper) independently and identically sampled from the
posterior distribution in order to approximate TS. Particles in ensemble sampling are unweighted. A
major restriction of the algorithm is that it requires Gaussian noise in the observation. Also, except
in special setups, updating the particles in ensemble sampling requires solving an optimization
problem that accounts for all the data from the start to the current time.

To the best of our knowledge, the term particle Thompson sampling first appeared in [13],
where the authors apply PTS as an efficient approximation of TS to solve a matrix-factorization
recommendation problem. Note that in their work, the particles are not static, but are incrementally
re-sampled at each step through an MCMC-kernel. The re-sampling method relies heavily on the
specific problem structure. It is not clear how it can be generalized to other bandit problems.

[8] analyzes TS for general stochastic bandit problems. The main result is that with high
probability the number of plays of non-optimal actions is upper bounded by B + C log T , where
B,C are problem-dependent constants and T is the time horizon. For technical tractability, the
paper assumes the prior distribution of the parameter is supported over a finite (possibly huge)
set instead of a continuum. Therefore, TS in the paper is tantamount to PTS, with the finite
prior support set equivalent to a set of particles. The result of the paper relies on a realizability
assumption (called “grain of truth” in the paper): the finite support set of the prior includes the
true system parameter. However, for PTS when the true parameter exists in a continuum, the
realizability assumption is unreasonable. In fact, without the realizability assumption, PTS may
be inconsistent, i.e., the running average regret may not converge to zero. In this paper, PTS is
analyzed without the realizability assumption. The analysis is inspired by [8], especially on how
KL divergence comes into play in the measurement of the fitness of particles.

3 Setup and Preliminaries

3.1 Stochastic bandit problem

A stochastic bandit problem contains the following elements: an action set A, an observation space
Y, a parameter space Θ, a known observation model Pθ(·|a) and a reward function R : Y → R.
Consider a player who acts at steps t = 1, 2, · · · . At step t, the player takes an action At ∈ A,
then observes Yt ∈ Y according to the observation model Pθ∗(·|At) for some fixed and unknown
θ∗ ∈ Θ, independent of past observations. The observation Yt then incurs a reward Rt = R(Yt).
The goal of the player is to maximize the cumulative reward. For notational convenience, we
denote an instance of the stochastic bandit problem by StochasticBandit(A,Y,Θ, Pθ(·|a), R, θ∗). 1

Let Ht = (A1, · · · , At, Y1, · · · , Yt) denote the history of actions and observations up to time t. An
algorithm is a (possibly randomized) mapping from Ht−1 to A, for each step t. The performance
of an algorithm is measured by regret. Let a∗ ≜ argmaxa∈A Eθ∗ [R(Y )|a] denote the optimal action
that maximizes the mean reward, assuming complete knowledge about θ∗. Let R∗ ≜ Eθ∗ [R(Y )|a∗]
denote the maximum expected reward. The regret of an algorithm that selects At at time t is
regt ≜ R∗ − Eθ∗ [R(Y )|At], the difference between the expected reward of an optimal action and
the action selected by the algorithm. The cumulative regret and running average regret up to time
t are

∑t
τ=1 regτ and 1

t

∑t
τ=1 regτ , respectively.

1The problem can be made more general by adding contexts. Let C be a context set. The observation model
becomes Pθ(·|a, c). At each step of the game, the game player receives an arbitrary context ct ∈ C before taking action
At. The observation Yt follows distribution Pθ∗(·|At, ct). This is known as the contextual stochastic bandit model,
for which PTS still works. The reason we do not use this more general model here is that we want to emphasize the
key word stochastic, not contextual.
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Example 1 (Bernoulli bandit). Let K be a positive integer. A Bernoulli bandit problem depicts a
player who picks an arm indexed by a ∈ {1, · · · ,K} at each step, which generates a reward of either 0
or 1 according to a Bernoulli distribution parameterized by θ∗a ∈ [0, 1], fixed and unknown. This is a
stochastic bandit problem with A = {1, 2, · · · ,K}, Y = {0, 1}, Θ = [0, 1]K , Pθ(·|a) ∼ Bernoulli(θa),
and R(y) = y. This is a bandit problem with separable actions – the observation distribution for
each action is parametrized by a corresponding coordinate of θ∗.

Example 2 (Max-Bernoulli bandit). Let K,M be positive integers with K ≥ 2 and M < K. A
max-Bernoulli bandit problem is similar to the Bernoulli bandit, with arms indexed by {1, · · · ,K}
and each arm is associated with a Bernoulli distribution with a fixed and unknown parameter θ∗a.
The difference is that, in a max-Bernoulli bandit problem, the player picks M different arms at each
step instead of one. The reward is the maximum of theM binary values generated by theM selected
arms. This problem can be formulated as a stochastic bandit problem with Θ = [0, 1]K , A =

([K]
M

)
=

{S ⊂ [K] : |S| = M}, Y = {0, 1}. Given a = (a1, · · · , aM ) ∈ A, observe Y = maxm∈[M ]Xm, where
Xm ∼ Bernoulli(θ∗am). That is, the observation model is Pθ(·|a) ∼ Bernoulli

(
1−

∏
m∈M (1− θam)

)
.

The reward function is R(y) = y. Actions in the max-Bernoulli bandit problem are not separable.
The number of actions,

(
K
M

)
, can be much larger than K, the dimension of the parameter space.

The problem is considered in [8].

Example 3 (Linear bandit). A linear bandit problem has two parameters: a positive integer K
and σ2

W > 0. It is a stochastic bandit problem with Θ = RK , A = SK−1 = {x ∈ RK : ∥x∥2 = 1},
the surface of a unit sphere in RK , Y = R and R(y) = y. Given an action a ∈ A, we observe
Y = ⟨θ∗, a⟩ + W , where θ∗ ∈ ΘK is fixed and unknown and W ∼ N (0, σ2

W ) is some Gaussian
noise. That is, the observation model is Pθ(·|a) ∼ N (⟨θ, a⟩ , σ2

W ). The problem is named “linear”
because the expected reward in each round is an unknown linear function of the action taken. This
is an example of a bandit problem in which the dimension of the parameter space is finite, but the
number of actions is infinite.

3.2 Particle Thompson sampling (PTS)

Thompson sampling (TS) is the algorithm for solving stochastic bandit problems, shown in Algo-
rithm 1.

Algorithm 1 Thompson sampling (TS)

Inputs: A,Y,Θ, Pθ(·|a), R, θ∗

Initialization: prior π0 over Θ

1: for t = 1, 2, · · · do
2: Sample θt ∼ πt−1

3: Play At ← argmaxa∈A Eθt [R(Y )|At = a]
4: Observe Yt ∼ Pθ∗(·|At)

5: Update πt: πt(θ) =
Pθ(Yt|At)πt−1(θ)∫

Θ Pθ(Yt|At)πt−1(θ) dθ
∀θ ∈ Θ.

6: end for

TS is often difficult to implement in practice because πt may not have a closed form. Even
if a closed form can be obtained, it is not clear how it can be efficiently stored and be sampled
from. The idea of particle Thompson sampling (PTS) (Algorithm 2) is to approximate πt by
a discrete distribution wt = (wt,1, · · · , wt,N ) supported on a finite set of fixed particles PN ={
θ(1), · · · , θ(N)

}
⊂ Θ, where N is the number of particles.
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Algorithm 2 Particle Thompson sampling (PTS)

Inputs: A,Y,Θ, Pθ(·|a), R, θ∗,PN
Initialization: w0 ←

(
1
N , · · · , 1

N

)
1: for t = 1, 2, · · · do
2: Generate θt from PN according to weights wt−1

3: Play At ← argmaxa∈A Eθt [R(Y )|At = a]
4: Observe Yt ∼ Pθ∗(·|At)
5: for i ∈ {1, 2, · · · , N} do
6: w̃t,i = wt−1,i Pθ(i)(Yt|At)
7: end for
8: wt ← normalize w̃t

9: end for

In practice, one can use a pre-determined set of points PN in Θ, or randomly generate some
points from Θ. w̃t,i is the unnormalized weight of particle i at time t. Step 6 can be alternatively
implemented by w̃t,i = w̃t−1,iPθ(i)(Yt|At), with the initialization w̃0 = w0, because it yields the
same normalized vectors wt. PTS is very flexible because it does not require any structure on the
observation model Pθ(·|a), as long as the model is given. Steps 5-7 in Algorithm 2 are easy to
implement: they require only multiplication and normalization. For notational convenience, we
denote an instance of particle Thompson sampling with particle set PN by PTS(PN ).

4 A Sample-Path Analysis of PTS

We provide an analysis of PTS in this section. The main result is a sample-path necessary condition
for surviving particles based on drift information.

Notation: Let It ∈ [N ] be the index of the particle chosen at time t. Thus, It ∼ wt−1.
Let At ∈ A be the arm chosen at time t. Let A : Θ → A be the function mapping from a
particle to the corresponding optimal arm, defined by A(θ) = argmaxa∈A Eθ[R(Y )|a]. If there
are multiple maximizers, let A(θ) be one of them selected deterministically. With a slight abuse
of notation, we sometimes abbreviate A(θ(i)) by A(i). So At = A(It). For any x ∈ RN , define
supp(x) ≜ {i ∈ [N ] : xi ̸= 0} and argmaxx ≜

{
i ∈ [N ] : xi = maxj∈[N ] xj

}
.

Recall from Algorithm 2 that the unnormalized weights of the particles evolve by the equation
w̃t,i = w̃t−1,iPθ(i)(Yt|At), where Yt ∼ Pθ∗(·|At).

Definition 1. (Drift matrix) For a given StochasticBandit(A,Θ,Y, Pθ(·|a), R, θ∗) problem and a
set of particles PN ⊂ Θ, the drift matrix D is a N ×N matrix, where

Dij ≜ E [ln w̃t,j − ln w̃t−1,j |It = i] = E[lnPθ(j)(Yt|At)|It = i] = EY∼Pθ∗ (·|A(i)) [lnPθ(j)(Y |A(i))] ,

for i, j ∈ [N ]. In words, Dij is the (exponential) drift of particle j when particle i is chosen.

The following properties of D are readily verified: 1) Entries in D are non-positive; 2) D is
independent of time, fundamentally because {w̃t} is a time-homogeneous Markov process; 3) Row
i1 and row i2 of D are the same if A(i1) = A(i2). Therefore D can have at most |A| distinct rows.
In what follows we consider drift matrices D and D′ to be equivalent if each row in D′ is equal to the
corresponding row of D up to an additive constant. Therefore, D remains in the same equivalence
class if for each i the constant −E [lnPθ∗(Y |A(i))] is added to row i. Therefore, a representative
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choice of D is the following:

Dij
equivalent

= −EY∼Pθ∗ (·|A(i))

[
ln

Pθ∗(Y |A(i))

Pθ(j)(Y |A(i))

]
= −KL

(
Pθ∗(·|A(i))

∣∣∣∣ Pθ(j)(·|A(i))
)
.

Here Dij is the negative of KL divergence between distributions Pθ∗(·|A(i)) and Pθ(j)(·|A(i)).
In this sense, the ith row of D gives the relative fitness of the particles for action A(i), and the jth

column of D gives the fitness of particle j for action A(i) varying over all i.
We need the following two assumptions before the main result.

Assumption 1 (Sample path assumptions). Consider the problem StochasticBandit(A,Θ,Y, Pθ(·|a), R, θ∗)
and suppose PTS(PN ) is run for a set of N particles PN ⊂ Θ. Assume that the sample path satisfies
the following: there exists a non-empty set S ⊂ [N ] that satisfies2

(a) (Non-zero decaying rate gap) For any i ̸∈ S and j ∈ S, lim supt→∞
1
t (ln w̃t,i − ln w̃t,j) < 0,

and

(b) (Existence of survivor limiting distribution) Gt = (ln w̃t,i − ln w̃t,j : i, j ∈ S) ∈ R|S|×|S| has a
limiting empirical distribution µG. In other words, for any bounded continuous function h on
R|S|×|S|, 1

t

∑t
τ=0 h(Gτ )→ EµG [h].

The set S can be thought of as the set of surviving particles. Assumption 1(a) says the (unnor-
malized) weight decaying rate of a non-surviving particle is strictly less than that of a surviving
particle. Consequently, the weight of a non-surviving particle converges to 0 exponentially fast.
Assumption 1(b) says that the process Gt has some ergodicity property. It is similar to saying that
Gt is Harris recurrent, except Gt is not Markov, because it excludes information about particles
not in S. Note that knowing any row of Gt determines all the other entries of Gt.

Assumption 2 (Boundedness of observation model). Assume that the observation model Pθ(·|a)
satisfies: there exists constants b0, B0 > 0, such that for any θ, θ′ ∈ Θ, b0 ≤ Pθ(y|a)

Pθ′ (y|a)
≤ B0 for any

y ∈ Y, a ∈ A.

The assumption can be easily verified for problems in which |Y| <∞ and |A| <∞, for example,
the Bernoulli bandit and max-Bernoulli bandit problems.

Define a probability vector π over [N ] by πi = limt→∞
1

t+1

∑t
τ=0wτ,i. That is, πi is the limiting

running average weight of particle i, if it exists. The following proposition shows the relationship
between π and the drift matrix D and provides a necessary condition for surviving particles in a
sample path.

Proposition 1 (Sample-path necessary surviving condition). Let StochasticBandit(A,Θ,Y, Pθ(·|a), R, θ∗)
be a given problem and PN ⊂ Θ a given set of N particles. Suppose Pθ(·|a) satisfies Assumption 2.
Consider running PTS(PN ) for the problem. Let D be the drift matrix. For a sample path of the
algorithm under Assumption 1, π is well defined and satisfies

argmax(πD) = supp(π) = S , (1)

where S is the set in Assumption 1.

2There are two additional technical assumptions on sample-path, which are put in appendix Section A to save
space.
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The proposition says that, if a set of particles S were to survive in a sample path, they must
have a limiting average selection distribution π that satisfies (1). The jth coordinate of πD, (πD)j ,
is equal to ⟨π,D·j⟩, where D·j = (D1j , · · · , DNj) is the jth column of D, the drifts of particle j
when particles 1, 2, · · · , N are chosen, which we recall can be interpreted as the fitness of particle j.
Thus, (πD)j is the average fitness of particle j, assuming distribution π is used to select a random
action A(i). Therefore, (1) means that, with respect to distribution π, each surviving particle has
the same average fitness, and the average fitness of each non-surviving particle is strictly smaller.
This aligns with our observation in experiments: fit particles survive, unfit particles decay. Note
the following caveat: Proposition 1 provides a sample-path condition for surviving particles. The
actual set of survivors may be random. Thus, there may be more than one π that satisfies (1).

