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Abstract—This paper develops a strategy to minimize the
number of channel probes required to recover the components
of the channel law and maximize the reliable communication
rate across a discrete memoryless channel (DMC). Based on
the aggregate set of observed input-output pairs over time, the
algorithm sequentially probes subsets of channel input values. We
leverage a non-asymptotic probably approximately correct (PAC)
bounds to establish the rate of convergence towards channel
capacity as O(

√
log(log(N)) log(N)/N), where N is the number

of channel probes. For a discrete channel with |X | input values
and |Y| output values, the sampling strategy may reduce the
sample complexity by a factor of nearly min (|X |/|Y|, 1) relative
to previous methods.

I. INTRODUCTION

When channel knowledge is incomplete or impaired, chan-
nel sampling or probing is often employed to gain channel
information to aid the coding and modulation processing chain
to provide reliable communications. This paper proposes a
near-optimal sampling strategy that meets the limiting con-
vergence rate in recovering such information for the discrete
memoryless channel (DMC).

Consider the scenario depicted in Fig. 1, where the channel
transition probabilities are initially unknown. The sender, Al-
ice, sequentially selects channel input values and the receiver,
Bob, records each the observed channel output value. Once
Alice and Bob jointly have sufficient channel knowledge, they
design and implement a suitable encoder and decoder to pro-
vide reliable communication at rate R with high probability.
Our goal is to minimize the sample complexity, which is the
number of channel probes/samples required to assure a rate R,
where R less than but arbitrarily close to the channel capacity
C.

Fig. 1. Maximize a lower bound on channel capacity

During the channel sampling process, suppose Alice and
Bob have gathered of N input-output sample pairs SN =

{(xn, yn)}N−1
n=0 . Each sample pair consists of the observed

output value (or symbol) y ∈ Y = {b0, b1, . . . , b|Y|−1} that
corresponds to the instance when input value x ∈ X =
{a0, a1, . . . , a|X |−1} was applied to the channel. Each sam-
ple pair (xn, yn) is an instance of a random variable (RV)
(X,Y ). The marginal probability mass function (pmf ) u of
the RV X lies within a discrete probability space PX that
is u ≜ [ua0 , ua1 , . . . , ua|X|−1

] ∈ PX and ux ≜ P {X = x}.
Similarly, the marginal pmf v of the channel output RV Y is
v ≜ [vb0 , vb1 , . . . , vb|Y|−1

] ∈ PY where vy ≜ P {Y = y}.
We seek to recover bounds pertaining to the channel

law w, which is a vector of conditional pmf s indexed by
the input symbol x, i.e. w ≜ [wa0

,wa1
, . . . ,wa|X|−1

],
where wx ≜ [wb0 | x, wb1 | x, . . . , wb|Y|−1 | x] and wy | x ≜
P{Y ≜ y |X = x} ∀x ∈ X and y ∈ Y . We call wx the
‘generator’ pmf of the channel output given the input value
x. The channel output RV Y | X = x is independent and
identically distributed (i.i.d.) ∀n.

Our approach leverages results for communication over
uncertain channels [1], including the compound DMC [2]. We
modify the information spectrum approach of Han [3] to form
a probabilistic compound channel, where constraints are based
on probability approximately correct (PAC) bounds [4]. Lang-
ford [5] outlined the application of PAC-bounds to machine-
learning; however, we require PAC bounds specifically for
information theoretic measures. VanderKratts et al. [6] intro-
duced the use of PAC bounds (aka concentration inequalities)
on mutual information for datasets with binary input values
(and continuous-valued observations). Our sublevel-set (PAC)
bound [7] is similar to the PAC-Bayesian bounds of Seldin et
al. [8] (also see [9] for a survey and review).

Our channel sampling strategy is based on multi-arm bandit
(MAB) algorithms (on-line active learning), where one at-
tempts to ‘play’ various ‘slot-machines’ in a manner yielding
the highest average payout. Our procedure mimics the upper
confidence bound (UCB) methods of Auer et al. [10] and Cesa-
Bianchi et al. [11], and we leverage the law of iterated log-
arithms (LIL), which was incorporated into MAB algorithms
by Jamieson et al. [12]. In particular, we employ the technique
described by Pollard in [13] to create batches of samples in
exponentially increasing block sizes to control the number of
decisions and ensure all bounds hold with high probability
throughout the process.



