
Physical layer insecurity
Muriel Médard

Research Laboratory for Electronics
Massachusetts Institute of Technology

Cambridge, USA
medard@mit.edu

Ken R. Duffy
Hamilton Institute

Maynooth University
Maynooth, Ireland
ken.duffy@mu.ie

Abstract—In the classic wiretap model, Alice wishes to reliably
communicate to Bob without being overheard by Eve who is
eavesdropping over a degraded channel. Systems for achieving
that physical layer security often rely on an error correction code
whose rate is below the Shannon capacity of Alice and Bob’s
channel, so Bob can reliably decode, but above Alice and Eve’s,
so Eve cannot reliably decode. For the finite block length regime,
several metrics have been proposed to characterise information
leakage. Here we reassess a metric, the success exponent, and
demonstrate it can be operationalized through the use of Guessing
Random Additive Noise Decoding (GRAND) to compromise the
physical-layer security of any moderate length code.

Success exponents are the natural beyond-capacity analogue
of error exponents that characterise the probability that a
maximum likelihood decoding is correct when the code-rate
is above Shannon capacity, which is exponentially decaying
in the code-length. In the finite blocklength regime, success
exponents can be used to approximately evaluate the frequency
with which Eve’s decoding is correct in beyond-capacity channel
conditions. Through the use of GRAND, we demonstrate that Eve
can constrain her decoding procedure through a query-number
threshold so that when she does identify a decoding, it is correct
with high likelihood, significantly compromising Alice and Bob’s
communication by truthfully revealing a proportion of it.

We provide general mathematical expressions for the determi-
nation of success exponents in channels that can have temporally
correlated noise as well as for the evaluation of Eve’s query
number threshold, using the binary symmetric channel as a
worked example. As GRAND algorithms are code-book agnostic
and can decode any code structure, we provide empirical results
for Random Linear Codes as exemplars. Simulation results
mimic the mathematical predictions, demonstrating the practical
possibility of compromising physical layer security.

I. INTRODUCTION

Since Wyner’s classic considerations [1], [2], [3], [4], there
has been a rich literature on the topic of wiretap channels and
associated codes [5], [6]. In particular, much of the work on
physical layer security has relied on the premise of exploiting
the difference in signal to noise ratio between the sender,
Alice, and the intended receiver, Bob, and the pair formed by
Alice and the eavesdropper, Eve. In the limit of long codes, the
additional noise that Eve experiences can be transformed into
an effect that acts like a partial one-time pad, obstructing Eve’s
attempts to decode. The premise behind operational proposals
is the design of codes [7], [8], [9] that are decodable by Bob
under lighter noise but not by Eve under heavier noise.

A natural question concerns the case when codes are not in
the infinite limit setting and so concentration to the mean is no

longer achieved with high probability, with short wiretap code
constructions, of lengths of order 16, have gained attention
[10], [11], [12].

As Bob seeks to have reliable communication with Alice,
the relevant concern is to limit the cases where he decodes in
error. For such events, there is a wealth of techniques to bound
their probability, for example error exponents [13], [14], [15],
[16], [17], [18]. For shorter codes, dispersion approximations
and other considerations have been proposed [19], [20], [21].

For wiretap settings, both error exponents [22], [23], [24],
[25], [26], as well as dispersion bounds and related finite
blocklength analysis techniques [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [23] have been considered in
the context of eavesdroppers. From the point of view of Eve,
however, the security consideration is altogether different from
reliable communication. Concern lies in the events where Eve
is able to decode because the noise realization is advantageous
as any successful decoding represents a failure of security [38].

We show in this paper that the success probability of Eve
is an informative metric. While transmissions above capacity
cannot all be decoded reliably, it does not mean that they are
all decoded with probability near zero. Moreover, for a range
of rates above capacity, we demonstrate that Eve can identify
decodings that she is confident are not in error, compromising
the security of Alice and Bob’s communication.

In the context of developing Guessing Random Additive
Noise Decoding (GRAND), Proposition 1 of [39] establishes
success exponents, where the probability that a maximum
likelihood decoder successfully decodes given the code-rate is
above capacity decays exponentially in block-length [40], [41],
for channels whose noise can have temporal correlation. These
can be used to generate an estimate of the likelihood that Eve
can correctly decode beyond capacity. Theorem 3 of [39] gives
an additional result that provides Eve with a simple criterion
to test whether she is confident in the proposed decoding. That
is, not only can Eve decode correctly a fraction of the time,
she can identify which decodings are likely to be correct.