Applying Proposition 1 to Bernoulli bandit with randomly generated particles in PTS, yields
the following corollary that says that not many particles can survive.

Corollary 2. Let PN be a set of N points generated independently and uniformly at random from
[0, 1]K . Consider running PTS(PN ) for a given Bernoulli bandit problem with K arms and with
θ∗ ∈ [0, 1]K . Suppose that any sample path satisfies Assumption 1. Then with probability one, at
most K particles can survive, i.e. |supp(π)| ≤ K.

We suspect that something similar can be said about the fewness of survivors for other bandit
problems in which the action space has a finite dimension K (the number of actions may be much
larger). But we don’t have a proof.

Proofs of Proposition 1 and Corollary 2 can be found in Appendix Section A. For more evidence
and intuition of the assumptions and conclusions of Proposition 1 and Corollary 2, see Appendix
Section B, where a thorough analysis of PTS for two-arm Bernoulli bandit is provided.

5 RPTS: Regenerative Particle Thompson Sampling

This section proposes regenerative particle Thompson sampling (RPTS) and demonstrates its per-
formance by simulation. Recall that, in PTS, fit particles survive, unfit particles decay, and most
particles eventually decay. When the weights of the decaying particles become so small that they
become essentially inactive, continuing using these particles would be a waste of computational re-
source. A natural thing to do is to delete those decaying particles and use the saved computational
resource to improve the algorithm. RPTS (Algorithm 3) is based on the following heuristic inspired
by biological evolution: delete unfit decaying particles, regenerate new particles in the vicinity of
the fit surviving particles.

Steps 1-8 of RPTS are the same as PTS (Algorithm 2). The difference is that RPTS adds steps
9-14. Three new hyper-parameters are introduced: fdel, the fraction of particles to delete; winact,
the weight threshold for deciding inactive particles; wnew, the new (aggregate) weight of regenerated
particles. The CONDITION in Step 9 checks if fdel fraction of the particles become inactive. If
so, we find the lowest weighted fdel fraction of the particles (Step 10), delete them, and regenerate
the same number of particles through RPTS-Exploration (Step 11). In RPTS-Exploration, we first
calculate the empirical mean µt and covariance matrix Σt of all the particles based on their current

weights wt
3, i.e. µt =

∑N
i=1wt,iθ

(i) and Σt =
∑N

i=1wt,i

(
θ(i) − µt

) (
θ(i) − µt

)T
, then generate the

new particles according to a multi-variate Gaussian distribution. IK is the K ×K identity matrix.
We use 1

K tr(Σt)IK as the covariance matrix instead of Σt, in case Σt is or close to singular. This

3According to the RPTS heuristic, one may expect to calculate µt and Σt based on the weights of the surviving
particles only, instead of all the particles. But because the surviving particles have a total weight of at least 1−winact,
close to 1, the difference is negligible.
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Algorithm 3 Regenerative particle Thompson sampling (RPTS)

Input: A,Y,Θ ⊂ RK , Pθ(·|a), R, θ∗,PN
Parameters: N , fdel ∈ (0, 1), winact ∈ (0, 1), wnew ∈ (0, 1)
Initialization: w0 ←

(
1
N , · · · , 1

N

)
1: for t = 1, 2, · · · do
2: Generate θt from PN according to weights wt−1

3: Play At ← argmaxa∈A Eθt [R(Y )|At = a]
4: Observe Yt ∼ Pθ∗(·|At)
5: for i ∈ {1, 2, · · · , N} do
6: w̃t,i = wt−1,i Pθ(i)(Yt|At)
7: end for
8: wt ← normalize w̃t

9: if CONDITION(wt, N, fdel, winact) = True then
10: Idel ← the indices of the lowest weighted ⌈fdelN⌉ particles in PN
11: {θ(i) : i ∈ Idel}

replace← RPTS-Exploration
12: wt,i ← wnew

⌈fdelN⌉ for each i ∈ Idel
13: normalize wt

14: end if
15: end for

CONDITION(wt, N, fdel, winact):
w′
t ← sort wt in ascending order

If
∑⌈fdelN⌉

i=1 w′
t,i ≤ winact: Return True

Else: Return False

RPTS-Exploration:
µt ← Eθ∼wt [θ], Σt ← Eθ∼wt [(θ − µt)(θ − µt)

T ]

Generate ⌈fdelN⌉ particles
i.i.d.∼ N (µt,

1
K tr(Σt)IK), project to Θ

particle regeneration strategy requires that the parameter space Θ is a subset of RK . If a newly
generated particle is outside of Θ, we project it to Θ in any natural way.4 Step 12 means that the
newly generated ⌈fdelN⌉ particles are assigned a total weight of wnew and each of them has the
same weight.

Typical values of the three hyperparameters are fdel = 0.8, winact = 0.001 and wnew = 0.01.
Section C in appendix elaborates on the choice of these values.

We run simulations5 to compare RPTS with PTS and TS. Selected results are shown in Figure
1. For the Bernoulli bandit problem, TS is implemented as a bench mark. For max-Bernoulli
bandit, it is not clear how TS can be implemented. Each curve is obtained by averaging over 200
independent simulations. In each simulation of PTS or RPTS, the initial particles are generated
uniformly at random from [0, 1]K .

4Alternatively, we can reject it and regenerate until it is in Θ.
5Code is available if the paper is accepted.
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(a) Bernoulli bandit with K = 10
θ∗ = [0.51, 0.52, · · · , 0.60].

(b) Bernoulli bandit with K = 100
θ∗ consists of N = 100 points uniformly spaced

over [0.5,0.7].

(c) Max-Bernoullin bandit with K = 100, M = 5
θ∗ consists of N = 100 points uniformly spaced

over [0.3,0.8].

Figure 1: Simulations

6 Application to Network Slicing

In this section, we describe an application of PTS and RPTS to 5G network slicing. Network slicing
is the partition of a network infrastructure into logically independent networks across multiple tech-
nology domains, in order to support independent vertical services with heterogeneous requirements.
A network slice is an end-to-end virtual network, formed by stitching resources across different do-
mains. Although network slicing is a promising technology, there remain many challenges both
on the system level and theory level, see [18] for a detailed account. One main challenge is the
complexity in the coordination and integration of resources at different domains, which necessitates
a centralized control for resource allocation and cross-dodmain coordination for stitching the slice.
We propose a high-level model that captures the main features and challenges of the network slicing
process and solve it using PTS and RPTS.
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6.1 Model

On a high level, a mobile operator creates network slices across domains on-demand, which are
then put into use and exhibits certain performance. The system observes each domain behaviors,
e.g., latency, to make better decisions in the future. We formulate the problem as a contextual
stochastic bandit problem by specifying the following elements: (C,A,Y,Θ, θ∗, Pθ(·|a, c), R). See
Figure 2.

Figure 2: A network slicing model.

Context set C. Let C = [0, 1]2. A context vector c = (c1, c2) represents a slice request,
characterizing the load and latency requirements for the intended service. Specifically, c1 ∈ [0, 1]
is the scaled offered load, relative to some maximum load that the mobile operator can support.
For example, if the maximum supportable load is 20Gbps and c1 = 0.5, then the requested load
is 20 · c1 = 10Gbps. Let c2 ∈ [0, 1] be the inverse end-to-end latency requirement, scaled by the
minimum possible. For example, if the minimum latency the network can support is 1ms and
c2 = 0.5, then the latency required by the service provider is 1

c2
= 2ms.

Action space A. LetA = [B1]×· · ·×[BD], whereD is the number of domains, Bi is the number
of resource blocks in domain i, and [n] is short for {1, 2, · · · , n}. That is, an action a = (a1, · · · , aD)
is a stitched chain of resource blocks, one from each domain, that form an end-to-end network slice.
The resource blocks model the resources available in each domain, regardless of their specific types.
Block j in domain i is denoted as Blockij . At time t, the mobile operator selects an action At ∈ A
through the central orchestrator. In Figure 2, D = 3, (B1, B2, B3) = (2, 3, 3), and the action
selected is (1, 2, 1). In practice, D and Bi’s are not large.

Parameter space Θ and parameter θ∗. The parameter space is Θ = Θ1 × · · · × ΘD,
where Θi = [0, 1]2 × · · · × [0, 1]2︸ ︷︷ ︸

Bi such terms

is the parameter space of domain i. Thus, the dimension of Θ is

∑D
i=1 2Bi. The system parameter is θ∗ =

(
θ∗ij

)
i∈[D],j∈[Bi]

, where θ∗ij = (θ∗ij1, θ
∗
ij2) ∈ [0, 1]2 reflects

some intrinsic properties of Blockij .
Observation space Y. Let Y = Y1 × · · · × YD be the observation space of the whole system,

where Yi = [0,∞) for each i. Given that action a = (a1, · · · , aD) is taken, the resource blocks
(Block1,a1 , · · · ,BlockD,aD) are selected. Yi ∈ Yi is the observed latency in domain i, exhibited by
Blocki,ai . Assume that Yi is observable by domain manager i for each i. Yt = (Yt,1, · · · , Yt,D) ∈ Y

10



is the system performance observed in all D domains at time t.
Observation Model Pθ(·|a, c). Given action a = (a1, · · · , aD) and context c = (c1, c2), the

observation Y = (Y1, · · · , YD) is generated by the following distribution: Yi’s are independent and
each Yi follows an exponential distribution with E[Yi] = c1θ

∗
ij1+θ∗ij2, where j = ai. An interpretation

of this expression is that the expected latency E[Yi] exhibited by domain i is positively related to
the offered load c1 of the requested service, due to queueing effects. θ∗ij1 is the rate at which the
latency scales with the offered load at Blockij , θ

∗
ij2 is the baseline latency at Blockij .

Reward function R. The reward functionR : Y×C → R is defined byR((Y1, Y2, Y3), (c1, c2)) =
gc2(Y1 + Y2 + Y3), where gd for 0 ≤ d ≤ 1 is defined by

gd(y) =

{ y
d if 0 ≤ y ≤ d
0 if y > d

.

This reward function is based on two ideas. First, the minimum latency requirement c2 in the
context serves as a Service Level Agreement (SLA) between the mobile operator and the service
provider. If the actual end-to-end latency is larger than c2, SLA is violated and the mobile operator
gets a huge penalty (zero reward). Second, minimizing the latency as much as possible might be
an overkill, which could be costly. The mobile operator would be content with an observed latency
that just meets the target.

6.2 Algorithm

Algorithm 4 PTS for contextual stochastic bandit (per-system particles)

Inputs: C,A,Y,Θ, θ∗, Pθ(·|a, c), R,PN ⊂ Θ
Initialization: w0 ←

(
1
N , · · · , 1

N

)
1: for t = 1, 2, · · · do
2: Get ct
3: Generate θt from PN according to weights wt−1

4: Play At ← argmaxa∈A Eθt [R(Y )|At = a, ct]
5: Observe Yt ∼ Pθ∗(·|At, ct)
6: for k ∈ {1, 2, · · · , N} do
7: w̃t,k = wt−1,k Pθ(k)(Yt|At, ct)
8: end for
9: wt ← normalize w̃t

10: end for

PTS (Algorithm 2) can be easily updated to include contexts, shown below in Algorithm 4.
RPTS (Algorithm 3) can be similarly updated to include contexts: just update steps 1-8 of Algo-
rithm 3 to steps in Algorithm 4.

In Algorithm 4, each particle in PN has the same dimension as θ∗ ∈ Θ. However, due to the
independence and availability of observations across the domains for this particular model, there is
a more effective way to construct the particles and update their weights, called per-block particles,
as follows (See Figure 3 for an illustration). For each Blockij , we generate a set of N particles

Pij =
{
θ
(1)
ij , · · · , θ(N)

ij

}
⊂ [0, 1]2, which have weights wt,ij = (wt,ij,1, · · · , wt,ij,N ) at time t. In step

3 of Algorithm 4, we generate θt = {θt,ij}i∈[D],j∈[Bi]
by generating each θt,ij from Pij according to

11



Figure 3: Per-block particles implementation.

weights wt,ij . Steps 6-8 of Algorithm 4 then become:

for i ∈ {1, 2, · · · , D} do :

for k ∈ {1, · · · , N} do :

w̃t,i,At,i,k = wt−1,i,At,i,kPθ
(k)
i,At,i

(Yt,i|At,i, ct)

wt,i,At,i ← normalize w̃t,i,At,i

due to the independence of observations across domains. In essence, we maintain a set of particles
for each block, and in each time step, we only update the weights of the particles of the chosen
block in each domain, while keeping unchanged the weights of the particles of the unused blocks.
Per-block particle implementation stores the same number of parameter values in the system,

2N
∑D

i=1Bi, but the effective number of per-system particles is N
∑D

i=1 Bi (although these particles
are not independent).

For this model, the expectation in step 4 of Algorithm 4 can be approximately calculated. See
Appendix Section D.

6.3 Simulation

Simulation setup: D = 3 and (B1, B2, B3) = (3, 3, 3). In practice, D and Bi’s are often small. Re-
sults are in Figure 4. Each curve is averaged over 100 independent simulations. In each simulation,
the system parameter θ∗ and the initial set of particles are randomly generated in the parameter
space. Both PTS and RPTS work poorly with 10 per-block particles and is subject to much ran-
domness. With 100 per-block particles, both algorithms are effective, although the improvement
of PRTS compared to PTS is not obvious at the shown time scale.

7 Conclusions and Future Work

This paper provides a practical variation of Thomson sampling. An analysis of PTS for general
stochastic bandit problems is provided, by which we show that fit particles survive and unfit parti-
cles decay. We propose RPTS to improve PTS based on a simple heuristic that periodically deletes

12



Figure 4: Simulation for network slicing.

essentially inactive particles and regenerate new particles in the vicinity of survivors. We show
empirically that RPTS significantly outperforms PTS in a set of representative bandit problems.
Finally, we show an application of PTS and RPTS to network slicing and demonstrate through
simulations that the algorithms are effective.

Some directions for future work are as follows. First, the necessary survival condition in Propo-
sition 1 may be further explored to provide insight on which particles can survive for some specific
bandit problems. Second, while the particle regeneration strategy we used in PRTS is simple
and effective, there may be other and more principle-guided strategies that have some theoretical
guarantees.
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A Proofs of Proposition 1 and Corollary 2

This section contains the proofs of Proposition 1 and Corollary 2.
Let Lt,i ≜ ln w̃t,i − ln w̃t−1,i. Assumption 1 has two additional assumptions:

(c)
∣∣∣1t ∑t

τ=1 1{Iτ=i} − 1
t

∑t−1
τ=0wτ,i

∣∣∣→ 0 as t→∞ for any i ∈ [N ].

