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Abstract—This paper considers the problem of learning safe
policies in the context of reinforcement learning (RL). In particu-
lar, we consider the notion of probabilistic safety. This is, we aim
to design policies that maintain the state of the system in a safe
set with high probability. This notion differs from cumulative
constraints often considered in the literature. The challenge of
working with probabilistic safety is the lack of expressions for
their gradients. Indeed, policy optimization algorithms rely on
gradients of the objective function and the constraints. To the
best of our knowledge, this work is the first one providing such
explicit gradient expressions for probabilistic constraints. It is
worth noting that the gradient of this family of constraints can
be applied to various policy-based algorithms. We demonstrate
empirically that it is possible to handle probabilistic constraints
in a continuous navigation problem.

Index Terms—reinforcement learning, probabilistic constraint,
safe policy, policy gradient

I. INTRODUCTION

Reinforcement learning (RL) has gained traction as a
solution to the problem of computing policies to perform
challenging and high-dimensional tasks, e.g., playing video
games [1], mastering Go [2], robotic manipulation [3] and
locomotion [4], etc. However, in general, RL algorithms are
only concerned with maximizing a cumulative reward [5], [6],
which may lead to risky behaviors [7] in realistic domains
such as robot navigation [8].

Taking into account the safety requirements motivates the
development of policy optimization under safety guaran-
tees [9]–[11]. Some approaches consider risk-aware objectives
or regularized solutions where the reward is modified to
take into account the safety requirements [12]–[14]. Other
formulations include Constrained Markov Decision Processes
(CMDPs) [15] where additional cumulative (or average) re-
wards need to be kept above a desired threshold. This approach
has been commonly used to induce safe behaviors [16]–
[24]. To solve these constrained problems, primal-dual algo-
rithms [16]–[20] combined with classical and state-of-the-art
policy-based algorithms, e.g., REINFORCE [25], DDPG [26],
TRPO [27], PPO [28] are generally used.

In this cumulative constraint setting, safety violations are
acceptable as long as the amount of violations does not exceed
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the desired thresholds. This makes them often not suitable
for safety-critical applications. For instance, in the context of
autonomous driving, even one collision is unacceptable.

A more suitable notion of safety in this context is to guaran-
tee that the whole trajectory of the system remains within a set
that is deemed to be safe (see e.g., [29]). Ideally, one would
like to achieve this goal for every possible trajectory. This
being an ambitious goal, in this work we settle for solutions
that guarantee every time safety with high probability. We
describe this setting in detail in Section II.

The main challenge in solving problems under probabilistic
safety constraints is that explicit policy gradient-like expres-
sions for such constraints are not readily available. Indeed in
[20], [30] replace this constraint with a suitable lower bound.
In [31] an approximation of the gradient is also provided.
These limitations, prevent us from running the aforementioned
policy-based algorithms. In Section III, we present the main
contribution of this work: an expression for the gradient
that enables stochastic approximations. Other than conclud-
ing remarks, the paper finishes (Section IV) with numerical
examples that demonstrate the use of the probabilistic safe
gradient to train safe policies in a navigation task.

II. PROBLEM FORMULATION

In this work, we consider the problem of finding optimal
policies for Markov Decision Processes (MDPs) under prob-
abilistic safety guarantees. In particular, we are interested in
situations where the state transition distributions are unknown
and thus the policies need to be computed from data. An
MDP [32] is defined by a tuple (S,A, r,P, µ, T ), where S
is the state space, A is the action space, r : S × A → R
is the reward function describing the quality of the decision,
Patst→st+1

(Ŝ) := P(st+1 ∈ Ŝ | st, at) where Ŝ ⊂ S, st ∈
S, at ∈ A, t ∈ N is the transition probability describing the
dynamics of the system, µ(Ŝ) := P(s ∈ Ŝ) is the initial state
distribution, and T is the time horizon. The state and action at
time t are random variables denoted respectively by St and At.
A policy is a conditional distribution πθ(a|s) parameterized
by θ ∈ Rd (for instance the weights and biases of neural
networks), from which the agent draws action a ∈ A when
in the corresponding state s ∈ S. In the context of MDPs the
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objective is to find a policy that maximizes the value function.
The latter is defined as

V (θ) = Ea∼πθ(a|s),S0∼µ

[
T∑
t=0

r(St, At)

]
, (1)

where a and s denote the sequences of actions and states for
the whole episode, this is, from time t = 0 to t = T . The
subscripts of this expectation are omitted in the remaining of
the paper for simplicity.

