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Abstract—Guessing Random Additive Noise Decoding
(GRAND) is a family of universal decoding algorithms suitable
for decoding any moderate redundancy code of any length.
We establish that, through the use of list decoding, soft-input
variants of GRAND can replace the Chase algorithm as the
component decoder in the turbo decoding of product codes. In
addition to being able to decode arbitrary product codes, rather
than just those with dedicated hard-input component code
decoders, results show that ORBGRAND achieves a coding gain
of up to 0.7dB over the Chase algorithm with same list size.

Index Terms—GRAND, Block Turbo Decoding, Product Codes,
List Decoding

I. INTRODUCTION

GRAND is a recently introduced family of hard [1H3] and
soft [4H7] decoding algorithms that can accurately decode
arbritrary codes, even non-linear ones [8], with a moderate
number of redundant bits. Their promise for practical, highly-
parallelised decoding has led to the publication of several
circuit designs and a chip implementation [9H13].

Product codes are a class of long, high redundancy codes
that are constructed by concatenating shorter component
codes. Iterative GRAND (IGRAND) [3]] adapts GRAND for
accurate hard-input iterative decoding of product codes [14]].
Here we establish how GRAND can decode product codes
with the aid of soft information. Block turbo decoding achieves
near-optimal soft-input decoding of product codes. Block turbo
decoding uses a soft-input component decoder, customarily
the Chase algorithm [[15]], to generate a selection of candidate
decodings for a row or column of the product code, which are
used to update the reliability of each bit in that row or column.

We reconsider soft-input GRAND as a list decoding al-
gorithm and use it to replace the Chase algorithm. The
decoding list produced by GRAND can be used to update
the bit reliabilities as before, with the benefit that GRAND’s
code-agnosticism allows it to turbo decode any product code.
We present results for block turbo decoding with Ordered
Reliability Bits GRAND (ORBGRAND) [6) 7, [16H18], a soft-
input variant of GRAND that is particularly suited to hardware
implementation [10} [13]]. We also provide analytical support
for list decoding with GRAND algorithms and consider the
standalone list decoding performance of ORBGRAND.

II. BACKGROUND

GRAND is a class of decoding algorithms for channel
coding that concern themselves with the effects of noise.
The core idea is to sequentially generate, from most to least
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likely, the binary noise effects that potentially corrupted the
original message, based on knowledge of channel statistics or
soft information. Each noise effect 2" is removed from the
demodulated channel output y”, producing 2" = y" & z". If
z" is in the codebook, then the noise effect z™ is the most
likely one to have occurred, and 2" is returned as a maximum-
likelihood decoding. GRAND is code-agnostic because this
guessing process does not depend on code structure, and
requires only a method of checking codebook membership,
such as a syndrome computation for linear codes [19].

Both hard-input and soft-input variants of GRAND exist. Of
interest here is ORBGRAND, which works as follows. Given
rank-ordered reliability values {r;} for the demodulated bits
y", where r; > 0 and r; < r; for i < j, the likelihood
of a putative noise sequence z" is proportional to f(z") =
>, riz". The basic version of ORBGRAND approximates
the reliability values with a line through the origin, r; = i,
B > 0, and based on this model it efficiently generates noise
sequences in approximate maximum-likelihood order. The full
version of the algorithm instead uses a multiline model. Here,
we consider the 1-line model, which distinguishes itself from
basic ORBGRAND by potentially having a non-zero intercept.
1-line ORBGRAND uses the approximation r; = « + i,
where «,8 > 0. Then f(z") = Y1  (a + Bi)zl =
adrZt+ BYT it = awp(z™) + Pwi(z"), where
wg (z") is the Hamming weight and wy,(2") is the logistic
weight of z™. We assume ¢ = «/f3 to be a non-negative inte-
ger, and let wr(2") = f(2")/8 = cwy(2™) + wr(2™) be the
total weight of a noise sequence, where wr(z") € {0,1,2,...}.

The full ORBGRAND algorithm [7] details how to effi-
ciently generate putative noise sequences in order of their
total weight, which is an approximation of their maximum-
likelihood order, without the need for dynamic memory. We
detail a simple method for the 1-line version in section
and also a method to find a suitable value for c.

A 2-dimensional product code [14] is a concatenation of
two systematic component codes, C;, for 1 < i < 2. C; has
parameters [n;, k;, R;, d;], where n; is its code length, k; is
its number of information symbols, R; = k;/n; is its code
rate, and d; is its minimum Hamming distance. The input
symbols are arranged as a ko X k1 array. The rows of this array
are extended by encoding them with C;, then the columns
are extended by encoding them with Ca. The result is an
ng X ny array, all rows and columns of which are codewords
of C; and Cs. This is a codeword of the product code, with



parameters [ning, k1ka, R R, d1ds]. We use C(n,k,d)? to
denote a product code with row and column code C, where
C' has parameters [n,k, k/n,d]. Pyndiah [20] extended the
turbo decoding technique from convolutional codes to product
codes, where row decoding output informs the soft input of
the column decoding, and vice versa, as we describe later.
Hard-input GRAND algorithms have been applied to product
codes and related coding structures [3} 21, 22].