In this paper, we explore Eve’s ability to confidently and
correctly decode moderate length codes acting beyond Shan-
non capacity when she uses GRAND. We consider random
linear codes (RLCs), which achieve secrecy capacity in the
case where the channel from Alice to Bob and the channel
from Alice to Eve are both BSCs [42] and which have been
previously considered for use in the wiretap channel setting
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[22].
We note that while Bob generally seeks to be efficient

in order to have a timely decoding for a well operating
communications channel, Eve has no such constraint generally,
so her guessing can be extensive. Our results show, however,
that by using GRAND, Eve computational effort is minimal.
Indeed, even though her signal to noise ratio is worse than
Bob’s, she can decode with a non-vanishing probability, which
is sufficiently high to compromise the security of the wiretap
system, while performing on average no more work that
Bob, who cannot limit himself to decoding only in the most
favorable noise realizations.

II. SUCCESS EXPONENTS - THEORY

Consider a simple version of the wiretap channel [1], [43]
where Alice has binary data that she wishes to send Bob.
Eve has an independent, noisier channel than Bob’s. For both
channels, we assume that the noise effect is independent
of the transmitted code-word and additive but need not be
independent and identically distributed. Both Bob and Eve
have a statistical characterisation of their channels and perform
hard detection decoding of Alice’s error correcting code.

In this setting, Gallager’s [44] error exponent results state
that if a random, or random linear, code is used with a code-
rate R that is less than the Shannon capacity of the channel,
C = 1−H, where H is the Shannon entropy rate of the noise,
then the likelihood that a ML decoding is in error decreases
exponentially in n at a speed that depends on R and C. The
mirroring concept is success exponents, where the probability
that a ML decoder successfully decodes given R > 1−H
decays exponentially in n.

In particular, assume Alice transmits the coded information
bits xn and Eve receives a version corrupted by not-necessarily
i.i.d. binary noise, yn = xn ⊕ Nn, where ⊕ is modulo 2
summation. Eve performs GRAND decoding by sequentially
taking, in order from most likely to least likely based on the
noise statistics, putative noise effects, zn, removing them from
the received sequence and querying if what remains, yn	 zn,
is in the code-book. The first instance where a code-book
element is found is an ML decoding.

For code-rates less than capacity, Gallager’s error exponent
can be extracted from GRAND by analysing the likelihood
that the number of queries until the true noise effect, Nn, is
encountered is greater than the number of queries that would
identify a non-transmitted code-word. For code-rates greater
than capacity, success exponents can be extracted by analysing
the likelihood that the true noise effect is encountered while
querying before the first noise effect that would result in
finding a non-transmitted codeword.

With all logs being base 2, to characterise the success
exponent, define the Rényi entropy rate of the noise {Nn}
process with parameter α ∈ (0,1)∪ (1,∞) to be

Hα = lim
n→∞

1
n

1
1−α

log

(
∑

zn∈{0,1}n
P(Nn = zn)α

)
,

with H = H1 being the Shannon entropy rate of the noise. De-
note the min-entropy rate of the noise by Hmin = limα→∞ Hα .
Using these definitions of Hα it has been established [45], [46],
[47], [48] that the moments of the distribution of the number
of queries required to identify a realization of the noise effect,
Nn, when questions are asked in decreasing order of likelihood,
scale exponentially with a rate that can be identified in terms
of the Rényi entropy rates

Λ
N(α) =

{
αH1/(1+α) for α ∈ (−1,∞)

−Hmin for α ≤−1.

Define the Legendre-Fenchel transform of ΛN to be

IN(g) = sup
α∈R

{
gα−Λ

N(α)
}
,

which is the rate function for a large deviation principle of
the scaled logarithm of guesswork [49], [48]. Proposition 1 of
[39] proves that if R >C, the probability then an ML decoder
provides a correct decoding decays exponentially in n with
rate IN(1−R).

Theorem 3 of [39] gives a conditional result that if 0 < g <
1−R is such that IN(g)< 1−R−g, then the probability of a
correct decoding given GRAND made fewer than 2ng queries
converges to 1 as n increases. If the code rate R >C, then a
sufficient condition for there to be an exponent for number of
queries below which concentration to a correct result occurs
is that R < 1−Hmin =Cmin, where we will call Cmin the min-
capacity. Taken together, these results establish that to ensure
that, when equipped with a hard detection decoder, Eve can
never confidently decode any of the communication between
Alice and Bob, it is necessary that R >Cmin rather than R >C.