In this paper, we are concerned with imposing safety
requirements. In particular, we focus on the notion of proba-
bilistic safety which we formally define next.

Definition 1. A policy πθ is (1− δ)-safe for the set Ssafe ⊂ S

if and only if P
(

T⋂
t=0
{St ∈ Ssafe}|πθ

)
≥ 1− δ.

With this definition, we formulate the following probabilis-
tic safe RL problem as a constrained optimization problem

P ? = max
θ∈Rd

V (θ)

s.t. P

(
T⋂
t=0

{St ∈ Ssafe}|πθ

)
≥ 1− δ. (2)

Note that the previous problem differs from most of the
safe RL literature that work with the cumulative constraint
setting (see e.g., [19]–[21], [24]). To solve problem (2), it
is conceivable to employ gradient-based methods e.g., regu-
larization [33] or primal-dual [34] to achieve local optimal
solutions. For instance, consider the regularization method
with a fixed penalty. This is, for λ > 0 we formulate the
following unconstrained problem as an approximation to the
constrained problem (2)

E

[
T∑
t=0

r(St, At)

]
+λ

(
P

(
T⋂
t=0

{St ∈ Ssafe}|πθ

)
−(1− δ)

)
.

(3)

Note that λ trades-off safety and task performance. Indeed, for
large values of λ solutions to (3) will prioritize safe behaviors,
whereas for small values of λ the solutions will focus on
maximizing the expected cumulative rewards.

Then, to solve problem (3) locally, gradient ascent [35]
or its stochastic versions are generally employed. Note that
the gradient of the first term in (3) can be computed using
the Policy Gradient Theorem [6]. Nevertheless, the lack of
an expression for the gradient of the probabilistic safety

constraint, i.e., ∇θP
(

T⋂
t=0
{St ∈ Ssafe}|πθ

)
prevents us from

applying the gradient ascent family of methods to solve (3).
In the next section, we provide such an expression for the
gradient that allows us to overcome this limitation.

III. THE GRADIENT OF PROBABILISTIC CONSTRAINTS

We start this section by defining an important quantity in
what follows next. For any t such that 0 ≤ t ≤ T define

Gt =

T∏
u=t

1 (Su ∈ Ssafe) . (4)

Having defined this quantity we are now in conditions of
providing an expression for the gradient of the probabilistic
constraint. This is the subject of the following Theorem.

Theorem 1. Let S0 ∈ Ssafe, the gradient of the probability of
being safe for a given policy πθ yields

∇θP

(
T⋂
t=0

{St ∈ Ssafe}|πθ, S0

)

= E

[
T−1∑
t=0

G1∇θ log πθ(At | St) | πθ, S0

]
. (5)

Proof. We proceed by presenting and proving the following
two technical lemmas (Lemma 1 and Lemma 2).

Lemma 1. Given St−1 ∈ Ssafe and Gt, t = 1, 2, · · · , T − 1
defined in (4), it holds that

∇θE [Gt | St−1] = E [∇θE [Gt+1 |St]1 (St ∈ Ssafe) |St−1]

+ E [Gt∇θ log πθ(At−1 | St−1) | St−1] .
(6)

Proof. We start the proof by rewriting the expectation of G1

using the towering property of the expectation

E [G1 | S0] = E [E [G1 | S1] | S0]

= E [E [G21 (S1 ∈ Ssafe) | S1] | S0] , (7)

where the second equality follows from (4). Since S1 is
measurable with respect to the σ-algebra F1 it follows that

E [G1 | S0] = E [E [G2 | S1]1 (S1 ∈ Ssafe) | S0] . (8)

Rewriting the outer expectation in terms of the probability
distribution of S1, the previous expression reduces to

E [G1 | S0] =

∫
S
E [G2 | s1]1 (s1 ∈ Ssafe) p (s1 | S0) ds1

=

∫
S×A

E [G2 | s1]1 (s1 ∈ Ssafe)

p(s1 | S0, a0)πθ(a0 | S0) ds1da0, (9)

where the last equality follows from p(s1 | S0) =
∫
A p(s1 |

S0, a0)πθ(a0 | S0) da0. Taking the gradient of the previous
expression with respect to the policy parameters θ results in

∇θE [G1 | S0] =

∫
S×A

∇θ (E [G2 | s1])1 (s1 ∈ Ssafe)

p(s1 | S0, a0)πθ(a0 | S0) ds1da0

+

∫
S×A

E [G2 | s1]1 (s1 ∈ Ssafe) (10)

p(s1 |S0, a0)∇θπθ(a0 |S0) ds1da0.