III. TURBO AND LIST DECODING WITH GRAND

List decoding [23] is a decoding procedure in which the
decoder outputs a list of L codewords. The original GRAND
algorithm stops the guessing process once it finds a codeword,
since that codeword is a maximum-likelihood decoding. In a
form of list decoding, Abbas et al. [16] recently proposed
an extension to basic ORBGRAND in which codewords are
accumulated within some distance of the first codeword that
is found and the resulting list is used to improve hard-output
accuracy. Here, we provide analytical support for list decoding
with any GRAND algorithm, based on theorems from [L].
GRAND can list decode by continuing its guessing process
until it has accumulated L codewords, rather than stopping
after the first one, described in Algorithm E}

Algorithm 1: GRAND list decoding of hard channel
output y, possibly with soft output r informing the
likelihood of noise effects. Given a codebook C, code
length n and a target list size L.

1 L+« {}h

2 28« 0% // all-zero is most likely

3 while |.Z| < L do

4 c* +y62z*; // undo noise effect

5 if ¢* € C then

6 L add ¢* to .&;

7 z* < next most likely noise effect;

8 return .,

Underlying GRAND is a race between two processes:
the number of guesses to find the true channel noise effect
Z™ : Q — {0, 1}", which recovers the correct codeword, and
the number of guesses U : Q@ — {1,...,2"} before GRAND
identifies an incorrect codeword. GRAND’s guessing order is
defined by a bijective function G : {0,1}" — {1,...,2"}
that maps each noise effect to its position in the guessing
order. The number of guesses to identify the true channel noise
effect is G(Z™). GRAND identifies the correct decoding when
G(Z™) < U, the asymptotic probability of which as n tends
to infinity is derived in [1] for uniform random codebooks.

We now examine the case of list decoding with GRAND,
and its approximate complexity. Consider a random binary
code of length n with 2¥ codewords. For list size L = 2!,
denote the position of the i-th incorrect codeword in GRAND’s
guessing order by the random variable U; : Q — {1,...,2"},
where 1 < i < 28 — 1. As the codebook is uniformly at
random, the {U;} appear uniformly in the guesswork order

{1,...,2"}. Let the codewords be ordered such that U; < U <
... < Usk_y. Given hard channel output Y : Q — {0,1}"
and the i-th codeword C; € C, U; = G(Y"®C;), since C; =
Y™ o (Y™ 4 C;). The total number of guesses to accumulate
L codewords is Yy = Uy + ZiL:Q(Ui —U;i—1).

The expected total number of guesses E[Y ;] is derived as
follows. Since E[U;] = Y, E[U1|Us = u]P(U; = u) =
(1/2)>°,uP(Us = u) = E[Us]/2, the expected guesses
from the first codeword to the second is E[Us — Up] =
E[U;] —E[U;] = E[Uz]/2 = E[U;]. A similar argument proves
E[U; — U;_1] = E[U4] for all i, and E[2" — Uyx_,] = E[U7],
which is the expected number of guesses from the final
codeword to the last binary sequence that GRAND can guess;
thus, E[Y.] = LE[U;]. The expected number of guesses to

cover all 2" possible noise effects is E[Zil Ui — U] =

2FE[U,] = 27, where Uy = 0 and Uy = 2". Hence

E[U;] = 2"% and E[Y ] = LE[U;] = 2"~ *+L.

The above argument informs the choice of list size and code
rate in coding scheme design. As n becomes large, G(Z") <
2"H with high likelihood, where H is the Shannon entropy
of the channel noise [24]]. The correct codeword ends up on
the decoding list with high likelihood when G(Z™) < E[Y],
which is true when 2"H < E[Y ] = 2n—k+l = on(1-R)+l
Letting [ = n# for § > 0, the requirement becomes 2" <
on(1=R+0) or {H < 1 — R+ 6. Stated in a form closer to the
noisy-channel coding theorem [25]], R < 1 — H + 6. This tells
us that by increasing the list size we can perform effective
channel coding at higher code rates, as asserted in [23]].

Regarding complexity, 2" **! is an upper bound on the
expected number of GRAND queries for random codebooks.
From this arises a design trade-off between list size and the
number of parity bits. To keep the bound constant, a parity
bit must be removed if the list size is doubled. The bound
corresponds to the expected number of queries to identify L
incorrect codewords, although in practice the correct codeword
will typically be added to the list after a small number of
queries and fewer overall queries will be required as a result.