This paper: (1) extends our results [14] from memoryless
binary input-output channels to DMCs and (2) improves upon
methods in [15], [16] to provide near-optimal channel input
sampling.

The remainder of this paper is as follows: we modify several
non-asymptotic sublevel-set bounds (Section II) to reflect
the uncertainly about the channel transition probabilities. In
Section III, we bound the rate of convergence of a lower bound
on channel capacity. In section IV, we describe an online
algorithm, whose performance matches this convergence rate.
In Section V, we present results from simulated channels. We
finish with conclusions and discuss future work (Section VI).

II. PROBABILISTIC COMPOUND CHANNEL

When the channel law w is known, the average mutual
information between the RVs X and Y is

I(X;Y ) = I(u ,w) ≜
∑
x∈X

uxD(wx ∥v̀ (u)) , (1)

where the expected output pmf v̀ (u) ≜
∑
x∈X

uxwx, and the

Kullback Leibler (KL) divergence [2] for discrete RVs P and
Q with respective pmf s p ∈ PY and q ∈ PY is

D(P ∥Q) = D(p ∥q) ≜
∑
y∈Y

py log2

(
py
qy

)
. (2)

From SN , we compute the empirical pmf s ŵx =
[ŵb0 | x, ŵb1 | x, . . . , ŵb|Y|−1 | x], where

ŵy | x ≜
1

Nx

N−1∑
n=0

1{yn=y ∧ xn=x} ∀y ∈ Y, (3)

and Nx =
N−1∑
n=0

1{xn=x} for each x ∈ X .

Given an empirical pmf ŵ and N , we want to establish a
tight reverse probably approximately correct (PAC) bound of
the form

P
{
ẃ ∈ Γ rev

ξ (ŵ)
}
≥ 1− δ, (4)

where the pmf ẃ is a possible generator of the empirical pmf
ŵ. Specifically, we choose a closed convex sub-levelset Γ
based on the KL divergence, which is ‘centered’ on ŵ with a
‘size’ ξ. This sub-levelset is defined as

Γ rev
ξ (ŵ) ≜ {ẃ:D(ŵ ∥ẃ) ≤ ξ, ∀ẃ ∈ PY}. (5)

Our approach [15] is to use these sub-levelsets to form a
compound channel based on the PAC bounds and solve for the
maximum assured mutual information across the compound
channel. For a compound channel, the channel law w is
confined to a known region within the output probability space
PY , say w ∈ Γ . When Γ is convex and closed, the channel
capacity is given by [1]

C = min
w∈Γ

max
u∈PX

I(u ,w). (6)

Let RL be the worst case (minimum capacity) channel over
all channel laws within the closed and convex region w ∈ Γ ,
and then there exists a codebook [1] that will support rates up
to RL for any channel law w ∈ Γ .

Given the sequential channel sampling process, we repeat-
edly update the empirical pmf s (incorporating newly observed

samples) and re-evaluate the probabilistic sub-levelset bounds
to guide the selection of inputs values to sample. Eventually,
when the sampling process terminates, we want the the final
lower bound rate RL to be valid (to ‘hold’) with a specified
probability of at least 1− δ1. The probability that any proba-
bilistic sub-levelset bounds fails to hold over all repeated re-
evaluations throughout the entire sampling process must be
< δ1.

A key insight (as noted in [14]) from the law of iterated log-
arithms (see [13]) is to ‘expand’ the bound (sub-exponentially)
with each re-evaluation according to

δτ = δΓ
6

π2 (τ + 1)
2 , (7)

where δΓ is the probability that one of the sub-levelset bounds
holds for all re-evaluations during the entire channel sampling
process and τ is the number of re-evaluations of the bound
thus far. By the union bound,

P {any sub-levelset bound evaluation fails} ≤
∞∑
τ=0

δτ = δΓ ;

(8)
therefore, the probability that each sub-levelset bound remains
valid (holds) is ≥ 1− δΓ .

As the number of observations N increases, the ‘size’ of the
sublevel-set constraints (based on Eq. 5) ‘shrink,’ according to
Sanov’s theorem.