(d) For any i ∈ [N ] that is used infinitely many times, 1
M

∑M
m=1 Lti(m) → Di as M →∞, where

ti(m) is the mth time particle i is chosen and Di is the ith row of the drift matrix D.

In Assumption 1(c), 1{Iτ=i} is a Bernoulli random variable with mean wτ−1,i for each τ . There-
fore it holds with probability one by the Azuma-Hoeffding inequality. Assumption 1(d) holds with
probability one by the definition of D and the strong law of large numbers.

The proof of Proposition 1 starts with the following lemma. All the lemmas in the rest of this
proof deal with a sample path under Assumption 1.

Lemma 3. The probability vector π is well defined. In addition, supp(π) = S. That is, if i ̸∈ S,
then πi = 0; if i ∈ S, then πi > 0.

Proof. For i ̸∈ S,

wt,i =
w̃t,i∑N
j=1 w̃t,j

=
eln w̃t,i∑N
j=1 e

ln w̃t,j
≤ eln w̃t,i

eln w̃t,j0

for any j0 ∈ S. By Assumption 1(a), wt,i → 0. Hence πi = limt→∞
1

t+1

∑t
τ=0wt,i = 0.

Next, define

w′
t,i ≜

{
0 if i /∈ S

wt,i∑
j∈S wt,j

if i ∈ S .

Fix i ∈ S.

w′
t,i − wt,i = wt,i

(
1∑

j∈S wt,j
− 1

)
= wt,i

∑
j ̸∈S wt,j∑
j∈S wt,j

= wt,i

∑
j ̸∈S wt,j

1−
∑

j ̸∈S wt,j
.

Since the set [N ]\S is finite,
∑

j ̸∈S wt,j → 0. It follows that w′
t,i − wt,i → 0. Hence

1

t+ 1

t∑
τ=0

w′
τ,i −

1

t+ 1

t∑
τ=0

wτ,i → 0 . (2)

Now, observe that w′
t,i can be determined from {ln w̃t,j}j∈S by w′

t,i =
eln w̃t,i∑

j∈S eln w̃t,j
. Therefore,

w′
t,i is a continuous and bounded function of {ln w̃t,j}j∈S , and hence of Gt. We write this as

w′
t,i = w′

i(Gt). According to Assumption 1(b),

1

t+ 1

t∑
τ=0

w′
τ,i → EµG [w

′
i] . (3)

Combining (2) and (3), we obtain πi = EµG [w
′
i]. Since w′

i is a positive function and µG is a
distribution, we conclude that πi > 0 for i ∈ S.
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Finally,

∑
i∈[N ]

πi =
∑
i∈[N ]

lim
t→∞

1

t+ 1

t∑
τ=0

wτ,i
(i)
= lim

t→∞

∑
i∈[N ]

1

t+ 1

t∑
τ=0

wτ,i = lim
t→∞

1

t+ 1

t∑
τ=0

∑
i∈[N ]

wτ,i = lim
t→∞

1 = 1 ,

where in step (i) we switch the limit and summation because all summands are non-negative and
N is finite. Thus π is well defined.

Lemma 4. 1
t

∑t
τ=1 Lτ → πD as t→∞.

Proof. Let Mi(t) be the number of times particle i has been played up to time t. Let τi(m) be the
mth time that particle i is played. Then

1

t

t∑
τ=1

Lτ =
1

t

N∑
i=1

Mi(t)∑
m=1

Lτi(m) =

N∑
i=1

Mi(t)

t

1

Mi(t)

Mi(t)∑
m=1

Lτi(m) .

Since Mi(t) =
∑t

τ=1 1{Iτ=i}, by Assumption 1(c) and the definition of πi,
Mi(t)

t → πi for all i ∈ [N ].

If particle i is played infinitely many times in the sample path, then 1
Mi(t)

∑Mi(t)
m=1 Lτi(m) → Di as

t → ∞ by Assumption 1(d). If particle i is played finitely many times, thus Mi(t) ≤ C for some

constant C for all t, then Mi(t)
t → 0 and limt→∞

1
Mi(t)

∑Mi(t)
m=1 Lτi(m) <∞. Either case, we have

Mi(t)

t

1

Mi(t)

Mi(t)∑
m=1

Lτi(m) → πiDi as t→∞ .

It follows that

1

t

t∑
τ=1

Lτ →
N∑
i=1

πiDi = πD as t→∞ .

Lemma 5. If a real-valued sequence {xt}t≥1 satisfies

(1) {xt} has a limiting distribution µ.

(2) {xt} is B-Lipschitz: there exists some constant B such that |xt − xs| ≤ B |t− s| for all
t, s ∈ N+.

Then limt→
1
txt = 0.

Proof. We show lim supt→∞
1
txt ≤ δ for any δ > 0. Suppose there exists δ > 0 such that

lim supt→∞
1
txt > δ. Condition (1) implies that, there exists c ∈ R such that

1

t

t∑
τ=1

1{xτ≥c} ≤
δ

2B
for all t sufficiently large . (4)

Let {t1, t2, · · · , tn, · · · } be a sequence of positive integers such that limn→∞ tn =∞ and 1
tn
xtn ≥ δ

for all n. Thus xtn ≥ δtn for all n. Since {xt} is B-Lipschitz, for any t ∈ [1, tn],

xt ≥ xtn −B(tn − t) ≥ δtn −B(tn − t) = Bt− (B − δ)tn .
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It follows that, if t ≥ c
B +

(
1− δ

B

)
tn, then xt ≥ c. Therefore, for tn > 2c

δ ,

1

tn

tn∑
τ=1

1{τ≥c} ≥
1

tn

tn∑
τ=1

1{τ≥ c
L
+(1− δ

L)tn} =
1

tn

[
tn −

(
c

B
+

(
1− δ

B

)
tn

)]
=

δ

B
− c

Btn
>

δ

2B
,

which contradicts (4). Therefore, lim supt
1
txt ≤ δ for any δ > 0. Similarly, we can show that

lim inft→∞
1
txt ≥ −δ for any δ > 0. We conclude that limt→∞

1
txt = 0.

Lemma 6. If i, j ∈ S, then (πD)i = (πD)j.

Proof. Consider i, j ∈ S. Then

1

t

t∑
τ=1

Lτ,i −
1

t

t∑
τ=1

Lτ,j =
1

t

t∑
τ=1

(Lτ,i − Lτ,j)

=
1

t

t∑
τ=1

[(ln w̃τ,i − ln w̃τ−1,i)− (ln w̃τ,j − ln w̃τ−1,j)]

=
1

t
[(ln w̃t,i − ln w̃0,i)− (ln w̃t,j − ln w̃0,j)]

=
1

t
(ln w̃t,i − ln w̃t,j) =

1

t
Gt(i, j) .

The third equality above used ln w̃0,i = ln w̃0,j = 0 by initialization (although that is not important,
as long as the difference is finite). By the dynamics of the weights {wt,i} and {wt,j}, we have that

Gt+1(i, j) = Gt(i, j) + ln
Pθ(i)(Yt+1|At+1)

Pθ(j)(Yt+1|At+1)
.

By Assumption 2, |Gt+1(i, j)−Gt(i, j)| ≤ B, whereB = max{|ln b0| , |lnB0|}. Thus {Gt(i, j)}t≥1

is an B-Lipschitz sequence. Therefore

(πD)i − (πD)j
(i)
= lim

t→∞

(
1

t

t∑
τ=1

Lτ,i −
1

t

t∑
τ=1

Lτ,j

)
= lim

t→∞

1

t
Gt(i, j)

(ii)
= 0 ,

where equality (i) is due to Lemma 4 and equality (ii) equality is due to Lemma 5 and Assumption
1(b).

Lemma 7. If i ̸∈ S and j ∈ S, then (πD)i < (πD)j.

Proof. Similar to the proof of Lemma 6, we have

1

t

t∑
τ=1

Lτ,i −
1

t

t∑
τ=1

Lt,j =
1

t
(ln w̃t,i − ln w̃t,j)

The LHS converges to (πD)i − (πD)j as t → ∞ by Lemma 3. The RHS converges to a strictly
negative value as t→∞ by Assumption 1(a). Thus (πD)i < (πD)j .

Proof of Proposition 1. Lemma 3 shows supp(π) = S. Lemma 6 and Lemma 7 show argmax(πD) =
S. Proposition 1 is thus proved.
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Proof of Corollary 2. If N ≤ K, then |supp(π)| ≤ N ≤ K trivially. Let N > K. The observation
model of a Bernoulli bandit problem satisfies Assumption 2 trivially. By Proposition 1, with
probability one, for any sample path, the probability vector π is well-defined and π and S satisfy
argmax(πD) = supp(π) = S, which implies the following constraints on π:

πi = 0 for i ̸∈ S ,

(πD)i = (πD)j for all i, j ∈ S ,
(5)

where S is the subset of [N ] in Assumption 1. Suppose |S| > K. The remainder of the proof
shows that, with probability one, any π that satisfies (5) is the all-zero vector (thus π cannot be
a probability vector). This leads to a contradiction with |S| > K and therefore we conclude that
|S| ≤ K.

We construct a matrix D̃ ∈ RK×N and a probability (row) vector π̃ ∈ [0, 1]K from D and π, as
follows.

Recall that, row i1 and row i2 of D are the same if A(i1) = A(i2). Since there are K arms,
there can be at most K unique rows in D. Let D̃ be D reduced to its unique K rows. That is,
D̃k = E[Lt|At = k] (which is independent of t) for k ∈ [K].

For k ∈ [K], let π̃k =
∑

i:i∈S,A(i)=k πi. That is, π̃k is the sum of the asymptotic weights of
surviving particles with the optimal arm k. If no i ∈ S satisfies A(i) = k, then π̃k = 0. It is easy
to verify that π̃1 + · · ·+ π̃K = 1.

Now, observe that,

πD =
N∑
i=1

πiDi =
∑
i∈S

πiDi =
K∑
k=1

∑
i:i∈S,A(i)=k

πiDi =
K∑
k=1

∑
i:i∈S,A(i)=k

πiD̃k

=
K∑
k=1

 ∑
i:i∈S,A(i)=k

πi

 D̃k =
K∑
k=1

π̃kD̃k = π̃D̃ .

Therefore, the constraints (5) on π imply the following constraints on π̃:

(π̃D̃)i = (π̃D̃)j for all i, j ∈ S . (6)

Let D̃i be the ith column of D̃. Then (π̃D̃)i =
〈
π̃, D̃i

〉
. Constraints (6) can thus be re-written

as 〈
π̃, D̃i − D̃j

〉
= 0 for all i, j ∈ S . (7)

For a Bernouli bandit problem, the entries in D̃ = [D̃kj ]1≤k≤K,1≤j≤N are in the form D̃kj =

−d(θ∗k||θ
(j)
k ), where d(x||y) = x ln x

y +(1−x) ln 1−x
1−y for x, y ∈ [0, 1] and θ

(j)
k is uniformly distributed

in [0, 1] and is independent across k ∈ [K] and j ∈ [N ]. Therefore, since |S| > K, with probability
one, the set of vectors {D̃i − D̃j : i, j ∈ S} spans RK , in which case the only π̃ ∈ RK that satisfies
(7) is the all-zero vector. By construction of π̃, with probability one, the only vector π ∈ RN that
satisfies (5) is the all-zero vector.

B Analysis of PTS for Two-Arm Bernoulli Bandit

This section considers perhaps the most simple bandit problem in more depth than Proposition
1. The results provide further intuition about PTS and about the assumptions and conclusions
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of Proposition 1 and its corollary. Specifically, we analyze PTS for the two-arm Bernoulli bandit
problem.

The section is organized as follows. Subsection B.1 provides a general analysis of the weight
dynamics for N given particles. Subsection B.2 takes a closer look at the case of two given particles,
including, in particular, the counter-reinforcing pair and the self-reinforcing pair. Subsection B.3
discusses the asymptotic behavior of N given particles. Subsection B.4 discusses the performance
of PTS for N randomly generated particles, including two ways of generation: coordinate-wise and
whole-particle. Subsection B.5 summarizes the results in this section. Subsection B.6 includes for
reference two known bounds that are used in this section.

For a two-arm Bernoulli bandit problem, A = {1, 2},Y = {0, 1},Θ = [0, 1]2, R(y) = y. PTS
(Algorithm 2) is then reduced to Algorithm 5 below.

Algorithm 5 PTS for two-arm Bernoulli bandit

Input: θ∗,PN
Initialization: weights w0 ←

(
1
N , · · · , 1

N

)
, unnormalized weights w̃0 ← (1, · · · , 1).

1: for t = 1, 2, · · · do
2: Generate θt from PN according to weights wt−1

3: Play At ← argmaxa∈{1,2} θt,a
4: Observe reward Rt ∼ Bernoulli(θ∗At

)
5: for i ∈ {1, 2, · · · , N} do
6:

w̃t,i = w̃t−1,iPθ
(i)
At

(Rt) =

{
w̃t−1,iθ

(i)
At

if Rt = 1

w̃t−1,i(1− θ
(i)
At
) if Rt = 0

. (8)

7: end for
8: wt ← normalize w̃t

9: end for

Notation: Let wt,i, w̃t,i, w̄t,i be the normalized, unnormalized, and running-average weight of
particle i ∈ [N at time t, respectively. Let wt = (wt,1, · · · , wt,N ). let It ∈ [N ] be the index of the
particle chosen at time t; It ∼ wt−1. Let qt,i be the fraction of time particle i has been played up
to time t, i.e., qt,i =

1
t

∑t
τ=1 1{It=i}. Let At ∈ A = {1, 2} be the action/arm taken at time t. Let

A : [0, 1]2 → {1, 2} be the function mapping from a particle to the corresponding best action/arm,
defined by A(θ) = argmaxa∈{1,2} θa. In the case θ1 = θ2, we let A(θ) equal to either θ1 or θ2
deterministically. With a slight abuse of notation, we sometimes abbreviate A(θ(i)) by A(i). Thus
At = A(It). Let rt ∈ [0, 1] be the usage frequency of arm 1 at time t, namely, the fraction of time
that arm 1 has been pulled up to and including time t. It follows that 1−rt is the usage frequency of
arm 2 at time t. Let d(x||y) ≜ x ln x

y+(1−x) ln 1−x
1−y denote the KL-divergence between two Bernoulli

distributions parameterized by x and y respectively. Let Di(r) ≜ rd(θ∗1||θ
(i)
1 ) + (1 − r)d(θ∗2||θ

(i)
2 )

denote the convex combination of the KL divergences between θ∗ and θ(i) at the two arms, with
weight r on arm 1 and weight 1−r on arm 2, for some r ∈ [0, 1]. For brevity, we shall call Di(r) the
divergence of particle i at r. Let an instance of a two-arm Bernouli bandit problem with parameter
θ∗ be denoted as BernoulliBandit(K = 2, θ∗).