As a worked example, assume that the channel between
Alice and Eve is a BSC with bit-flip probability p. In that
case

Λ
N(α) =

{
(1+α) log

(
(1− p)

1
1+α + p

1
1+α

)
if α ∈ (−1,∞)

log(max(1− p, p)) if α ≤−1,

and both the success exponent IN(1−R) and the exponent for
the maximum number of code-book queries that would result
in a confident decoding can be readily evaluated numerically.

Using those formulae to create finite block length approxi-
mations for codes of rate ≈ 0.91 and lengths n = 64,128,192
and 256, results in Fig. 1. The left hand panel shows the
approximate likelihood that an ML decoding would be cor-
rect. The right hand panel shows log2 of the mathematically
determined approximate maximum number of queries that can
be made while ensuring that correct decoding is highly likely
to be returned. These predictions can be compared with the
empirical results that follow.

III. SUCCESS PROBABILITIES - PRACTICE

We first consider the natural analogue of the setting for the
results in Fig. 1 where Alice and Bob are using a random linear
[128,116] code. Eve decodes transmissions using GRAND
and abandons after 2a queries, where a is reported in figure
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Fig. 1. For a BSC and four codes of different lengths, but the same rate rate of approximately 0.91, figures are plotted for channel conditions between
Shannon capacity and min-capacity. Left hand panel: the approximate probability of a successful ML decoding as determined from the success exponent,
exp(−nIN(1−R)), for the given BSC p. Right hand panel, theoretical predictions of log2 of the maximum query number that Eve should perform with
GRAND to retain confidence in a correct decoding. Empirical results for random linear codes are presented later.

10-4 10-3 10-2 10-1

p

10-5

10-4

10-3

10-2

10-1

100

BL
ER

RLC [128,116], log2(max query)=Inf
RLC [128,116], log2(max query)=10
RLC [128,116], log2(max query)=8
RLC [128,116], log2(max query)=6
RLC [128,116], log2(max query)=4
RLC [128,116], log2(max query)=0
Capacity
Min capacity

10-4 10-3 10-2 10-1

p

100

101

102

103

104

Av
er

ag
e 

nu
m

be
r o

f c
od

e-
bo

ok
 q

ue
rie

s

RLC [128,116], log2(max query)=Inf
RLC [128,116], log2(max query)=10
RLC [128,116], log2(max query)=8
RLC [128,116], log2(max query)=6
RLC [128,116], log2(max query)=4
RLC [128,116], log2(max query)=0
Capacity
Min capacity

Fig. 2. A random linear [128, 116] code transmitted over a BSC with bit flip probability p decoded with GRAND. Left hand panel: block error rate. Right
hand panel: average number of queries until a decoding is found or abandonment occurs. The blue line results from running hard detection GRAND-BSC
without abandonment. As the colour gets redder, GRAND is abandoning earlier, at 2a queries for the a stated in the legend, which is recorded as an error.

legends, returning an erasure rather than erroneous decoding,
allowing her to discard decodings she would not trust.

Fig. 2 focuses on R < C by showing Block Error Rate
(BLER) against − log10 of the BSC’s bit flip probability where
abandonment counts as an incorrect decoding. As Theorem 2
of [39] establishes that all GRAND algorithms will identify an
incorrect decoding after approximately 2n(1−R) = 2n−k queries,
abandoning a little before then does not impact BLER perfor-
mance when R <C as decodings that would likely be in error
are instead erasures. If abandonment happens too early, the
full within-capacity decoding performance of the code is not
realised. The right panel shows the average number of queries
until a code-word is found or abandonment, where abandoning
early can be seen to significantly reduce complexity.

The left panel of Fig. 3 replots the data in the first panel of
Fig. 2 but focuses on the region where the code-rate is above
capacity, R > C. It shows the likelihood that the decoding is
correct, the success probability, where abandonment is counted
as incorrect, and can be compared to the left hand panel
of Fig. 1. This speaks to the success exponent for all ML
decoders showing graceful degradation as code-rate passes
through capacity.

The dashed lines in Fig. 3 are the success probability condi-
tioned on not abandoning. By abandoning decoding early, the
conditional success probability can be kept high for values
of p well above Shannon capacity and up to min-capacity.
The right panel of the figure shows the proportion of non-
abandoned decodings, which decreases as the abandonment
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Fig. 3. Same setup as Fig. 2. Left hand panel: shows the likelihood that the decoding is correct, the success probability, where abandonment is counted as
incorrect. The dotted lines are the success probability conditioned on not abandoning. Right hand panel: the proportion of non-abandoned decodings. The
dashed black vertical line marks the capacity threshold, where R <C to the left and R >C to the right. The dotted black vertical line marks the min-capacity
threshold, where R <Cmin to the left and R >Cmin to the right.

threshold is reduced, and is reflective of the fraction of Alice to
Bob communications that Eve decodes rather than abandons.