Theorem II.1 Sanov’s Theorem (see [17] section 11.4)
Let ŵ be the empirical pmf of SN = {y0, y1, . . . , yN−1}, then
given any region Γ ⊂ PY and w∗ the ‘closest’ pmf among
all ẃ ∈ Γ to w in terms of the KL divergence

w∗ = arg min
ẃ∈Γ

D(ẃ ∥w) (9)

then

δΓ ≜ P {ŵ ̸∈ Γ} ≤ (N + 1)
|Y|

exp(−ND(w∗ ∥w)). (10)

Solving for δΓ , we get a sublevel-set bound, where

ξ (N, |Y| , δΓ ) = D(w∗ ∥w) ≤ |Y| ln(N + 1)− ln(δΓ )

N
(11)

sets the ‘size’ of the sublevel-set. Inserting the bound ‘expan-
sion’ to cover repeated re-evaluations (see Eq. 7), we have

ξ (N, |Y| , δΓ , τ) ≤
|Y| ln(N + 1)− ln

(
δΓ

6
π2(τ+1)2

)
N

=
|Y| ln(N + 1) + 2 ln(τ + 1) + κ0

N
(12)

where κ0 = ln(δΓ )+ln
(

6
π2

)
. If we re-evaluate the sub-levelset

bound after each new input-output sample pair is observed,
then τ = N and we have

ξlog (N, |Y| , δΓ ) ≤
(|Y|+ 2) ln(N + 1) + κ0

N
, (13)

and the convergence rate of the ‘size’ ξ of the sub-levelset is
O (ln(N)/N).

The following theorem sharpens the ‘Sanov’ sublevel-set
bound to O (ln(ln(N))/N).



Theorem II.2 Improved Sub-levelset Bound [7]
Given the set SN = {y0, y1, . . . , yN−1} of outcomes from N
i.i.d. discrete random variables Y n ∈ Y and Y n ∼ w for
n = 0, 1, . . . , N − 1. Let ŵ be the empirical pmf of SN , and
select any δΓ ∈ (0, 1], then P {ŵ ̸∈ Γξ (w)} ≤ δΓ for the sub-
levelset Γξ (w) ≜ {ẃ:D(ẃ ∥w) ≤ ξ, ∀ẃ ∈ PY} with ‘size’

ξ ≥ 1

N

(
1

2
ln(2 |Y|)− 3

2
ln

(
δΓ
2

)
+ |Y| ln

(
log2(log2(N))

+ κ1

√
|Y|+ log2(κ2 |Y|) + 2

))
− ln

(
δΓ

6

π2 (τ + 1)
2

)
,

(14)

where κ1 = 2
√
24
(
1 +
√
2
)
, κ2 = 24, and τ is the number

of re-evaluations of the bound

If we limit the re-evaluation of the iterated log sub-levelset
bound to only the moments when the number of samples N
is a power of two, then τ = ⌈log2(N)⌉, then the convergence
rate remains O (ln(ln(N))/N).

Since the observed empirical pmf ŵ is within Γξ (w) with
probability > 1−δΓ , then the generator pmf w must be located
within the probability space such that D(ŵ ∥w) ≤ ξ with
probability > 1 − δΓ . We define the sublevel-set Γ rev

ξ (ŵ)

(see Eq. 5) and the P
{
w ∈ Γ rev

ξ (ŵ)
}
≥ 1−δΓ to constrain

the channel law uncertainty with high probability.
We want the aggregate of |X | sub-levelsets Γ rev

ξ (·) to
‘contain’ the ‘true’ pmf w with high probability (i.e. ≥ 1−δ1).
So, we set δΓ = δ1

|X | to ensure that all sub-levelset bounds
simultaneously hold. We ‘size’ (or ‘tune’) the sub-levelsets,
by setting the ξ parameter of Γ rev

ξ (·) using either: (1) the
‘log’ sub-levelset bound Eq. 13 or (2) the ‘loglog’ improved
sub-levelset bound ξloglog (Nx, |Y| , δ1) Eq. 14.

The set of |X | closed convex sub-levelset constraints contain
the true channel law with probability ≥ 1 − δ1. Algorithm 1
repeatedly invokes the Blahut-Arimoto algorithm [18] to max-
imize the lower communication rate bound RL within these
constraints. Algorithm 1 outputs

RL ≜ min
w−

x ∈Γ rev
ξw

(ŵx)

∀x∈X

max
u−∈PX

I
(
u− , w−) (15)

and the associated unique fixed point solution {w−
x }x∈X and

v−. The ‘support’ of the rate RL is the set of input values
X ∗ ≜ {x:D(w−

x ∥v−) = RL ∀x ∈ X}. The pmf s w−
x in the

support X ∗ will lie on the surface of their respective sub-
levelset constraint (see [15] for details).