B.1 N given particles, weight dynamics

We start with some informal analysis to provide some high-level intuition. Consider the process in
Algorithm 5. Consider a given particle θ(i) ∈ PN . By (8), the unnormalized weight of particle i at
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time t can be written as

w̃t,i =
t∏

τ=1

P
θ
(i)
Aτ

(Rτ ) = exp

(
t∑

τ=1

lnP
θ
(i)
Aτ

(Rτ )

)
= exp

∑
τ∈T1

lnP
θ
(i)
1

(Rτ ) +
∑
τ∈T2

lnP
θ
(i)
2

(Rτ )

 ,

where Ta ≜ {τ ∈ {1, · · · , t} : Aτ = a} for a = 1, 2, i.e., Ta is the set of time instances up to time t
at which arm a is played. By the definition of rt, |T1| = trt and |T2| = t(1− rt). Suppose both |T1|
and |T2| are non-zero and grow with t. For large t, we have

1

t
ln w̃t,i = rt

1

trt

∑
τ∈T1

lnP
θ
(i)
1

(Rτ ) + (1− rr)
1

t(1− rt)

∑
τ∈T2

lnP
θ
(i)
2

(Rτ )

≈ rtEθ∗

[
lnP

θ
(i)
1

(R1)
]
+ (1− rt)Eθ∗

[
lnP

θ
(i)
2

(R1)
]

= rt

(
−d(θ∗1||θ

(i)
1 )−H(θ∗1)

)
+ (1− rt)

(
−d(θ∗2||θ

(i)
2 )−H(θ∗2)

)
= −Di(rt)− (rtH(θ∗1) + (1− rt)H(θ∗2)) .

The term rtH(θ∗1)+ (1− rt)H(θ∗2) doesn’t depend on i. Therefore, for large t, w̃t,i
∝∼ e−tDi(rt). The

above discussion can be made formal by the following proposition.

Proposition 8. Given a problem BernoulliBandit(K = 2, θ∗) and a particle set PN ⊂ [0, 1]2.
Consider the process of running PTS(PN ) as in Algorithm 5. For any i ∈ {1, · · · , N} and t ≥ 1,

1

t
ln w̃t,i = −Di(rt) + ϵt,i + C(rt) , (9)

where C(rt) is a given function on rt that does not depend on i, and {ϵt,i}t≥1 is a random sequence
that converges to zero in probability.6 More specifically, for some positive constant Bθ(i) depending
on θ(i),

P {|ϵt,i| > δ} ≤ 4te−B
θ(i)

δ2t (10)

for any δ > 0 and t ≥ 1.

Proof. Let Nt,a be the number of times action a has been played up to time t, a ∈ {1, 2}. Nt,1 +
Nt,2 = t. Consider the following alternative construction of the reward generation process. Before
the game starts, we generate a value Za(k) for each action a ∈ {1, 2} and each time k = 1, 2, · · ·
independently according to the distribution Bernoulli(θ∗a). At each step t, playing action At = a
yields reward Rt = Za(Nt,a). That is, step 4 of Algorithm 5 becomes Rt = ZAt(Nt,At). It is easy
to see that the distributions of any given sample path seen by the algorithm in both constructions
are identical. Therefore, we can equivalently work with the alternative construction whenever it is
more convenient.

We have

w̃t,i = exp

(
t∑

τ=1

lnP
θ
(i)
Aτ

(Rτ )

)
= exp

 ∑
a∈{1,2}

t∑
τ=1

1{Aτ=a} lnPθ
(i)
a
(Rτ )


= exp

 ∑
a∈{1,2}

t∑
τ=1

1{Aτ=a} lnPθ
(i)
a
(Za(Nτ,a))

 = exp

 ∑
a∈{1,2}

Nt,a∑
k=1

lnP
θ
(i)
a
(Za(k))


6It can be further shown that this convergence is almost sure by using the Borel-Cantelli lemma. We state the

convergence in probability result here because it will be used later.
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for any time t and particle i ∈ {1, · · · , N}. The values in
{
lnP

θ
(i)
1

(Z1(k))
}Nt,1

k=1
are i.i.d. random

variables, each equals to ln θ
(i)
1 with probability θ∗1 or ln(1 − θ

(i)
1 ) with probability 1 − θ∗1, with

mean −d(θ∗1||θ
(i)
1 ) − H(θ∗1). Similarly, values in

{
lnP

θ
(i)
2

(Z2(k))
}Nt,2

k=1
are i.i.d. random variables

with mean −d(θ∗2||θ
(i)
2 )−H(θ∗2). It follows after some simple algebraic re-arrangements that

1

t
ln w̃t,i =

1

t

Nt,1∑
k=1

lnP
θ
(i)
1

(Z1(k)) +

Nt,2∑
k=1

lnP
θ
(i)
2

(Z2(k))


= −Di(rt) + ϵt,i−rtH(θ∗1)− (1− rt)H(θ∗2)︸ ︷︷ ︸

≜C(rt)

,

where

ϵt,i =
1

t

Nt,1∑
k=1

lnP
θ
(i)
1

(Z1(k))−
(
−d(θ∗1||θ

(i)
1 )−H(θ∗1)

)
︸ ︷︷ ︸

≜E1(Nt,1)

+
1

t

Nt,2∑
k=1

lnP
θ
(i)
2

(Z2(k))−
(
−d(θ∗2||θ

(i)
2 )−H(θ∗2)

)
︸ ︷︷ ︸

≜E2(Nt,2)

.

E1(Nt,1) is the sum of Nt,1 i.i.d. random variables, each has mean zero and is contained in an

interval with length
∣∣∣ln θ(i)1 − ln(1− θ

(i)
1 )
∣∣∣. Nt,1 is a random variable that takes values in {1, · · · , t}.

Therefore, for any γ > 0,

P {|E1(Nt,1)| > γ} =
t∑

n=1

P {|E1(n)| > γ|Nt,1 = n}P {Nt,1 = n}

≤
t∑

n=1

P {|E1(n)| > γ}

≤
t∑

n=1

2 exp

− 2γ2

n
(
ln θ

(i)
1 − ln(1− θ

(i)
1 )
)2


≤
t∑

n=1

2 exp

− 2γ2

t
(
ln θ

(i)
1 − ln(1− θ

(i)
1 )
)2


= 2t exp

− 2γ2

t
(
ln θ

(i)
1 − ln(1− θ

(i)
1 )
)2
 .

(11)

The second inequality above is due to the Azuma-Hoeffding inequality. Similarly,

P {|E2(Nt,2)| > γ} ≤ 2t exp

− 2γ2

t
(
ln θ

(i)
2 − ln(1− θ

(i)
2 )
)2
 . (12)
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Using (11) and (12), we have

P {|ϵt,i| ≥ δ} ≤
∑

a∈{1,2}

P

{
|Ea(Nt,a)| ≥

tδ

2

}
≤

∑
a∈{1,2}

2t exp

− δ2t

2
(
ln θ

(i)
a

1−θ
(i)
a

)2
 ≤ 4te−B

θ(i)
δ2t ,

where Bθ(i) =
1
2 min

{(
ln

θ
(i)
1

1−θ
(i)
1

)−2

,

(
ln

θ
(i)
2

1−θ
(i)
2

)−2
}
.

Let us discuss the implication of Proposition 8. Since C(rt) does not depend on i, it follows
from (9) that w̃t,i ∝ exp (−t(Di(rt) + ϵt,i)). We make two observations here:

• For large t, the term ϵt,i becomes insignificant. The particle i with the lowest Di(rt) at time
t is more likely to have the largest normalized weight. In this sense, the divergence Di(rt)
reflects the fitness of particle i for survival: the smaller Di(rt) is, the more fit particle i.
However, we cannot simply say one particle is more fit than another without mentioning rt,
which is a random process. It is not clear at this point how rt evolves.

• Obviously, rt is affected by the history of the particles’ weights {w̃τ,i : 1 ≤ τ ≤ t− 1, 1 ≤ i ≤
N}.

To investigate the interplay between the particles’ weights wt (or w̃t) and their usage frequencies
(rt, 1− rt), we take a look at the simplest case: two given particles.

B.2 Two given particles

Before we discuss possible configurations of two given particles, we introduce a helpful graphical
tool called the divergence diagram. A divergence diagram example is drawn in Figure 5, with the
divergence of a particle i, Di(r) for 0 ≤ r ≤ 1, represented by a line segment. The right (respectively,
left) endpoint of the line segment is highlighted by a dot if A(θ(i)) = 1 (respectively, if A(θ(i)) = 2),
that is, arm 1 (respectively, arm 2) is the optimal arm if θ(i) is the true parameter. Informally
speaking, the closer the line segment is to the bottom, the more fit the corresponding particle is.
A line segment that coincides with the bottom line segment represents θ∗ itself, because the KL
divergences on both arms are zero. Note that, not every line segment in the diagram corresponds to
a unique particle in [0, 1]2, because in general it is possible to have d(x||y1) = d(x||y2) with y1 ̸= y2.

Consider the possible configurations of two particles in terms of their relative positions in the
divergence diagram. See Figure 6.

• In case (a), The line segment of one particle is completely below the other particle. In this
case, with probability one, the lower particle will gain all the weight. This is a trivial case.

• In case (b), the line segments of two particles cross each other. This case can be further
divided into three sub-cases, shown in (c), (d) and (e) respectively, depending on the optimal
arm for each particle. In case (e), the optimal arm for both particles is the same. The problem
essentially degenerates to a one-arm Bernoulli bandit problem, which is not so interesting.
We will take a closer look at the remaining two cases: (c) counter-reinforcing pair and (d)
self-reinforcing pair.
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Figure 5: A divergence diagram example.

Figure 6: Possible two-particle configurations in the divergence diagram.

B.2.1 Counter-reinforcing pair

Definition 2. (Counter-reinforcing pair) For a given BernoulliBandit(K = 2, θ∗) problem, we say
that two particles {θ(1), θ(2)} ⊂ [0, 1]2 form a counter-reinforcing pair (CR pair) if they can be
re-labeled such that the following conditions hold:

d(θ∗1||θ
(1)
1 ) > d(θ∗1||θ

(2)
1 ), d(θ∗2||θ

(1)
2 ) < d(θ∗2||θ

(2)
2 ), A(1) = {1}, A(2) = {2} . (13)

Note: The only way to re-label the two particles is to switch their labels. Without loss of
generality, in the rest of this section, when we say {θ(1), θ(2)} form a CR pair, we mean that they
have already been properly re-labeled to meet the conditions (13).

A CR pair example is shown in Figure 7. Figure 7(a) depicts the positions of θ∗, θ(1) and θ(2)

in [0, 1]2. Figure 7(b) depicts the divergences of the two particles. Let r̄ ∈ (0, 1) be such that
D1(r̄) = D2(r̄), i.e., the point at which these two lines intersect. The definition of a CR pair
guarantees that r̄ exists and is unique.
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(a) Particle positions. (b) Divergences.

Figure 7: A counter-reinforcing pair example.

Consider a large time t. Suppose rt > r̄. Since w̃t,i
∝∼ e−tDi(rt) and D2(rt) < D1(rt), we expect

wt,2 to be larger than wt,1, thus particle 2 will be selected more often, which causes arm 2 to be
pulled more often. But pulling arm 2 will make rt decrease. If rt decreases to a value less than
r̄, then by a similar argument we expect wt,1 to become larger than wt,2. Then particle 1 will be
selected more often, which makes arm 1 to be pulled more often and rt to increase. Therefore,
these two particles are counter-reinforcing each other: selecting one particle will likely increase the
weight of the other particle and vice versa.

We expect to observe that rt cannot stay too far away either above or below r̄. The drift of
rt is always toward r̄. However, we also observe through simulations that the weights of the two
particles keep oscillating. The random oscillations are so strong that the drift does not make weights
converge, that is, weights bounce around too much to converge, but are stochastically bounded.
The above observations are formally stated in the following proposition.

Proposition 9. Given a BernoulliBandit(K = 2, θ∗) problem and suppose a given particle set
P2 = {θ(1), θ(2)} form a CR pair for the problem. Consider the process of running PTS(P2) as in
Algorithm 5. Let r̄ ∈ (0, 1) be the solution to D1(r) = D2(r). Then, rt → r̄ almost surely. Also,
qt → (r̄, 1− r̄) and w̄t → (r̄, 1− r̄) almost surely.

The remainder of this section is dedicated to the proof of Proposition 9. The proof starts with
constructing a sequence {Xt}, defined by Xt ≜ ln

w̃t,1

w̃t,2
= ln

wt,1

wt,2
. Recall that, for i = 1, 2,

w̃t+1,i = w̃t,iPθ
(i)
At+1

(Rt+1) =

{
w̃t,iθ

(i)
At+1

if Rt+1 = 1

w̃t,i(1− θ
(i)
At+1

) if Rt+1 = 0
.

By the conditions in (13) that A(1) = {1} and A(2) = {2}, At+1 = i iff particle θ(i) is selected at
time t+ 1, which occurs with probability wt,i. So for i = 1, 2,

w̃t+1,i =


w̃t,iθ

(i)
1 w.p. wt,1θ

∗
1

w̃t,i(1− θ
(i)
1 ) w.p. wt,1(1− θ∗1)

w̃t,iθ
(i)
2 w.p. wt,2θ

∗
2

w̃t,i(1− θ
(i)
2 ) w.p. wt,2(1− θ∗2)

.
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Since wt,1 + wt,2 = 1, if we are given that x = ln
w̃t,1

w̃t,2
= ln

wt,1

wt,2
, then wt,1 = ex

1+ex and wt,2 = 1
1+ex .

It follows that

Xt+1 = Xt +



ln
θ
(1)
1

θ
(2)
1

w.p. eXt

1+eXt
θ∗1

ln
(1−θ

(1)
1 )

(1−θ
(2)
1 )

w.p. eXt

1+eXt
(1− θ∗1)

ln
θ
(1)
2

θ
(2)
2

w.p. 1
1+eXt

θ∗2

ln
(1−θ

(1)
2 )

(1−θ
(2)
2 )

w.p. 1
1+eXt

(1− θ∗2)

. (14)

Note that X0 = 0 since w0,1 = w0,2 = 1
2 . {Xt}t≥0 is a time-homogeneous Markov process living in

a state space of infinite cardinality. Note that (14) is derived using only the conditions A(1) = {1}
and A(2) = {2} in (13), therefore it holds even if the two particles do not form a CR pair. The
dynamics of Xt in (14) will be used again in the next section in the case of a self-reinforcing pair.