Notice that the first in the right-hand side of the previous
expression can be presented by∫

S×A
∇θ (E [G2 | s1])1 (s1 ∈ Ssafe)

p(s1 | S0, a0)πθ(a0 | S0) ds1da0

= E [∇θE [G2 | S1]1 (S1 ∈ Ssafe) | S0] . (11)



The second term using the “log-trick” yields∫
S×A

E [G2 | s1]1 (s1 ∈ Ssafe)

p(s1 | S0, a0)∇θπθ(a0 | S0) ds1da0

=

∫
S×A

E [G2 | s1]1 (s1 ∈ Ssafe) p(s1 | S0, a0)

πθ(a0 | S0)∇θ log πθ(a0 | S0) ds1da0. (12)

Likewise, since s1 is measurable with respect to the σ-
algebra F1, (12) can be simplified as

∫
S×A E [G1 | s1] p(s1 |

S0, a0)πθ(a0 | S0)∇θ log πθ(a0 | S0) ds1da0, which is also
equivalent to E [E [G1 | S1]∇θ log πθ(A0 | S0) | S0]. Since
log πθ(A0 | S0) is measurable given S1, we have

E [E [G1 | S1]∇θ log πθ(A0 | S0) | S0]

= E [E [G1∇θ log πθ(A0 | S0) | S1] | S0] . (13)

Using the towering property of the expectation the previous
expressions yield∫

S×A
E [G2 | s1]1 (s1 ∈ Ssafe) p(s1 | S0, a0)

∇θπθ(a0 | S0) ds1da0

= E [G1∇θ log πθ(A0 | S0) | S0] . (14)

Then, combining (11) with (14) yields

∇θE [G1 | S0] = E [∇θE [G2 | S1]1 (S1 ∈ Ssafe) | S0]

+ E [G1∇θ log πθ(A0 | S0) | S0] . (15)

Repeating the process above i times for 1 ≤ i ≤ T − 1, we
obtain the following recursive definition of the gradient of the
probability in (2) with respect to θ

∇θE [Gi | Si−1] = E [∇θE [Gi+1 |Si]1 (Si ∈ Ssafe) |Si−1]

+ E [Gi∇θ log πθ(Ai−1 | Si−1) | Si−1] .
(16)

This completes the proof of Lemma 1.

Lemma 2. Given St−1 ∈ Ssafe and Gt, t = 1, 2, · · · , T − 1
defined in (4), it holds that

∇θE [G1 | S0] =

T−2∑
t=0

E [G1∇θ log πθ(At | St) | S0] (17)

+ E

[
∇θE [GT |ST−1]

T−1∏
t=1

1 (St ∈ Ssafe) |S0

]
.

Proof. We proceed by employing Lemma 1 to derive the
gradient of the expectation of G1 and G2, respectively

∇θE [G1 | S0] = E [∇θE [G2 | S1]1 (S1 ∈ Ssafe) | S0]

+ E [G1∇θ log πθ(A0 | S0) | S0] . (18)

∇θE [G2 | S1] = E [∇θE [G3 | S2]1 (S2 ∈ Ssafe) | S1]

+ E [G2∇θ log πθ(A1 | S1) | S1] . (19)

Then, substituting (19) into (18) yields

∇θE[G1 | S0]

= E[E[∇θE[G3 | S2]1(S2 ∈ Ssafe) | S1]1(S1 ∈ Ssafe)

+ E[G2∇θ log πθ(A1 | S1) | S1]1(S1 ∈ Ssafe) | S0]

+ E[G1∇θ log πθ(A0 | S0) | S0]. (20)

As 1 (S1 ∈ Ssafe) is measurable given S1, we have

∇θE [G1 | S0]

= E[E [∇θE [G3 | S2]1 (S2 ∈ Ssafe)1 (S1 ∈ Ssafe) | S1]

+ E [G2∇θ log πθ(A1 | S1)1 (S1 ∈ Ssafe) | S1] | S0]

+ E [G1∇θ log πθ(A0 | S0) | S0] . (21)

By definition of G1 we can simplify the second term of the
right-hand side of the previous equation,

∇θE [G1 | S0]

= E[E [∇θE [G3 | S2]1 (S2 ∈ Ssafe)1 (S1 ∈ Ssafe) | S1]

+ E [G1∇θ log πθ(A1 | S1) | S1] | S0]

+ E [G1∇θ log πθ(A0 | S0) | S0] . (22)

Using the towering property of expectation, (22) reduces to

∇θE [G1 | S0]

= E [∇θE [G3 | S2]1 (S2 ∈ Ssafe)1 (S1 ∈ Ssafe) | S0]