III. BOUNDING THE CHANNEL RATE CONVERGENCE

We want determine how quickly the {w−
x }x∈X approaches

the true channel law as the number of channel samples
increases. Invoking Pinsker’s Theorem [19], we have√

2D(ŵx ∥wx) ≥ ∥ŵx −wx∥1 (16)
and √

2D
(
ŵx

∥∥w−
x

)
≥
∥∥ŵx −w−

x

∥∥
1
. (17)

Algorithm 1 Lower bound on channel capacity given samples
1: Input: {ŵx, Nx}x∈X , δ1, tol ∈ (0, 1) { tol = 10−5}
2: ξx ← ξ (Nx, |Y| , δ1/|X |) ∀x ∈ X
3: v− ∈ PY
4: repeat
5: v́← v−

6: for x ∈ X do
7: w−

x ← arg min
w′

x∈Γ rev
ξx

(ŵx)

D(w′
x ∥v́)

8: end for
9: (u−,v−, RL)← Blahut-Arimoto ({w−

x }, tol)
10: until ∥v́ − v−∥2 ≤ tol
11: Output:{w−

x }x∈X , u−, v−, RL

The sublevel-sets Γ rev
ξ (·) are ‘sized’ such that

D(ŵx ∥w−
x ) = ξ (Nx, |Y| , δΓ ) and according to Thm

II.2, ŵx falls outside the sublevel-set with probability ≤ δΓ .
Likewise D(ŵx ∥wx) ≤ ξ (Nx, |Y| , δΓ ); therefore, we have
an L1-norm bound on how far w− can deviate from the true
pmf w,∥∥wx −w−

x

∥∥
1
=
∥∥ŵx −w−

x

∥∥
1
+ ∥ŵx −wx∥1

≤ 2
√

2ξ (Nx, |Y| , δΓ ) with prob. ≥ 1− δΓ .
(18)

Recall that for an RV X ∈ X with pmf p, the entropy
is H(p) ≜

∑
x∈X
−pxlog2(px). Given a second RV X ′ ∈ X

with pmf p′, we have the following bound on entropy that is
a function of the L1-norm ∥p− p′∥1 (see [17] Thm 17.3.3),

|H(p)−H(p′)| ≤ Ξ (∥p− p′∥1, |X |)
= ∥p− p′∥1 (log2(|X |)− log2(∥p− p′∥1))
= O(∥p− p′∥1 log(1/∥p− p′∥1)) , (19)

where
Ξ (x,K) ≜ x log2(K)− x log2(x) (20)

for x ∈ R+ and K ∈ Z+.
If we define a joint pmf q as qx,y ≜ wy | xux, the mutual

information (for the true pmf s u, v, and q) may be written as
(see [17] Thm 2.4.1)

Rtrue ≜ I(X;Y ) = H(u) +H(v)−H(q) . (21)

The pmf s u−, v−, and q−, (where q− is defined as q−x,y ≜
w−

y | xu
−
x ) are all within the various sublevel-set constraints

to yield RL; therefore, we have
RL = H

(
u−)+H

(
v−)−H

(
q−) . (22)

The absolute value of the difference in mutual information is

∆R ≜ |Rtrue −RL|
= |H(u) +H(v)−H(q)

−
(
H
(
u−)+H

(
v−)−H

(
q−))∣∣

≤
∣∣H(u)−H

(
u−)∣∣+ ∣∣H(v)−H

(
v−)∣∣

+
∣∣H(q)−H

(
q−)∣∣ . (23)



The absolute value of the difference in entropy be-
tween each true pmf p and the pmf p− which lies
on the surface of the sub-levelset Γ rev

ξ (p̂) is bounded
by O(∥p− p−∥1 log(1/∥p− p−∥1)) (see Eq. 19) and
∥p− p−∥1 converges towards zero with O

(√
ξ
)