In the next lemma, we show that {Xt} is stochastically bounded given the CR pair conditions.

Lemma 10. Consider the process described in Proposition 9. Let Xt ≜ ln
w̃t,1

w̃t,2
= ln

wt,1

wt,2
. Then, for

some constants A0 and B0 depending on θ∗ and P2 = {θ(1), θ(2)},

P {|Xt| ≥ x} ≤ A0e
−B0x ∀t ≥ 1 and x > 0 .

Proof. The proof essentially relies on a drift implied bound in [9] (copied as Proposition 20 in
Section B.6.1 for reference). We check the two conditions of Proposition 20 for {Xt}.

By (14), the drift of the process {Xt} at time t is

E[Xt+1 −Xt|Xt = x]

=
ex

1 + ex
θ∗1 ln

θ
(1)
1

θ
(2)
1

+
ex

1 + ex
(1− θ∗1) ln

1− θ
(1)
1

1− θ
(2)
1

+
1

1 + ex
θ∗2 ln

θ
(1)
2

θ
(2)
2

+
1

1 + ex
(1− θ∗2) ln

1− θ
(1)
2

1− θ
(2)
2

=

(
ex

1 + ex
d(θ∗1||θ

(2)
1 ) +

1

1 + ex
d(θ∗2||θ

(2)
2 )

)
−
(

ex

1 + ex
d(θ∗1||θ

(1)
1 ) +

1

1 + ex
d(θ∗2||θ

(1)
2 )

)
= D2

(
ex

1 + ex

)
−D1

(
ex

1 + ex

)
≜ h(x) .

Let f(r) ≜ D2(r) − D1(r). Then h(x) = f( ex

1+ex ). f(r) is a linear function in r: f(r) = αr + β,
where

α =
(
d(θ∗1||θ

(2)
1 )− d(θ∗2||θ

(2)
2 )
)
−
(
d(θ∗1||θ

(1)
1 )− d(θ∗2||θ

(1)
2 )
)
, β = d(θ∗2||θ

(2)
2 )− d(θ∗2||θ

(1)
2 ) . (15)

Since the two particles form a CR pair, α < 0 and β > 0. Let r̄ = −β
α , which is the solution to

f(r) = 0. It can be verified that Condition C1 of Proposition 20 is satisfied with a = ln 1+r̄
1−r̄ and

ϵ0 = 1
2

(
d(θ∗1||θ

(1)
1 )− d(θ∗1||θ

(2)
1 )
)
. This corresponds to solving ea

1+ea = r̄+1
2 , so h(a) = f( r̄+1

2 ) =
1
2(f(r̄) + f(1)) = 1

2f(1) = ϵ0. Note that a > 0.

To check Condition C2 of Proposition 20, let x∗ ≜ max

{∣∣∣∣ln θ
(1)
1

θ
(2)
1

∣∣∣∣ , ∣∣∣∣ln (1−θ
(1)
1 )

(1−θ
(2)
1 )

∣∣∣∣ , ∣∣∣∣ln θ
(1)
2

θ
(2)
2

∣∣∣∣ , ∣∣∣∣ln (1−θ
(1)
2 )

(1−θ
(2)
2 )

∣∣∣∣},
and let random variable Z = x∗ with probability 1. Then obviously (|Xt+1 −Xt| |Xt) ≺ Z. Choose
λ = 1 (any positive value works), then

D = E[eλZ ] = ex
∗
= max

{
θ
(1)
1

θ
(2)
1

,
θ
(2)
1

θ
(1)
1

,
1− θ

(1)
1

1− θ
(2)
1

,
1− θ

(2)
1

1− θ
(1)
1

,
θ
(1)
2

θ
(2)
2

,
θ
(2)
2

θ
(1)
2

,
1− θ

(1)
2

1− θ
(2)
2

,
1− θ

(2)
2

1− θ
(1)
2

}
. (16)
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Note that D > 1. Condition C2 of Proposition 20 is satisfied.

Since c ≥ E[eλZ ]−(1+E[Z])
λ2 = D − 1 − x∗, we can choose the following constants: c = D, η =

min
(
1, ϵ02c

)
, ρ = 1− 1

2ηϵ0. Note that 0 = X0 ≤ a. Applying Proposition 20, we have

P {Xt ≥ x} ≤ D

1− ρ
e−η(x−a) = A1e

−B1x ∀t, x > 0, (17)

where A1 =
D

1−ρe
ηa = 2D

ηϵ0
eηa = 2D

ηϵ0

(
1+r̄
1−r̄

)η
and B1 = η.

Apply the same analysis to the sequence {−Xt}t≥0 with the following constants: a′ = ln 2−r̄
r̄ ,

ϵ′0 = 1
2

(
d(θ∗2||θ

(2)
2 )− d(θ∗2||θ

(1)
2 )
)
, λ = 1, D as in (16), c = D, η′ = min

(
λ,

ϵ′0
2c

)
and ρ′ = 1− 1

2η
′ϵ′0,

we get

P{−Xt ≥ x} ≤ D

1− ρ′
e−η′(x−a′) = A2e

−B2x ∀t, x > 0, (18)

where A2 =
D

1−ρ′ e
η′a′ = 2D

η′ϵ′0
eη

′a′ = 2D
η′ϵ′0

(
2−r̄
r̄

)η′
and B2 = η′.

Let A0 = 2max{A1, A2} and B0 = min{B1, B2} and combine (17) and (18), we get

P {|Xt| ≥ x} ≤ A0e
−B0x ∀t and x > 0 .

We are now ready to prove Proposition 9. Roughly speaking, since ln w̃t,i ≈ −tDi(rt), Xt =

ln
w̃t,1

w̃t,2
≈ t(D2(rt)−D1(rt)). The stochastic boundedness of Xt then implies the stochastic bound-

edness of t |D2(rt)−D1(rt)|. So for large t, D2(rt)−D1(rt) is close to zero and hence rt is close to
r̄. We show that rt converges to r̄ in probability, which combined with the Borel-Contelli lemma
leads to convergence almost surely. The convergence of qt and w̄t naturally follows.

Proof of Proposition 9. Recall that f(r) = D2(r)−D1(r) = αr + β for α and β given in (15) and
f(r̄) = 0. So |f(rt)| = |f(rt)− f(r̄)| = |(αrt + β)− (αr̄ + β)| = |α| |rt − r̄|. Therefore, for any
δ > 0,

P {|rt − r̄| ≥ δ} = P {|f(rt)| ≥ |α| δ}

≤ P

{
|f(rt) + ϵt,1 − ϵt,2| ≥

|α| δ
3

}
+ P

{
|ϵt,1| ≥

|α| δ
3

}
+ P

{
|ϵt,2| ≥

|α| δ
3

}
.

But
f(rt) + ϵt,1 − ϵt,2 = D2(rt)−D1(rt) + ϵt,1 − ϵt,2

= (−D1(rt) + ϵt,1 + C(rt))− (−D2(rt) + ϵt,2 + C(rt))

(i)
=

1

t
ln w̃t,1 −

1

t
ln w̃t,2

=
1

t
ln

w̃t,1

w̃t,2
=

1

t
Xt ,

where step (i) is due to Proposition 8. Therefore, by Proposition 8 and Lemma 10,

P {|rt − r̄| ≥ δ} ≤ P

{
|Xt| ≥

|α| δt
3

}
+ P

{
|ϵt,1| ≥

|α| δ
3

}
+ P

{
|ϵt,2| ≥

|α| δ
3

}
≤ A0e

−B0|α|δt
3 + 4te−B

θ(1)
|α|2δ2

9
t + 4te−B

θ(2)
|α|2δ2

9
t

≤ Ate−Bδ2t ,
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where A = 3max {A0, 4} and B = min

{
B0|α|

3 ,
B

θ(1)
|α|2

9 ,
B

θ(2)
|α|2

9

}
. It follows that

∞∑
t=1

P {|rt − r̄| ≥ δ} ≤
∞∑
t=1

Ate−Bδ2t = AeBδ2
∞∑
t=1

te−Bδ2(t−1) =
AeBδ2(

1− e−Bδ2
)2 <∞ .

By the Borel-Cantelli Lemma, P {|rt − r̄| ≥ δ i.o.} = 0 for any δ > 0. It follows that rt → r̄
almost surely as t → ∞. Since arm 1 (resp. arm 2) is chosen iff particle 1 (resp. particle 2)
is chosen, qt = (rt, 1 − rt). So qt → (r̄, 1 − r̄). Finally, since It ∼ wt−1 = (wt−1,1, · · · , wt−1,N ),
1{It=i} ∼ Bernoulli(wt−1,i). For i = 1, 2, by the Azuma-Hoeffding inequality, for any γ > 0,

Pr {|qt,i − w̄t−1,i| ≥ γ} = Pr

{∣∣∣∣∣1t
t∑

τ=1

1{It=i} −
1

t

t−1∑
τ=0

wτ,i

∣∣∣∣∣ ≥ γ

}

= Pr

{∣∣∣∣∣
t∑

τ=1

(
1{It=i} − wt−1,i

)∣∣∣∣∣ ≥ tγ

}

≤ 2 exp

(
−2(tγ)2

t

)
= 2e−2γ2t ,

which is summable in t. Apply the Borel-Cantelli Lemma again, we get |qt − w̄t−1| → 0 with
probability one. So w̄t → (r̄, 1− r̄).

B.2.2 Self-reinforcing pair

Definition 3. (Self-reinforcing pair) For a given BernoulliBandit(K = 2, θ∗) problem, we say two
particles θ(1), θ(2) ∈ [0, 1]2 form a self-reinforcing pair (SR pair) if they can be relabeled such that
the following conditions hold:

d(θ∗1||θ
(1)
1 ) < d(θ∗1||θ

(2)
1 ), d(θ∗2||θ

(1)
2 ) > d(θ∗2||θ

(2)
2 ), A(1) = {1}, A(2) = {2} . (19)

Without loss of generality, in this section when we say particles θ(1) and θ(2) are a SR pair, we
assume they have already been properly labeled such that they satisfy (19).

An SR pair example is drawn in Figure 8. Consider a large time t. Since w̃t,i
∝∼ e−tDi(rt), if

rt > r̄, with high probability particle 1 will be selected more often, which will cause rt to further
increase. If rt < r̄, then with high probability particle 2 will be selected often, which will cause rt
to further decrease. Therefore, each of the two particles is self-reinforcing : selecting one particle
will likely increase the weight of the particle itself which makes it to be selected more often. Each
particle behaves like a black hole. We expect that, in the end, either particle 1 or particle 2 gain
all the weight. Which of the two particles wins out in the end is random and is influenced by the
initial condition. We state this observation more formally in the following proposition.

Proposition 11. Given a problem BernoulliBandit(K = 2, θ∗) and a particle set P2 = {θ(1), θ(2)},
suppose {θ(1), θ(2)} forms a SR pair for the problem. Consider the process of running PTS(P2) as

in Algorithm 5. Let Xt = ln
w̃t,1

w̃t,2
= ln

wt,1

wt,2
for t ≥ 0. Then, with probability one, one of the following

two cases happens:

1. Xt →∞, qt → (1, 0), wt → (1, 0) and rt → 1.
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(a) Particle positions. (b) Divergences.

Figure 8: A self-reinforcing pair example.

2. Xt → −∞, qt → (0, 1), wt → (0, 1) and rt → 0.

The remainder of this section is dedicated to the proof of Proposition 11. We first define the
notion of stochastic asymptotic stability, which will be used for the proof.

Definition 4. Let {Xn}n≥0 be a discrete time Markov process with state space R.

1. We say that x ∈ R is stochastically asymptically stable (SAS) for {Xn} if for any ϵ > 0, there
exits δ > 0 such that if |Xn0 − x| ≤ δ for some n0, then Pr {|Xn − x| ≤ ϵ ∀n ≥ n0|Xn0} ≥ 1−ϵ
and Pr {{|Xn − x| ≤ ϵ ∀n ≥ n0} \ {Xn → x} |Xn0} = 0.

2. We say that −∞ is SAS for {Xn} if for any L ∈ R and ϵ > 0, there exists L0 ∈ R
such that if Xn0 ≤ L0 for some n0, then Pr{Xn ≤ L ∀n ≥ n0|Xn0} ≥ 1 − ϵ and
Pr {{Xn ≤ L ∀n ≥ n0} \ {Xn → −∞} |Xn0} = 0.

3. We say that +∞ is SAS for {Xn} if for any L ∈ R and ϵ > 0, there exists L0 ∈ R
such that if Xn0 ≥ L0 for some n0, then Pr{Xn ≥ L ∀n ≥ n0|Xn0} ≥ 1 − ϵ and
Pr {{Xn ≥ L ∀n ≥ n0} \ {Xn →∞} |Xn0} = 0.

The second condition in the 1st (resp. 2nd or 3rd) definition above means that, given Xn0 , if
Xn is close to x (resp. −∞, +∞) from n0 onward, then Xn converges to x (resp. −∞, +∞).

Intuitively, a SAS point is like a black hole: if the process is close enough to the point, then
with high probability it will be trapped around the point and eventually sucked to the point.

We start the proof of Proposition 11 with the following lemma.

Lemma 12. The process {Xt} described in Proposition 11 is a Markov process. Moreover, it can
be represented as: Xt+1 = Xt + Ut+1, where the distribution of Ut+1 is determined by Xt and it
satisfies:

(a) |Ut| ≤ C for all t ≥ 1,

(b) E[Ut+1|Xt = x] ≤ −µ1 whenever x ≤ C1,

(c) E[Ut+1|Xt = x] ≥ µ2 whenever x ≥ C2,

for some constants µ1 > 0, µ2 > 0, C, C1 and C2 that depend on θ∗ and P2.
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Proof. By the recursive update formula for w̃t in (8) and the conditions A(1) = {1} and A(2) = {2}
in (19), we can obtain the same dynamics of Xt as in (14), such that that Xt+1 = Xt+Ut+1, where
Ut+1 is the increment of the process {Xt} at time t, given by

Ut+1 =



ln
θ
(1)
1

θ
(2)
1

w.p. eXt

1+eXt
θ∗1

ln
(1−θ

(1)
1 )

(1−θ
(2)
1 )

w.p. eXt

1+eXt
(1− θ∗1)

ln
θ
(1)
2

θ
(2)
2

w.p. 1
1+eXt

θ∗2

ln
(1−θ

(1)
2 )

(1−θ
(2)
2 )

w.p. 1
1+eXt

(1− θ∗2)

(20)

for t ≥ 0. Clearly, {Xt}t≥0 is a Markov process and the distribution of Ut+1 is determined by Xt.
Property (a) is easily satisfied by setting

C ≜ max

{∣∣∣∣∣ln θ
(1)
1

θ
(2)
1

∣∣∣∣∣ ,
∣∣∣∣∣ln (1− θ

(1)
1 )

(1− θ
(2)
1 )

∣∣∣∣∣ ,
∣∣∣∣∣ln θ

(1)
2

θ
(2)
2

∣∣∣∣∣ ,
∣∣∣∣∣ln (1− θ

(1)
2 )

(1− θ
(2)
2 )

∣∣∣∣∣
}

.