We now turn to the block turbo decoding algorithm of
Pyndiah [20]. The decoding of a single component (row or
column) of the product code, with accompanying per-bit soft
information R € R", works as follows:

1) Apply Chase decoding to produce a list .2 C C, where
1 < |.&| < 27 for some small positive integer p.

2) Select D = argmaxce o|R — C|? as the new value of
the component, where |R — C|? is the Euclidean distance
between R and the modulated form of C.

3) Individually update the soft information of each bit in the
component. If there is a codeword that disagrees with D on
the value of the i-th bit, C* € argmax;cc #.c,#p,} 1R —
C|?, then the soft output for that bit is given by r; =
D,(|R - C*[2 — [R — DJ?)/4.

4) If argmax;ce ¢.c,#p,} /R — C|? is empty, then instead
use r; = [ for some constant 5 > 0.

A soft-input list decoding variant of GRAND can replace
the Chase algorithm in step (1) of the block turbo decoding
algorithm, with the remainder of the algorithm untouched.
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Fig. 1. The average distribution of rank-ordered soft input throughout turbo
decoding of an eBCH(32,26,4)2 product code with a Chase component
decoder, where E},/No = 4dB and p = 4. The distribution converges around
the 5th update. Dotted red lines mark the max-ranked bit that, on average,
ORBGRAND would be expected to flip, given list size L.

Indeed, a variant of ORBGRAND has independently been
proposed [18] for use in Pyndiah-style soft-input soft-output
iterative decoding of OFEC codes, another form of concate-
nated code. Iterative soft-input soft-output GRAND decoding
has also recently been considered in [20].

An advantage of GRAND as a component decoder is
that it can decode any component code, and thus can turbo
decode any product code. The Chase algorithm requires that a
specialised hard-input decoder exists for the component codes,
which for example is not the case for Random Linear Codes
(RLCs) and CRC codes. GRAND also distinguishes itself
by populating its list with codewords in maximum-likelihood
order, assuming its query order is correct, while Chase makes
no such guarantees and may output duplicate codewords.

ORBGRAND is a practical component decoder for turbo
decoding, given its accuracy and efficiency. As turbo decoding
converges, however, the distribution of reliability values shifts
upwards, making basic ORBGRAND’s linear approximation
less suitable, as in Fig. [l We thus propose to perform turbo
decoding with the full ORBGRAND algorithm, parameterised
to use a single line. This enables ORBGRAND’s model to have
a non-zero intercept and so better capture the input reliability
distribution during later iterations of turbo decoding.

In Algorithm 2] we present a simple method to construct
noise sequences for 1-line ORBGRAND that has similar
implementation complexity as basic ORBGRAND. Noise se-
quences are generated in order of their total weight, wr. For
each wr, we iterate over all pairs of non-negative integers
(wg,wr) such that wr = cwy + wy, and the landslide
algorithm [7] generates all noise sequences for each pair.

A simple and effective method to pick c is to fit a line
through the points (1,71) and (|n/2],7|,/2)), where n is the
code length. Then 3 = (r|, 2] —r1)/([n/2] — 1) and ¢ =
max(0, [(ry — )/5]), where [.] rounds to the nearest integer.
This gives the best estimate of (1,r), the least reliable and

Algorithm 2: Noise effect generation algorithm for 1-
line ORBGRAND, given integer parameter ¢ > 0 and
code length n.

1 yield 0”; // all-zero is most likely
2 wyr < c+1; // minimum possible weight

3 while wr < en + M%) do

1+2(n+4c)—+/(14+2(n+c))2 —8wr 15 |
4 wp + max(1, [ 5 s
5 while wy <n do
6 Wy, < W — CWH;
. 1
7 1wa§00er<%then
8 L break ; // invalid pair
9 yield noise effects generated by
Landslide(wgy,wr,n);
10 wyg — wy + 1;
11 wr — wr + 1;
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Fig. 2. List decoding BLER of an eBCH(32, 26,4) code with ORBGRAND
and Chase as list decoders, and list size L. ORBGRAND consistently provides
a coding gain over Chase, even with smaller list size.

most important bit, and accurately approximates the remaining
values if they follow a line-like distribution as in Fig. [I]