(see Eq. 18).
Given some arbitrarily selected input pmf ú, we evaluate

|Rtrue (ú)−RL (ú)| by bounding the absolute value of each
entropy difference (see Eq. 23). Suppose we observed N
input-output pairs, and let N ≜ [Nx]x∈X be the vector of
the number of occurrences of each input value x in SN .
Alice could construct a codebook such that input values are
distributed according to any selected pmf ú. When using
this codebook, ú would match the true input pmf u, and so
|H(u)−H(ú)| = 0. For the channel output pmf v (ú), we
have∥∥v (ú)− v− (ú)

∥∥
1
=

∥∥∥∥∥∑
x∈X

wxúx −
∑
x∈X

w−
x úx

∥∥∥∥∥
1

=

∥∥∥∥∥∑
x∈X

(
wx −w−

x

)
úx

∥∥∥∥∥
1

≤
∑
x∈X

∥∥wx −w−
x

∥∥
1
úx

≤
∑
x∈X

úx2
√
2ξ (Nx, |Y| , δΓ ), (24)

and inserting this result into Eq. 19 and Eq. 20 yields

∣∣H(v (ú))−H
(
v− (ú)

)∣∣ = Ξ

(∑
x∈X

úx2
√
2ξ (Nx, |Y| , δΓ )

)
.

(25)

Finally, for the joint pmf q, we have

∣∣H(q (ú))−H
(
q− (ú)

)∣∣ =
∣∣∣∣∣∣
∑
x∈X

∑
y∈Y

wy | xúx log
(
wy | xúx

)
−

∑
x∈X

∑
y∈Y

w−
y | xúx log

(
w−

y | xu
′
x

)∣∣∣∣∣∣
=

∣∣∣∣∣∑
x∈X

(
H(wx)−H

(
w−

x

))
úx−

∑
x∈X

∑
y∈Y

(
wy | x − w−

y | x

)
úx log(úx)

∣∣∣∣∣∣
≤
∑
x∈X

úx

∣∣H(wx)−H
(
w−

x

)∣∣
≤
∑
x∈X

úxΞ
(∥∥wx −w−

x

∥∥
1

)
,

(26)
and so

∣∣H(q (ú))−H
(
q− (ú)

)∣∣ ≤∑
x∈X

úxΞ
(
2
√

2ξ (Nx, |Y| , δΓ )
)
.

(27)

Overall we have

∆R (ú,N, |Y| , δ1) ≜ |Rtrue (ú)−RL (ú)|

≤ Ξ

(∑
x∈X

úx2
√
2ξ (Nx, |Y| , δΓ )

)
+∑

x∈X
úxΞ

(
2
√
2ξ (Nx, |Y| , δΓ )

)
= O(

√
ξ log

(
1/
√

ξ
)
), (28)

where ξ = ξ (N, |Y| , δ1). Given input-output pairs SN and
suppose a selected ú yields a minimum assured information
rate of RL (ú)), then the convergence rate when using: (1) ξlog

(Eq. 13) is ∆R (ú,N, |Y| , δΓ ) = O(log(N)/
√
N), and (2)

ξloglog (Eq. 14) the convergence rate is ∆R (ú,N, |Y| , δΓ ) =
O(
√

log(log(N)) log(N)/N).
□

For the remainder of this paper, we shall set Nx = N0 for
all input values; therefore, ∆R (ú,N, |Y| , δΓ ) is constant over
all input pmf s ú. We will simplify our notation to represent
∆R (ú,N, |Y| , δΓ ) as ∆R (N0).

IV. NEAR OPTIMAL CHANNEL SAMPLING

Suppose, RL (ú) is a lower bound on the maximum mutual
information across the channel under the constraint of a fixed
input pmf ú. Let u∗ = arg max

ú∈PX
RL (ú), then RL (u∗) ≤

C ≤ RL (u∗) + ∆R (N0).

(1, 0, 0) (0, 1, 0)

(0, 0, 1)|Y| = 3

δ1 = 0.01
PY

RL − 2∆loglog
R (N0)

RL − 2∆log
R (N0)

Rtrue

vtrue
C

N0 = 105

N0 = 106

N0 = 107

Fig. 2. Input value elimination regions

In Fig. 2, the ‘red’ contour depicts the surface on which a
subset of pmf s {wx :D(wx ∥vtrue) = Rtrue = C ∀x ∈ X} lie
to ‘support’ achieving channel capacity [15]. If each input
value is sampled N0 times, then the lower bound RL (output of
Algorithm 1) is within ∆R (N0) of Rtrue, and so only the sub-
set of pmf s {ŵx:D(ŵx ∥v−) ≥ RL − 2∆R (N0)∀x ∈ X}
can potentially improve RL with additional channel sampling.
The 2∆R term accounts for: (1) the uncertainty in RL and (2)
the remaining uncertainty in the estimate ŵx.