Let h(x) ≜ E[Ut+1|Xt = x]. It can be shown that h(x) = α ex

1+ex + β, where

α =
(
d(θ∗1||θ

(2)
1 )− d(θ∗1||θ

(1)
1 )
)
+
(
d(θ∗2||θ

(1)
2 )− d(θ∗2||θ

(2)
2 )
)
,

and
β =

(
d(θ∗2||θ

(2)
2 )− d(θ∗2||θ

(1)
2 )
)
.

By conditions (19), α > 0 and β < 0. Let f(r) = αr+β, 0 ≤ r ≤ 1. The graph of f(r) is shown
below:

At r = r̄ = −β
α , f(r) = 0. Let

µ1 =
d(θ∗2||θ

(1)
2 )− d(θ∗2||θ

(2)
2 )

2
and µ2 =

d(θ∗1||θ
(2)
1 )− d(θ∗1||θ

(1)
1 )

2
.

Then f(r) ≤ −µ1 whenever 0 ≤ r ≤ r̄
2 and f(r) ≥ µ2 whenever r̄+1

2 ≤ r ≤ 1. Let eC1

1+eC1
= r̄

2

and eC1

1+eC2
= r̄+1

2 , we get

C1 = ln
r̄

2− r̄
= ln

−β
2α+ β

and C2 = ln
1 + r̄

1− r̄
= ln

α− β

α+ β
.
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Since h(x) = f( ex

1+ex ) and h(x) is monotonely increasing in x, we have that h(x) ≤ −µ1 whenever
x ≤ C1 and h(x) ≥ µ2 whenever x ≥ C2.

Lemma 13. The process {Xt} described in Proposition 11 has +∞ and −∞ as two SAS points.

Proof. First, we show that −∞ is SAS for {Xt}. Consider any given L ∈ R and ϵ > 0. Without

loss of generality, we can assume L ≤ C1 and choose L0 = L− C2

2µ1
ln 1

ϵ , where C1 and C are given

in Lemma 12.7 Define
T ≜ min {t > 0 : Xt > L}

to be the crossing time, the first time the process {Xt} crosses above the threshold L. By convention,
if {Xt > L} never happens, T =∞. Define a random sequence {X̃t}t≥0 by X̃0 = X0 and

X̃t =

{
Xt if 1 ≤ t ≤ T

X̃t−1 − µ1 if t > T .

Let Ũt+1 = X̃t+1 − X̃t, then

Ũt =

{
Ut if 1 ≤ t ≤ T
−µ1 if t > T

By Lemma 12 and the above construction, E[Ũt+1|X̃t] ≤ −µ1 < 0 and
∣∣∣Ũt

∣∣∣ ≤ C for all t. It

immediately follows from LLN that X̃t → −∞ with probability one. Also, if X̃0 ≤ L0, then

Pr
{
X̃t ≤ L ∀t

∣∣∣ X̃0

}
= Pr

{
max
t≥0

X̃t ≤ L
∣∣∣ X̃0

}
= Pr

{
max
t≥0

(X̃t − L0) ≤ L− L0

∣∣∣ X̃0

}
= Pr

{
max
t≥0

(X̃t − L0) ≤
C2

2µ1
ln

1

ϵ

∣∣∣ X̃0

}
(i)

≥ 1− exp

{
−2µ1

C2

C2

2µ1
ln

1

ϵ

}
= 1− ϵ ,

where inequality (i) is due to Proposition 23 (see Appendix B.6.2).
Note that, {Xt ≤ L ∀t} = {X̃t ≤ L∀t}, and under such event, {Xt}t≥0 = {X̃t}t≥0. It follows

that
Pr
{
Xt ≤ L∀t

∣∣∣X0

}
= Pr

{
X̃t ≤ L ∀t

∣∣∣ X̃0

}
≥ 1− ϵ

and
Pr
{
{Xt ≤ L∀t} \ {Xt → −∞}

∣∣∣X0

}
= Pr

{
{Xt ≤ L∀t} ∩ {Xt ̸→ −∞}

∣∣∣X0

}
= Pr

{
{Xt ≤ L∀t} ∩

{
X̃t ̸→ −∞

} ∣∣∣ X̃0

}
≤ Pr

{
X̃t ̸→ −∞

∣∣∣ X̃0

}
= 0 .

7If L > C1, we can choose L0 = C1 − C2

2µ1
ln 1

ϵ
. Then by the same argument in this proof, we can show that

Pr{Xt ≤ C1 ∀t|X0} ≥ 1− ϵ, which still implies Pr{Xt ≤ L ∀t|X0} ≥ 1− ϵ.
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We conclude that −∞ is SAS for {Xt}.
By a similar argument, using properties (a) and (c) of Lemma 12 and Corollary 24 (see Appendix

B.6.2), we can show that +∞ is SAS for {Xt}.

We are now ready to prove Proposition 11.

Proof of Proposition 11. Fix ϵ = 0.5 (any positive ϵ will do) and some L1, R1 ∈ R such that
L1 ≤ C1 ≤ C2 ≤ R1. By Lemma 13, there exists L2 < L1 and R2 > R1 such that

(1) If Xt0 ≤ L2 for some t0, then Pr
{
Xt ≤ L1 ∀t ≥ t0

∣∣∣Xt0

}
≥ 0.5 and Xt ≤ L1 ∀t ≥ t0 implies

Xt → −∞, and

(2) If Xt0 ≥ R2 for some t0, then Pr
{
Xt ≥ R1 ∀t ≥ t0

∣∣∣Xt0

}
≥ 0.5 and Xt ≥ R1 ∀t ≥ t0 implies

Xt →∞.

For a better illustration, see the figure below:

Two observations:

• If Xt0 ever moves outside of the interval (L2, R2) for some t0, then with probability at least
0.5, Xt stays ≤ L1 or ≥ R1 for all t ≥ t0 and converges to −∞ or ∞.

• If Xt0 is inside the interval (L2, R2) for some t0, then within a fixed M number of the
following steps, with a strictly positive probability δ, Xt will move outside of [L2, R2]. To

see this, consider the following. Since the two particles form a SR pair, θ
(1)
1 ̸= θ

(2)
1 . We can

assume without loss of generality that θ
(1)
1 > θ

(2)
1 . By the form of the distribution of the step

Ut+1 in (20), if Xt ∈ (L2, R2), then within the next M =

R2−L2

ln
θ
(1)
1

θ
(2)
1

 steps, with probability at

least δ =
(

eL2

1+eL2
θ∗1

)M
> 0, Xt will become ≥ R2.

Consider the following:

(a) Observe the process {Xt} from t = 0. If Xt always stays below L1 or above R1, then it will
converge to ∞ or −∞.

(b) If Xt ever moves into the interval (L1, R1), it is also in the interval (L2, R2), then we start
the following trial: observe whether Xt will become ≤ L2 or ≥ R2 within the next M steps,
and if it does, observe whether it will stay ≤ L1 or ≥ R1 onward forever. The trial fails if Xt

doesn’t become ≤ L2 or ≥ R2 within the next M steps, or it does, but after that it enters the
interval (L1, R1) at some time. By the above two observations, this trial is successful with
probability at least 0.5δ > 0. The failure of the trial, if it ever happens, can be detected in a
finite number of steps.
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(c) If the above trial fails, we start the next trial, same as the one in (b), which is also successful
with probability at least 0.5δ. Repeat this trial process whenever a trial fails.

(d) Since 0.5δ > 0, one trial will eventually be successful with probability one.

We conclude that Xt converges either to −∞ or ∞ with probability one. In either case, the
convergences of qt, wt and rt are obvious.

B.3 N given particles: asymptotic behavior

We now turn to the case of N given particles. The question is: which particles can survive? Let
us start with a discussion of a representative example of a four-particle configuration in Figure 9.
We discuss how the weights of the particles change based on our understanding of the case of two
particles in the previous section.

Figure 9: An example of four particles.

In the divergence diagram in Figure 9, we divide the bottom interval [0, 1] into three intervals,
[0, r], [r, s] and [s, 1], based on the intersections of the line segments of particles 1, 2 and 3 (it will
be soon clear why we ignore particle 4). Recall Proposition 8 again, we have w̃t,i

∝∼ e−tDi(rt). For
large t, if rt ∈ (0, r), particle 1 will tend to dominate, and rt will drift to the right; if rt ∈ (r, s),
particle 2 will tend to dominate, and rt will drift to the left; if rt ∈ (s, 1), particle 3 will tend to
dominate, and rt will drift to the right.

• If rt stays around r for a long time, then weights of particles 3 and 4 will eventually become
negligible. The system essentially reduces to particles 1 and 2, which form a CR pair. By the
discussion and results in Section B.2.1, we expect that ln

wt,1

wt,2
oscillates but is stochastically

bounded, ln
wt,1

wt,3
→ ∞ and ln

wt,1

wt,4
→ ∞. Also, we expect that qt → (r, 1 − r, 0, 0), w̄ →

(r, 1− r, 0, 0) and rt → r.

• If rt stays close to 1 for a long time, then weights of particles 1, 2 and 4 become negligible
and the system essentially reduces to a single particle 3. Thus, when rt > s, particle 3 is
self-reinforcing. We expect that qt → (0, 0, 1, 0), wt → (0, 0, 1, 0) and rt → 1.
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Therefore, we expect that rt converges to either r or 1. In either case, we expect only two or
one particle will survive in the end.

We now state the ideas in the above discussion more formally for general N fixed particles.
Consider a two-arm Bernoulli bandit problem with parameter θ∗ and a given set of N particles PN .
Define Do(r) ≜ mini∈{1,··· ,N}Di(r). Let D

o be an abbreviation of the curve {Do(r) : r ∈ [0, 1]} and
let Di be an abbreviation of the line segment {Di(r) : r ∈ [0, 1]}. Graphically, Do is the bottom
piece-wise linear curve formed by the line segments of involved particles in the divergence diagram.
We make the following assumptions about the particles.

Assumption 3. Assume that θ∗ ∈ [0, 1]2 and PN ⊂ [0, 1]2 satisfy:

1. There do not exist two different particles i, j such that Di = Dj .

2. |{i : Di(r) = Do(r)}| ≤ 2 for all r ∈ (0, 1).

The first assumption above means that each line segment in the divergence diagram represents
one unique particle. The second assumption means that no point on the curve Do is shared by
more than two particles, except possibly at the boundaries. Both assumptions hold with probability
one if the N particles are generated uniformly at random. For the rest of this section, we assume
Assumption 3 holds.8

The breakpoints and their associated particles for Do are defined as follows.

Definition 5. A point r ∈ [0, 1] is a breakpoint for Do if it is a boundary point (i.e., 0 or 1), or it
is where two different particles intersect on Do (i.e., Do(r) = Di(r) = Dj(r) for some i ̸= j). Each
breakpoint is associated with a set of one or two particles:

• If r ∈ (0, 1) is a breakpoint where Do(r) = Di(r) = Dj(r) for some i ̸= j, then its associated
particles are {i, j}.

• The breakpoint 0 has one associated particle i0, which is the particle such that there exists
some ϵ > 0 such that Di0(δ) < Di(δ) for all i ̸= i0 for all δ ∈ (0, ϵ).

• The breakpoint 1 has one associated particle i1, which is the particle such that there exists
some ϵ > 0 such that Di1(1− δ) < Di(1− δ) for all i ̸= i1 for all δ ∈ (0, ϵ).

Definition 6. Let ξ ∈ (0, 1) be a non-breakpoint for Do. The dominant particle at ξ for the process
{rt} is a particle i such that Di(ξ) = minj∈[N ]Dj(ξ), i.e., Di(ξ) = Do(ξ). If ξ is contained in (r, s),
where r, s are two neighbor breakpoints for Do, we also say i is the dominant particle for interval
(r, s) for the process {rt}.

By Proposition 8, if rt stays around a non-breakpoint ξ ∈ (0, 1) for a long time, the weight
of the corresponding dominant particle tends to increase exponentially. In that sense the particle
dominates other particles.

Example 4. To illustrate the above definitions, see an example of six particles in the divergence
diagram in Figure 10.

In this example, the breakpoints are {0, r, s, 1} and their associated particles are 0→ {1}, r →
{1, 2}, s→ {2, 3} and 1→ {3}, respectively. The dominant particles for intervals (0, r), (r, s), (s, 1)
are particles 1, 2, 3, respectively.

8Even if Assumption 3 do not hold, i.e., if two different particles have the same line segment or if more than
two particles intersect at some point on Do, we expect that Conjecture 14 is still true, perhaps with some minor
modifications of the related definitions. But since we don’t have any rigorous results for these scenarios, and since
those scenarios are not useful in practice, we deem it reasonable to proceed with Assumption 3.
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Figure 10: An example of six particles.

Definition 7. The contraction set for the {rt} process, denoted by R, is defined as follows. A
value r ∈ [0, 1] is in R if one of the following is true:

1. r = 0 and A(i0) = 2, where i0 is the associated particle for breakpoint 0.

2. r = 1, and A(i1) = 1, where i1 is the associated particle for breakpoint 1.

3. r ∈ (0, 1) is a breakpoint and particles {i, j} form a CR pair, where i, j are the associated
particles for r.

For the example in Figure 10, R = {r, 1}.
Remark. Note that once θ∗ and PN are given, R is determined, even before PTS runs.

Conjecture 14. Consider a given problem BernoulliBandit(K = 2, θ∗) and a particle set PN that
satisfy Assumption 3. Consider the process of running PTS(PN ) as in Algorithm 5. Let R be the
contraction set for the {rt} process. Then R is non-empty and with probability one, rt → r for
some r ∈ R, and the one or two particles associated with the break point r survive, while all other
particles’ weights converge to zero.

A proof for this conjecture might begin with analyzing a properly defined N − 1 dimensional
Markov process about the particles’ weights (just like for the two-particle case we analyzed a one-
dimensional Markov process). We don’t have a proof for the conjecture, although its truthfulness
is strongly indicated by discussion at the beginning of this section and empirical evidence.

The major take-away lesson of this section is that, with Assumption 3, no more than two
particles can survive in the asymptotic regime, and the possible surviving particles can be found
by drawing the divergence diagram, as discussed. Informally speaking, the line segments of the
surviving particles should be low in the divergence diagram.