Fig. 4, left panel, provides an indicator of how little work
Eve is doing between non-abandoned decodings in terms of
the total number of queries until she identifies a decoding she
is confident in, where the early abandonment limits the effort
used in decoding what would be untrustworthy decodings
anyway. The right panel of Fig. 4 plots the mathematical
determination of log2 of the maximum number of queries that
Eve should be able to make while ensuring she only returns
confident decodings (black lines - as determined using the
formulae in Sec. II), while the red line identifies the empir-
ical equivalent which ensures than more than 50% of Eve’s
decodings are correct. This establishes that, given knowledge
of the bit-flip probability, Eve can use theory to guide her
abandonment threshold. The observations from these results
are that by only trusting decodings that are identified before a
thresholded number of queries, when Eve does decode she can
be confident that the decoding is correct, so long as R <Cmin,
compromising Alice and Bob’s communication.

For a longer [192,174] RLC of the same rate as the
[128,116] code, the left hand panel of Fig. 5 shows analogous
results to the left panel of Fig. 3 on the success probability and
conditional success probability. Despite being a longer code
that has greater total redundancy, the behavior is similar and
consistent with theoretical predictions. The right hand panel
is akin to that of Fig. 4, demonstrating the correspondence
between the theoretical approximate evaluation of an appro-
priate abandonment threshold and the empirically identified
one, where again good correspondence is observed.

IV. DISCUSSION

For codes whose rate are above Shannon capacity, we have
demonstrated how success exponents can be used to estimate

the fraction of correct decodings returned by a maximum
likelihood decoder. We have illustrated how an eavesdropper,
Eve, can use an abandonment threshold with GRAND, which
can operate with any code, to identify decodings that are confi-
dently correct to compromise Alice and Bob’s communication.

For the BSC example used here, Eve’s abandonment thresh-
old can be related to a Hamming weight of the corresponding
noise effect, but the mathematics and method can also be used
for channels with memory where that would not be the case.
Moreover, as GRAND algorithms search for the noise-effect,
a BSC is essentially the worst case hard detection setting as
the noise has minimal structure. In practice, channels are not
memoryless but rendered synthetically so through interleaving,
which is commonly part of the construction of wiretap sys-
tems [50], [51], [52], [53], [54]. Noise correlation, however,
increases the effective SNR, possibly by multiple dBs, and
has been demonstrated to be exploitable in the GRAND
framework to improve decoding accuracy [39], [55]. Even if
Bob uses a scheme that relies on interleaving, Eve can use
statistical knowledge of the correlation of the noise, resulting
in an effectively higher SNR, i.e. lesser degradation, of her
channel relative to Bob’s, while also using the mathematical
formulation to inform her abandonment thresholds.

We have focused here on the simple case of a BSC, which
is representative of DMCs, to which the approach can be
applied. Hard-detection hardware implementations of GRAND
for BSC and bursty channels have been published [56], [57],
[58], [59] that demonstrate it is an efficient decoding algorithm
for moderate redundancy codes. Fading channels can be more
vulnerable than channels without fading [60]. In the setting
where the channel noise is represented in a continuous domain,
e.g. as Gaussian, the use of soft information, such as through
ORBGRAND [61], [62], which is close to capacity achieving
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Fig. 4. Same setup as Fig. 2. Left hand panel: shows the average number of queries. including those that lead to an abandonment until a correct decoding.
Right hand panel: black line is the theoretically determined number of queries that should be allowable while still concentrating on a correct decoding. The
red line is the empirically determined value for which 50% of decodings given non-abandonment are correct for the abandonment criterion in the y-axis.
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Fig. 5. Similar setup to Fig. 3, but for a [192,174] RLC. Left hand panel: the success probability, where abandonment is counted as incorrect. The dotted lines
are the success probability conditioned on not abandoning. The dashed black vertical line marks the capacity threshold, where R <C to the left and R >C
to the right. The dotted black vertical line marks the min-capacity threshold, where R <Cmin to the left and R >Cmin to the right. Right hand panel: black
line is the theoretically determined number of queries that should be allowable while still concentrating on a correct decoding. The red line is the empirically
determined value for which 50% of decodings given non-abandonment are correct for the abandonment criterion in the y-axis.

[63], [64] and practically implementable in hardware [65],
[66], [67], would further aid Eve in compromising Alice and
Bob’s communication.
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