Algorithm 2 Near-optimal channel sampling
1: Input: Ninit, δ1, ∆STOP, tol ∈ (0, 1)
2: τ ← 1, Sτ ← ∅, Xτ ← X
3: N0 ← Ninit
4: v− ∈ PY
5: repeat
6: sample the channel and update Sτ such that each input

x ∈ Xτ has N0 samples
7: compute estimates {ŵx}x∈Xτ

8: (u−,v−, RL)← ALG1
(
{ŵx, N0}x∈Xτ

, δ1, tol
)

9: compute ∆R (N0) = ∆ (ú, N0, |Y| , δ1/|Xτ |)
10: Xτ+1 ← ∅
11: for x′ ∈ Xτ do
12: if D(ŵx′ ∥v−) ≥ RL − 2∆R (N0) then
13: Xτ+1 ← Xτ+1 ∪ x′ {retain requisite input values}
14: end if
15: end for
16: N0 ← 2N0 ∀x ∈ Xτ {double number of probes}
17: τ ← τ + 1
18: until ∆R (N0) ≤ ∆STOP {test stopping criteria}
19: Output:{w−

x }x∈X , v−, u−,RL

Suppose N0 = 105, then for any input value with an
empirical pmf ŵx located within the region depicted by
the solid line ‘blue’ contour can be eliminated from further
sampling (see Fig. 2). The area inside the solid line ‘blue’
contour, which is based on the iterated log sub-levelset bound,
will eliminate more channel estimates than the ‘smaller’ area
enclosed by the dashed line ‘blue’ contour, which is based
on the Sanov sub-levelset bound. As the number of channel
probes increases, the contours expand toward the ‘red’ channel
capacity contour.

Algorithm 2 implements this strategy. We start off sampling
all input values, then we compute the lower bound on channel
capacity RL and the bound ∆R on the deviation in mutual
information. Next, we discard (stop sampling) any input
value x′ (and assume that it is not part of the channel) if
D(ŵx′ ∥v−) < RL − 2∆R (i.e. the value x′ will never be
part of the support that improves the rate RL). As the the
sampling process continues, the algorithm narrows its focus to
only the set of input values associated with channel estimates
{ŵx}x∈Xτ

that are required to approach channel capacity with
high probability.

V. RESULTS

Define Algorithm ALL as a simple modification of Algo-
rithm 2 with line 10 replaced with Xτ+1 ← X such that
all input values are retained for additional channel sampling
throughout the entire sampling process. We want to evaluate
the reduction in sample complexity for Algorithm 2, which se-
lectively samples input values, against Algorithm ALL, which
always samples every input value.

During the channel sampling process, Algorithm 2 whittles
down the set of input values as more information about the
channel law wtrue is observed. We ran Algorithm 2 on a DMC

with |X | = 100 and |Y| = 4, each wtrue
x ∀x ∈ X was drawn

i.i.d. according to an uniform Dirichlet distribution [20] with
hyperparameter α i.e. wx ∼ Dir (α = 0.75), where

Dir (α) ∝
∏
y∈Y

wy | x
α−1 ∀y ∈ Y (29)

With parameters δ1 = 0.0001, Ninit = 100, and ∆STOP = 0
(and we interrupt the algorithm at N0 = 109 samples), we ran
Algorithm 2 twice: (1) first using the Sanov based bound ξlog

(Eq. 13) to ‘size’ the sub-levelset constraints to contain the
true channel law with probability ≥ 1−δ1, and then (2) using
the iterated log bound ξloglog (Eq. 14).
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Fig. 3. Number of surviving input value throughout the sampling process

In Fig. 3, the x-axis is the number of samples N0 observed
for each of the |X | = 100 input values. The y-axis shows
the number of different input values that were selected and
sampled by Algorithm 2 throughout the channel sampling
process. At the start all 100 input values are sampled and
then at about N0 = 3000 samples, the red curve shows that
Algorithm 2 begins to have enough information to eliminate
some input values from further consideration. Input x′ is
eliminated at the point its empirical pmf ŵx′ falls within
the expanding the contour surfaces depicted in Fig. 2. The
green dashed line is the number of input values in the support
X ∗ at channel capacity (these input values should never be
eliminated).