This is a special case of the sample-path necessary survival condition for general stochastic
bandit problems in Section 4.
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B.4 N Random particles

Up to this point, we have been considering fixed given particles. In practice, particles are not
given at the very beginning. One can use a pre-determined set of particles, or randomly generate
some particles. In this section, we evaluate the performance of PTS with N randomly generated
particles. We will consider two different methods for particle generation. The following lemma is
useful for the analysis of both cases.

Definition 8. We say that a particle θ ∈ [0, 1]2 is action-optimal for a given problem BernoulliBandit(K =
2, θ∗) if A(θ) = A(θ∗).

In particular, if θ∗1 = θ∗2, then any θ ∈ [0, 1]2 is action-optimal.

Lemma 15. Consider a given BernoulliBandit(K = 2, θ∗) problem and assume θ∗1 ̸= θ∗2. There exist
θ∗-dependent positive constants d̄1 and d̄2 such that, if a particle θ ∈ [0, 1]2 satisfies d(θ∗1||θ1) <

d̄1 and d(θ∗2||θ2) < d̄2, then θ is action-optimal. In particular, d̄1 = d
(
θ∗1||

θ∗1+θ∗2
2

)
and d̄2 =

d
(
θ∗2||

θ∗1+θ∗2
2

)
works.

The lemma provides us with a useful divergence based sufficient condition under which a particle
is action-optimal.

Proof. Without loss of generality, assume θ∗1 > θ∗2. It is clear that, if θ satisfies
θ∗1+θ∗2

2 < θ1 ≤ 1 and

0 ≤ θ2 <
θ∗1+θ∗2

2 , then A(θ∗) = A(θ). See the region highlighted by red in Figure 11.

Figure 11: Any θ in the red region is consistent.

The function g(y) = d(x||y) for x ∈ (0, 1) is monotone decreasing for y ∈ (0, x) and monotone

increasing for y ∈ (x, 1). Therefore a sufficient condition for
θ∗1+θ∗2

2 < θ1 ≤ 1 is d(θ∗1||θ1) <

d
(
θ∗1||

θ∗1+θ∗2
2

)
and a sufficient condition for 0 ≤ θ2 <

θ∗1+θ∗2
2 is d(θ∗2||θ2) < d

(
θ∗2||

θ∗1+θ∗2
2

)
. Let

d̄1 = d
(
θ∗1||

θ∗1+θ∗2
2

)
and d̄2 = d

(
θ∗2||

θ∗1+θ∗2
2

)
, the proof is done.
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B.4.1 Coordinate-wise random generation

Method 1 (coordinate-wise random generation): Generate two sets A and B, each contains
√
N val-

ues generated independently uniformly at random from [0, 1]. Let PN = A×B = {(a, b) : a ∈ A, b ∈ B}.

(a) Particles positions. (b) Divergence diagram.

Figure 12: An example of 16 particles produced by coordinate-wise random generation.

An example of 16 particles produced by Method 1 is shown in Figure 12. The particles form
a grid in the [0, 1]2 square (Fig. 12). The line segments of the particles form a complete bipartite
graph in the divergence diagram (Fig. 12). By the discussion in Section B.3, the weight of the
particle represented by the lowest line segment will converge to one with probability one. Call this
the bottom particle. For particles generated by Method 1, the bottom particle always exists and is
unique. The running average regret of PTS will converge to zero if and only if the bottom particle
is action-optimal. If N is large, we expect that with high probability, the KL divergences of the
bottom particle at the two arms will be below d̄1 and d̄2 respectively and hence the bottom particle
is action-optimal.

Definition 9. For a given stochastic bandit problem, we say that an algorithm is consistent for a
given sample path if the running average regret converges to zero.

In particular, for a given BernoulliBandit(K = 2, θ∗) problem, the running average regret is
1
T

∑T
t=1

(
maxa∈{1,2} θ

∗
a − θ∗At

)
. Therefore, PTS is consistent for a given sample path if wt,i → 1 and∣∣∣ 1T ∑T

t=1wt,i − 1
T

∑T
t=1 1{It=i}

∣∣∣→ 0 for some action-optimal particle i.

Proposition 16. Let PN be a set of N particles generated by Method 1. Consider the process of
running PTS(PN ) for a given problem BernoulliBandit(K = 2, θ∗) as in Algorithm 5. Let E denote
the event that the algorithm is consistent. Assume Conjecture 14 is true. Then, for N sufficiently
large,

Pr {E} ≥ 1− 2e−
|θ∗1−θ∗2 |

√
N

2 .

The above result says that with coordinate-wise random particle generation, PTS is consistent
with high probability. Observe that, if |θ∗1 − θ∗2| is large, it is more likely for the algorithm to be
consistent, or in other words, it is easier for the algorithm to identify the optimal arm. That makes
sense.
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Proof. Let A,B ⊂ [0, 1] be the two random sets of
√
N values generated by Method 1. Let

a0 = mina∈A d(θ∗1||a) and b0 = minb∈B d(θ∗2||b) and let particle i0 ∈ [N ] be the one with θ(i0) =

(θ
(i0)
1 , θ

(i0)
2 ) = (a0, b0). Particle i0 is the bottom particle in our previous discussion. With probability

one, a0, b0 and i0 are unique. By construction, the contraction set R of the {rt} process contains
only one point, either 0 or 1, depending on the optimal arm for particle i0. By Conjecture 14,
the algorithm is consistent if and only if particle i0 is action-optimal. We show that particle i0 is
action-optimal w.h.p.

If θ∗1 = θ∗2, any algorithm is consistent, there is nothing to prove. Without loss of generality,
assume θ∗1 > θ∗2. Let X and Y be two independent uniform random variables in [0, 1]. Let p1 ≜

Pr
{
d(θ∗1||X) ≤ d̄1

}
and p2 ≜ Pr

{
d(θ∗2||Y ) ≤ d̄2

}
for d̄1 = d

(
θ∗1||

θ∗1+θ∗2
2

)
, d̄2 = d

(
θ∗2||

θ∗1+θ∗2
2

)
as

in Lemma 15. Since a sufficient condition for d(θ∗1||X) ≤ d̄1 is X ∈
(
θ∗1+θ∗2

2 , θ∗1

)
and a sufficient

condition for d(θ∗2||Y ) ≤ d̄2 is Y ∈
(
θ∗2,

θ∗1+θ∗2
2

)
, we have

p1 ≥ Pr

{
X ∈

(
θ∗1 + θ∗2

2
, θ∗1

)}
=

θ∗1 − θ∗2
2

and

p2 ≥ Pr

{
Y ∈

(
θ∗2,

θ∗1 + θ∗2
2

)}
=

θ∗1 − θ∗2
2

.

It follows that

Pr{E} ≥ Pr
{
d(θ∗1||θ

(i0)
1 ) ≤ d̄1 and d(θ∗2||θ

(i0)
2 ) ≤ d̄2

}
= 1− Pr

{
d(θ∗1||θ

(i0)
1 ) > d̄1 or d(θ

∗
2||θ

(i0)
2 ) > d̄2

}
≥ 1− Pr

{
d(θ∗1||θ

(i0)
1 ) > d̄1

}
− Pr

{
d(θ∗2||θ

(i0)
2 ) > d̄2

}
= 1− Pr

{
d(θ∗1||a) > d̄1 ∀a ∈ A

}
− Pr

{
d(θ∗2||b) > d̄2 ∀b ∈ B

}
= 1− (1− p1)

√
N − (1− p2)

√
N

≥ 1− 2

(
1− θ∗1 − θ∗2

2

)√
N

≥ 1− 2e−
(θ∗1−θ∗2)

√
N

2 .

Despite the nice performance guarantee of PTS for two-arm Bernoulli bandit, coordinate-wise
random particle generation has two major limitations. First, for problems in which the parameter
space does not have a product topology, it is not clear how particles can be generated coordinate-
wise. Second, the method does not scale well for problems with a high dimensional parameter
space. For example, for the K-arm Bernoulli bandit problem, even if we only generate two values
on each coordinate, we have 2K particles, which brings concerns on computational cost.

B.4.2 Whole-particle random generation

Method 2 (whole-particle random generation): Let PN be a set of N particles generated indepen-
dently and uniformly at random from [0, 1]2.

Let us discuss the performance of PTS(PN ) on a high-level when PN is generated by Method
2. Suppose θ∗ is given, and so are d̄1 and d̄2 in Lemma 15. If N is large enough, w.h.p. we expect
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that the line segment of at least one particle is low and flat enough such that its two ends are below
d̄1 and d̄2 respectively, which makes the particle action-optimal. Let us call it particle 1. Without
loss of generality, suppose a(1) = 1. See Figure 13 for an illustration.

(a) Particles positions. (b) Divergence diagram.

Figure 13: How things could go wrong with whole-particle random generation.

However, unlike coordinate-wise random generation, here the existence of particle 1 does not
guarantee that algorithm is consistent. Things could go wrong in two ways.

• There could be a non-action-optimal particle that is close to θ∗ on arm 2, but far from θ∗

on arm 1. Call this the type-1 bad particle, exemplified by particle 2 in Fig 13. Particles 1
and 2 form an SR pair, producing an interval (0, s) in which the process rt would drift to the
wrong side.

• There could also be a non-action-optimal particle that is close to θ∗ on arm 1, but far from
θ∗ on arm 2. Let us call this the type-2 bad particle, which is exemplified by particle 3 in Fig
13. Particles 1 and 3 form a CR pair. If rt moves to anywhere in (s, 1), it will drift toward r
and stay around 1, not converging to 1.

In other words, for the particle configuration in Fig 13, the process {rt} has contraction set
R = {0, r}. Since R doesn’t contain 1, PTS cannot be consistent.

No matter how large N is, the probability that there exist at least one type-1 bad particle
and one type-2 bad particle like 2 and 3 in Fig 13 is non-zero. However, a bad particle of either
type cannot be too flat in the divergence diagram. For example, the right end of the line segment
of a type-1 bad particle cannot be below d̄1. Therefore, even with the existence of bad particles,
a sufficiently good particle creates an interval in [0, 1] (e.g. (s, t) in Fig 13) in which rt always
drifts to the right direction. For large N , we expect to have at least one good particle. And as
N increases, the line segment of that good particle becomes lower and flatter, making, making the
aforementioned interval expand to (0, 1). We formally state these ideas as follows.

Proposition 17. Consider a given BernoulliBandit(K = 2, θ∗) problem and let PN be a random
set of N particles generated by Method 2. Let R be the contraction set for process {rt} defined

in Definition 7. Then for sufficiently large N , with probability at least 1 − e−N1/3
, the following

statements are true:
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(a) Any r ∈ R satisfies either r ≤ s0 or r ≥ r0 for some s0, r0 ∈ [0, 1] satisfying s0 ≤ C1N
− 1

3

and r0 ≥ 1− C2N
− 1

3 , where C1, C2 are some θ∗-dependent constants.

(b) For any ξ ∈ (s0, r0), the corresponding dominant particle is action-optimal.

An illustration of Proposition 17 is shown in Figure 14.

Figure 14: An illustration of Proposition 17.

Before we prove this result, let us discuss its implication. Suppose without loss of generality

that arm 1 is the optimal arm, i.e., θ∗1 > θ∗2. Let E1 ≜
{
limt→∞ regt ≥

(
1− C1

3√N

)
|θ∗1 − θ∗2|

}
, a bad

event in which the running average regret is large. Let E2 ≜
{
limt→∞ regt ≤ C2

3√N
|θ∗1 − θ∗2|

}
, a good

event where the running average is small, i.e., the algorithm is almost consistent. According to
Proposition 17 and Conjecture 14, with high probability rt eventually converges to some r ∈ [0, 1],
with either r ≤ s0 or r ≥ r0, and the former implies E1 and the latter implies E2. Thus

Pr {E1 ∪ E2} ≥ 1− e−
3√N . (21)

Without event E1, (21) means that PTS is probably approximately consistent (PAC). But because
we cannot exclude the possibility of E1, we cannot say that PTS is PAC. However, as N increases,
the interval (0, s0] shrinks, we expect that the probability that rt is trapped somewhere in [0, s0]
becomes smaller. That is, we expect that Pr{E1} → 0 as N →∞, although we do not have a proof.
If that is indeed true, then Proposition 17 implies that, with whole-particle random generation,
PTS is PAC.

We now prove Proposition 17, starting with the following lemma.

Lemma 18. Let θ∗ ∈ [0, 1]2 be given. Let d̄1 and d̄2 be the constants in Lemma 15. In the divergence
diagram, let L1 be the line with end points 0 and d̄1 and let L2 be the line with end points 1 and
d̄2. See Fig. 15. Let δ0 be the height at which L1 and L2 intersects. For any δ ∈ [0, δ0), let
L = {L(r) = δ : 0 ≤ r ≤ 1} be the horizontal line of height δ. Let s0 be such that L(s0) = L1(s0)
and let r0 be such that L(r0) = L2(r0). Then s0 < r0. The following are true:

(a) If there exists a particle i that satisfies Di(r) ≤ L(r) = δ for any r ∈ (s0, r0) (i.e., Di

intersects with the red rectangle in Fig. 15), then particle i must be action-optimal.
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Figure 15: An illustration of Lemma 18.

(b) If there exists a particle j such that Dj is entirely below L, then any r ∈ R must satisfy r ≤ s0
or r ≥ r0.

Proof. The proof is geometric. See Figure 15. It is obvious that s0 < r0.
We show part (a) by showing that its contraposition is true. Consider a particle i associated

with a line Di in the diagram. Suppose particle i is not action-optimal. Then by Lemma 15, either
Di(0) ≥ d̄2 or Di(1) ≥ d̄1. Without loss of generality, assume Di(1) ≥ d̄1. Then Di must be entirely
above L1. Therefore Di cannot intersect the red rectangle in Fig. 15.

Next, we show part (b). Suppose particle j has Dj entirely below L. Obviously particle j is
action-optimal. For any ξ ∈ (s0, r0), its dominant particle must be either particle j itself or below
particle j at ξ. In the latter case, the dominant particle must be action-optimal according to part
(a). Thus, the dominant particle for any ξ ∈ (s0, r0) must be action-optimal. Therefore if rt is in
(s0, r0), it always drift to the optimal arm side. R does not contain any points in (s0, r0).

Lemma 19. Let U be a random variable uniformly distributed in [0, 1]. Then for any ϵ ∈ (0, 1),
for any value x ∈ [0, 1] fixed and given, Pr {d(x||U) ≤ ϵ} ≥ ϵ

2 .