IV. PERFORMANCE EVALUATION

We begin with a study of ORBGRAND’s list decoding
performance, since this is critical to its performance as a
turbo component decoder. We run simulations in an additive
white Gaussian noise channel with binary phase shift keying
modulation. Fig. [2] shows the list decoding block error rate
(BLER) of basic ORBGRAND versus that of Chase decoding
for an extended BCH code [19], eBCH(32,26,4), which is
one of the component codes from [20]. A list decoding block
error occurs when, given transmitted codeword C and output
decoding list .Z, C ¢ £. The list size L ranges from 4
to 16 and L = 2! corresponds to a Chase parameter of
p = 1. At a BLER of 1075 and L = 16, basic ORBGRAND
provides a coding gain of 1 dB over Chase. That ORBGRAND
outperforms Chase as a list decoder is a promising indicator
that it will be a good turbo component decoder.
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Fig. 3. List decoding BLER of a BCH(31, 21, 5) code and an RLC(31, 21, 4)
code, with basic ORBGRAND decoding and list size L. The RLC was
purposely constructed to have a lower minimum distance, demonstrating that
its performance converges to that of the BCH regardless of minimum distance.
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Fig. 4. List decoding BLER of eBCH(32,26,4), RLC(32,26,3) and
CRC(32,26, 3) codes, with basic ORBGRAND decoding.

Fig. ] shows the basic ORBGRAND list decoding BLER
of a BCH code, BCH(31, 21, 5), versus a random linear code,
RLC(31,21,4). The RLC was purposely constructed to have a
lower minimum distance. Its decoding is only enabled by OR-
BGRAND’s code-agnosticism. As the list size increases, the
performance of the two codes converges, which is consistent
with Elias’s claim that a larger list size should compensate for
structural weakness in a code [23]]. This suggests that powerful
product codes can be constructed from imperfect component
codes, but later results will demonstrate this is not true.

Fig. [] shows the list decoding accuracy of a further se-
lection of codes with basic ORBGRAND: eBCH(32, 26,4),
RLC(32,26,3) and CRC(32,26,3). The CRC polynomial is
0x33 in Koopman notation [27]. The list size ranges from 4
to 16. Performance is essentially equivalent at these list sizes,
despite the RLC and CRC having lower minimum distance.

Fig. 5] and Fig. [6] show the bit error rate (BER) of
eBCH(32,26,4)? and eBCH(64,57,4)? product codes with
block turbo decoding. 1-line ORBGRAND and Chase are used
as component decoders. These codes were tested in [20]], and,
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Fig. 5. BER of an eBCH(32, 26, 4)2 product code (n = 1024,k = 676,d =
16) with block turbo decoding. 1-line ORBGRAND and Chase are used as
component decoders with list size L.
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Fig. 6. BER of an eBCH(64,57,4)2 product code (n = 4096,k =

3249, d = 16) with block turbo decoding. Decoding parameters are the same
as those described in Fig. [5| With L = 4 the gain is 0.7 dB for BLER 10—%.

as in that paper, we run turbo decoding for 4 iterations. The
list sizes are 4, 8 and 16. We utilise an early stopping criterion,
so that decoding is halted if the rows or columns are found to
be error-free at the beginning of any iteration.

Fig. [5| concerns an eBCH(32,26,4)? code (n = 1024,
k =676, R = 0.66). At L = 16, 1-line ORBGRAND provides
a coding gain over Chase of approximately 0.15dB at a BER
of 1075, Even with L = 4, 1-line ORBGRAND achieves
nearly the same performance, whereas the performance of
Chase degrades rapidly as the list size decreases.

Fig. |§| shows results for an eBCH(64,57,4)% code (n =
4096, k = 3249 R = 0.79). Again, when L = 16, 1-line
ORBGRAND provides a coding gain of approximately 0.2dB
at a BER of 1075, and Chase performance degrades more
severely with decreasing list size.

Fig. [7] shows the turbo decoding accuracy of product codes
whose component codes are the same as in Fig. [ with 1-
line ORBGRAND decoding. Despite having equivalent list
decoding performance, the RLC and CRC fare worse than the
eBCH code as component codes, and so product codes appear
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Fig. 7. BER of CRC(32,26,3)2, RLC(32,26,3)2, and eBCH(32, 26,4)2
product codes with 1-line ORBGRAND turbo decoding, list size L.

to compound structural weakness in their component codes.

V. CONCLUSIONS

GRAND algorithms can list decode accurately, and soft-
input list decoding GRAND algorithms are a viable replace-
ment for Chase as the component decoder in block turbo
decoding. We have presented a code for which basic OR-
BGRAND list decoding gains as much as 1dB over Chase
at a BLER of 1075. For turbo decoding, the distribution of
rank-ordered soft information shifts so that the full version of
ORBGRAND is required for effective component decoding.
Turbo decoding simulations show that 1-line ORBGRAND
gains up to 0.7dB over Chase at a BER of 10~° for two
different product codes. GRAND’s universality allows list
and turbo decoding to be applied to codes without bespoke
decoders, such as CRCs and RLCs, as well as product codes
that are concatenations of those codes. This leads to the
possibility of new channel coding applications.
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