In Fig. 3, the red curve indicates the number of input
values remaining when using the iterated log bound ξloglog.
The iterated log bound drops input values quicker than the
blue curve, which is based on using the Sanov bound ξlog. The
reduction in sample complexity (between the curves) appears
modest (approx. factor of 3 or so) for this test case. However,
note that for N0 > 106, the number of input values sampled
is far less than |X | = 100, so Algorithm 2 (with either sub-
levelset bound ξloglog or ξlog) significantly reduces the sample
complexity relative to Algorithm ALL.

To evaluate the sample complexity of Algorithm 2 ver-
sus Algorithm ALL, we simulated a set of channel laws,
where the number of input values was varied |X | ∈ X ≜
{4, 8, 16, 32, 64, 128, 256, 512} and the number of output val-
ues was fixed at |Y| = 4. We used a mixture of Dirichlet
distributions to draw the channel law wtrue for each trial.
We drew |Y| generator pmf s wx using α = 0.6 and the
remaining |X | − |Y| generator pmf s wx using α = 0.75.
The |Y| generator pmf s wx (drawn using α = 0.6) are more



likely to be in the support X ∗ necessary to achieve channel
capacity. This test simulation roughly models a scenario where
one looks for these specific |Y| = 4 generator pmf s among
the remaining ‘noisier’ generator pmf s.
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Fig. 4. Sample complexity reduction factor

For each |X | ∈ X, we simulated 200 channel trials, and
then we ran both Algorithm 2 and Algorithm ALL with
both algorithms using the iterated log bound ξloglog)) and
the parameters δ1 = 0.0001, Ninit = 100, and ∆STOP ∈
{0.1, 0.01, 0.001}. Each trial produced a sample complexity
N (the total number of channel samples to meet the stopping
criteria of ∆R < ∆STOP (see line 18 in Algorithm 2).

In Fig. 4 each ‘+’ marker is the ratio of the sample com-
plexity N all

∆STOP
of Algorithm ALL over the sample complexity

N loglog
∆STOP

of Algorithm 2 for one trial of the 100 channel trials
for each given number of input values |X | ∈ X. The ‘dotted’
lines are the median for all the trials for a given number of
input values |X | ∈ X and ∆STOP ∈ {0.1, 0.01, 0.001}.

We see in Fig. 4 that when ∆STOP = 0.001 (i.e. the green
points), the median rises approx. linearly with the number of
input values |X |. If we relax the stopping criteria to ∆STOP =
0.1 (i.e. the red points), then the algorithm terminates quicker
with fewer input values eliminated. This lowers the sample
complexity reduction factor.

The reduction of the number of samples required to establish
a reliable communication rate depends on the specific channel
law. Typically, if |Y| ≤ |X |, then |Y| of the |X | input values
are required to support channel capacity; therefore, our near-
optimal channel sampling strategy may reduce the sample
complexity by a factor of up to min (|X |/|Y|, 1) relative the
sample-all-input-values-equally strategy.

VI. CONCLUSIONS AND FUTURE WORK

We developed and demonstrated an online algorithm (using
a near-optimal channel sampling strategy) that establishes a
high probability lower bound RL on channel capacity for a
DMC. We proved that the online algorithm matches the same
‘big Oh’ sample complexity as an off-line algorithm with
‘clairvoyance’ to request a one-time sufficient batch of input-
output samples [16] that meets the stopping criteria.

We did not make any assumptions about the distribution of
the channel law w. One may leverage additional information
about the process that generates the channel law to further
reduce sample complexity. For example, if the number of
input values is very large, one may initially investigate small
subsets of input values to leverage insight on the channel
law generating process itself. Still in the worst-case scenario
(accommodated here) all input values would eventually need
to be evaluated to approach channel capacity.

Future work could perhaps modify the sampling process to
adjust with the discovery of new channel output values. While
we assumed that the true channel law remain constant, we hope
to modify the channel sampling strategy to detect and track
channel drift over time.
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