Proof. By Theorem 1 in [6], d(x||u) ≤ x2

u + (1−x)2

1−u − 1. Therefore, if u satisfies

u ≥ 1

1 + ϵ
x and 1− u ≥ 1

1 + ϵ
(1− x) ,

then d(x||u) ≤ (1 + ϵ)x+ (1 + ϵ)(1− x)− 1 = ϵ. It follows that

Pr {d(x||U) ≤ ϵ} ≥ Pr

{
1

1 + ϵ
x ≤ U ≤ 1− 1

1 + ϵ
(1− x)

}
= 1− 1− x

1 + ϵ
− x

1 + ϵ
=

ϵ

1 + ϵ
≥ ϵ

2
.

Proof of Proposition 17. Consider a fixed large N . Let δ(N) = 2N− 1
3 . Without loss of generality,

suppose N is large enough such that δ(N) < δ0 as in Lemma 18. Let L(N), s0(N), r0(N) be defined
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for δ(N) as L, s0, r0 are defined for δ in Lemma 18. If a particle i satisfies that Di is entirely below
the line L(N), we say that particle i is good. Let E be the event that there exists at least one good
particle in PN . It follows that

Pr{E} = 1− (1− Pr{particle 1 is good})N

= 1−
(
1− Pr

{
d(θ∗1||θ

(1)
1 ) ≤ δ(N)

}
· Pr

{
d(θ∗2||θ

(1)
2 ) ≤ δ(N)

})N
(i)

≥ 1−
(
1−N−1/3N−1/3

)N
≥ 1− e−N−2/3N = 1− e−N

1
3 ,

where (i) is due to Pr
{
d(θ∗i ||θ

(1)
i ) ≤ δ(N)

}
≥ N− 1

3 by Lemma 19 for i = 1, 2.

Suppose event E is true. Let i0 be one good particle. Then by Lemma 18 part (b), any r ∈ R
must satisfy r ≤ s0(N) or r ≥ r0(N). Simple geometry shows that s0(N) = δ(N)

d̄1
= 2

d̄1
N− 1

3 and

r0(N) = 1− δ(N)

d̄2
= 1− 2

d̄2
N− 1

3 . Let C1 =
2
d̄1

and C2 =
2
d̄2
, part (a) of Proposition 17 is proved.

Consider any ξ ∈ (s0, r0), let the corresponding dominant particle be j. Then Dj(ξ) ≤ Di0(ξ).
By Lemma 18 part (a), particle j must be action-optimal. Part (b) of Proposition 17 is proved.

B.5 Summary

In this section we analyzed PTS for the two-arm Bernoulli bandit problem. Our key findings are
the following.

• Fit particles survive, unfit particles decay, in the sense described in Proposition 8 and Conjec-
ture 14. The fitness of a particle i is measured in terms of its closeness to θ∗ by the divergence
Di(rt), a convex combination of the KL divergences on the two arms. Unfortunately we can-
not directly compare the fitness of particles because Di(rt) depends on the random process
rt. It is possible that the weights of the surviving particles oscillates forever due to the
counter-reinforcing effect. Also, the weights of the decaying particles decay exponentially
fast.

• The set of surviving particles is random. This is mainly due to the self-reinforcing effect. One
way to find out the possible sets of surviving particles is by drawing the divergence diagram
described in Section B.3.

• Most particles decay. Under Assumption 3, we expect that all except at most two particles
decay eventually.

• Roughly speaking, with randomly generated particles, PTS is consistent or near-consistent
with high probability. See Proposition 16 and Proposition 17.

We believe these findings and some related concepts can be extended to other and more general
kinds of stochastic bandit problems. For example, for the K-arm Bernoulli bandit problem with
K ≥ 3, we expect to observe counter-reinforcing sets (not just pairs) of particles in PTS, in which
the particles reinforce each other in some way. Proposition 1 provides a generalized method to
identify surviving particles, including counter-reinforcing particles, for general stochastic bandit
problems and for any finite number of particles.
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B.6 Useful Drift Implied Bounds

This section includes for reference two useful drft implied bounds.

B.6.1 One drift implied bound with stochastic dominance

The following result (Proposition 20) is taken out from [9] for convenience of reference. Let
X0, X1, · · · be a sequence of random variables. The drift at time t is defined as E[Xt+1 −Xt|Ft],
where Ft = σ(X0, · · · , Xt). Consider the following two conditions:

Condition C1:
E
[
(Xt+1 −Xt)1{Xt≥a}|Ft

]
≤ −ϵ0 t ≥ 0 (22)

for some constants −∞ ≤ a < ∞ and ϵ0 > 0. That is, the drift at time t is strictly negative
whenever Xt ≥ a.

Condition C2: There exists a random variable Z with E[eλZ ] = D for some constants λ > 0
and D > 0 such that (|Xt+1 −Xt| |Ft) ≺ Z. That is, given Ft, |Xt+1 −Xt| is stochastically
dominated by a random variable with exponential tail.

Let c, η, ρ be constants such that

c ≥ E[eλZ ]− (1 + λE[Z])

λ2
,

0 < η ≤ λ ,

η < ϵ0/c ,

ρ = 1− ϵ0η + cη2 .

Then ρ < 1.

Proposition 20 (Theorem 2.3 in [9]). Conditions C1 and C2 imply that

P {Xt ≥ b|X0} ≤ ρteη(Y0−b) +
1− ρt

1− ρ
De−η(b−a) .

In particular, if X0 ≤ a, then

P {Xt ≥ b|X0} ≤
D

1− ρ
e−η(b−a) .

B.6.2 Another drift implied bound with bounded steps

Two lemmas are stated first.

Lemma 21 (Hoeffding’s Lemma). Suppose Y is a random variable such that Pr {Y ∈ [a, b]} = 1,

then E
[
eθ(Y−E[Y ])

]
≤ θ2(b−a)2

8 .

Lemma 22. Suppose (Mk : k ≥ 0) is a non-negative supermartingale. Then for any n ≥ 0 and

γ > 0, Pr {max0≤k≤nMk > γ} ≤ E[M0]
γ .

A proof of Lemma 22 can be found in Section 3.4 (Page 69) of [10].

Proposition 23. Consider a randon sequence (Un : n ≥ 1) and define F = ∅ and Fk =
σ(U1, · · · , Uk). Suppose E[Uk+1|Fk] ≤ −µ < 0 for k ≥ 0 and Pr {|Uk| ≤ C} = 1 for k ≥ 1 for
some constancts µ,C > 0. Let Xn ≜ U1 + · · ·+ Un for n ≥ 1 and X0 = 0. Let Gn ≜ max0≤k≤nXk

and G ≜ maxk≥0Xk. Then for any b > 0, Pr {G > b} ≤ e−
2µb

C2 .
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Proof. By Hoeffding’s lemma (Lemma 21),

E
[
eθ(Uk−E[Uk|Fk−1])|Fk−1

]
≤ e

θ2(2C)2

8 = e
θ2C2

2 .

Therefore, for all k ≥ 1,

E
[
eθUk |Fk−1

]
≤ eθE[Uk|Fk−1]e

θ2C2

2 ≤ e−θµ+ θ2C2

2 .

−θµ + θ2C2/2 is quadratic in θ and is less than or equal to zero for all θ ∈ [0, 2µ/C2]. Let
θ∗ = 2µ/C2. Then E

[
eθ

∗Uk |Fk−1

]
≤ 1 for all k ≥ 1. Next, define M0 = 1 and Mk = eθ

∗Xk for
k ≥ 1. (Mk : k ≥ 0) is a supermartingale because

E[Mk+1|Fk] = E
[
eθ

∗(U1+···+Uk+1)|Fk

]
= eθ

∗(U1+···+Uk)E
[
eθ

∗Uk+1 |Fk

]
= MkE

[
eθ

∗Uk |Fk−1

]
≤Mk .

It follows that, for any n ≥ 0 and b > 0,

Pr {Gn > b} = Pr

{
max
0≤k≤n

Xk > b

}
= Pr

{
max
0≤k≤n

eθ
∗Xk > eθ

∗b

}
= Pr

{
max
0≤k≤n

Mk > eθ
∗b

}
(i)

≤ E[M0]

eθ∗b
= e−θ∗b .

Step (i) is due to Lemma 22. Finally, since Gn is non-decreasing in n and Gn → G for each sample
path, 1{Gn>b} is non-negative and is non-decreasing in n and 1{Gn>b} → 1{G>b} for each sample
path. So by the monotone convergence theorem

Pr {G > b} = E
[
1{G>b}

]
= lim

n→∞
E
[
1{Gn>b}

]
= lim

n→∞
Pr {Gn > b} ≤ e−θ∗b = e−

2µb

C2 .

Corollary 24. Consider a randon sequence (Un : n ≥ 1) and define F = ∅ and Fk = σ(U1, · · · , Uk).
Suppose E[Uk+1|Fk] ≥ µ > 0 for k ≥ 0 and Pr {|Uk| ≤ C} = 1 for k ≥ 1 for some constancts
µ,C > 0. Let Xn ≜ U1+· · ·+Un for n ≥ 1 and X0 = 0. Let Gn ≜ min0≤k≤nXk and G ≜ mink≥0Xk.

Then for any b > 0, Pr{G < −b} ≤ e−
2µb

C2 .

Proof. Apply Proposition 23 to the sequence {−Xn}.

C Regenerative particle Thompson sampling: choice of hyper-
parameters and more simulations

The recommended numerical values of the three hyper-parameters for RPTS (Algorithm 3) are
fdel = 0.8, winact = 0.001, and wnew = 0.01. The behavior of the algorithm is relatively insensitive
to these values, but further tuning may be beneficial in a given application. In this section we
comment on how these values influence the performance of the algorithm.

• Analysis for Bernoulli bandits (Section B) and empirical evidence for other bandit models
indicate that with high probability all but a few particles eventually decay in PTS. Hence it
may be attempting to make fdel very large. However, since the set of decaying particles is
random, it may happen that some fit particles end up decaying. Also, a not-so-bad particle
may have an oscillating weight due to counter-reinforcing effects and thus may have low weight
at times. Making fdel not too large gives those unfortunate fit and not-so-bad particles a
chance to survive. We have tried fdel = 0.8 and fdel = 0.5 and both work fine.
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• The value of winact should be small, but if it is too small, it may take a long time for the
CONDITION in Step 9 to become true, especially when the particles become concentrated
in a small subset of the parameter space.

• The value of wnew should be small, but strictly larger than winact. There are three aspects
of consideration here. First, it is desirable that the weight re-balancing in Step 13 due to
normalization has minimal effect on the weights of the surviving particles. We discovered
through experiments that it is good for heavy weight particles to remain heavily weighted.
Therefore wnew should be small. Second, wnew should be larger than winact, because otherwise,
the newly generated particles in a step will be immediately deleted in the next step. Third,
the purpose of setting the value of wnew is to give some initial weights to the new particles so
that they can participate in the weight updating in the subsequent steps. If a new particle
is fit, its weight will boost up exponentially fast; if a new particle is unfit, it will decay
exponentially fast. Therefore, the initial weights assigned to these new particles should not
significantly affect their chance of survival and their long-term weight dynamics. Thus, as
long as wnew is fairly small and larger than winact, the choice of its actual value may not make
much difference qualitatively.

More simulations are shown in Figure 16.
For the linear bandit problem, TS can also be exactly implemented by a Kalman filter. The

initial set of particles of PTS and RPTS for linear bandits are generated uniformly at random from
the unit ball in RK . That is based on the assumption that we already know that θ∗ is in the
unit ball before running the algorithm. In practice, such knowledge may not be available and a
common practice is to use a distribution that spreads out wide enough so that it should cover θ∗.
For the purpose of demonstrating the performance of PTS and RPTS here, our practice should be
acceptable.

D Approximation of expected reward for the network slicing model

In Section 6, in step 4 of Algorithm 4, the expected reward Eθt [R(Y )|At = a, ct] becomes Eθt [gct,2(Yt)|a]
for the network slicing model, where Yt = Yt,1 +Yt,2 +Yt,3. Since Yt,1, Yt,2, Yt,3 are coupled through
the non-linear function gd, it is not clear if the expectation can be exactly calculated by a closed-form
expression. We propose the following approximation. Given a random variable Y = Y1 + Y2 + Y3,
where Yi is an exponentially distributed random variable with mean µi and Yi’s are independent.
Suppose we approximate Y by a Gaussian random variable Ỹ with mean µ = µ1 + µ2 + µ3 and
variance σ2 = µ2

1 + µ2
2 + µ2

3. Then

E[gd(Y )] ≈ E[gd(Ỹ )]

=

∫ d

0

y

d

1√
2πσ2

e−
(y−µ)2

2σ2 dy

=

∫ d−µ

−µ

1

d
(z + µ)

1√
2πσ2

e−
z2

2σ2 dz (with z = y − µ)

=
1

d
√
2πσ2

∫ d−µ

−µ
ze−

z2

2σ2 dz +
µ

d

∫ d−µ

−µ

1√
2πσ2

e−
z2

2σ2 dz

=
σ

d
√
2π

(
e−

µ2

2σ2 − e−
(d−µ)2

2σ2

)
+

µ

d

(
Φ

(
d− µ

σ

)
− Φ

(
−µ

σ

))
,
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where Φ(x) ≜ P(N ≤ x) for a standard Gaussian random variable N . Then

Eθt

[
gct,1(Yt)|a

]
≈ σt

ct,2
√
2π

(
e
− µ2t

2σ2
t − e

−
(ct,2−µt)

2

2σ2
t

)
+

µt

ct,2

(
Φ

(
ct,2 − µt

σt

)
− Φ

(
−µt

σt

))
, (23)

where µt = µt,1+µt,2+µt,3 and σ2
t = µ2

t,1+µ2
t,2+µ2

t,3 and µt,i = ct,1θt,i,ai,1+θt,i,ai,2 for i = 1, 2, 3. Step
4 of Algorithm 4 can then be approximately solved by looping over all possible a ∈ [B1]× [B2]× [B3]
and find the one that maximizes (23).
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(a) Bernoulli bandit, K = 10
θ∗ = [0.05, 0.10, · · · , 0.50].

(b) Bernoulli bandit, K = 100
θ∗ consists of N = 100 points uniformly spaced over

[0.3,0.8].

(c) Max-Bernoulli bandit, K = 10, M = 3
θ∗ = [0.51, 0.52, · · · , 0.60].

(d) Max-Bernoulli bandit, K = 10, M = 3
θ∗ = [0.05, 0.10, · · · , 0.50].

(e) Linear bandit, K = 10, σ2
W = 0.1,

θ∗ = [0.2, · · · , 0.2].
(f) Linear bandit, K = 100, σ2

W = 0.1,
θ∗ = [0.08, · · · , 0.08].

Figure 16: More simulations.
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