+ E [G1∇θ log πθ(A1 | S1) | S0]

+ E [G1∇θ log πθ(A0 | S0) | S0] . (23)

Then repeatedly unwrapping ∇θE [G1 | S0] in terms of
G3, . . . , GT by Lemma 1 yields

∇θE [G1 | S0]

= E[∇θE [GT | ST−1]1 (ST−1 ∈ Ssafe)

· · ·1 (S2 ∈ Ssafe)1 (S1 ∈ Ssafe) | S0]

+ E [G1∇θ log πθ(AT−2 | ST−2) | S0] + · · ·
+ E [G1∇θ log πθ(A0 | S0) | S0]

=
T−2∑
t=0

E [G1∇θ log πθ(At | St) | S0]

+ E

[
∇θE [GT | ST−1]

T−1∏
t=1

1 (St ∈ Ssafe) | S0

]
. (24)

This completes the proof of Lemma 2.

We are now in conditions to prove Theorem 1. We start
by rewriting the probability of remaining safe in terms of G0

defined in (4). By definition of probability we have

P

(
T⋂
t=0

{St ∈ Ssafe}|πθ, S0

)

= E

[
1

(
T⋂
t=0

{St ∈ Ssafe}

)
|πθ, S0

]
. (25)

Note that the indicator function in the previous expression
takes the value one, if and only if each St ∈ Ssafe. Hence, it



is possible to rewrite the previous expression in terms of the
product of indicator functions of states satisfying the safety
condition at each time

P

(
T⋂
t=0

{St ∈ Ssafe}|πθ, S0

)
= E

[
T∏
t=0

1(St ∈ Ssafe)|πθ, S0

]
= E [G0|S0] , (26)

where πθ is omitted in the last equation for simplicity. By
virtue of S0 ∈ Ssafe, we obtain E[G0|S0] = E[G1 · 1(S0 ∈
Ssafe)|S0] = E[G1|S0]. Then, using (26), the gradient of the
probability of remaining safe reduces to

∇θP

(
T⋂
t=0

{St ∈ Ssafe}|πθ, S0

)
= ∇θE [G1|S0] . (27)

In Lemma 1 we derive a recursive relationship for the gradient
of E [Gt | St−1] , t = 1, 2, · · · , T − 1. By virtue of Lemma 2,
to complete the proof of the result it suffices to establish that

E

[
∇θE [GT | ST−1]

T−1∏
t=1

1 (St ∈ Ssafe) | S0

]
= E [G1∇θ log πθ(AT−1 | ST−1) | S0] . (28)

We establish this result next. Let us start by working with the
gradient of the inner expectation on the left-hand side of the
previous expression.

Using the fact that GT = 1 (ST ∈ Ssafe) and the definition
of expectation one can write ∇θE [GT | ST−1] in the left-hand
side of the previous expression as

∇θE [GT | ST−1] = ∇θ
∫
S
1(sT ∈ Ssafe)p(sT |ST−1) dsT ,

(29)
where p (sT | ST−1) denotes the conditional probability of
ST given ST−1. Marginalizing the probability distribution it
follows that

p(sT |ST−1)=

∫
A
p(sT |ST−1, aT−1)πθ(aT−1|ST−1)daT−1.

(30)

Consequently, (29) can be converted to

∇θE [GT | ST−1]

= ∇θ
∫
S×A

1 (sT ∈ Ssafe) p(sT | ST−1, aT−1)

πθ(aT−1 | ST−1) dsT daT−1. (31)

Note that in the previous expression, the only term dependent
on θ is the policy, hence we have that

∇θE [GT | ST−1] =

∫
S×A

1 (sT ∈ Ssafe) p(sT |ST−1, aT−1)

∇θπθ(aT−1 | ST−1) dsT daT−1.
(32)

Applying the “log-trick” to the right-hand side of (32) yields

∇θE [GT | ST−1]

=

∫
S×A

1 (sT ∈ Ssafe) p(sT | ST−1, aT−1)

πθ(aT−1 | ST−1)∇θ log πθ(aT−1 | ST−1) dsT daT−1.
(33)

Since p(sT |ST−1,aT−1)πθ(aT−1|ST−1)=p (sT , aT−1|ST−1)
is the joint probability distribution of ST and AT−1 given
ST−1 the previous expression reduces to

∇θE [GT | ST−1] = E [GT∇θ log πθ(AT−1 | ST−1) | ST−1] .
(34)

Since S1, . . . , ST−1 are measurable with respect to ST−1 it
follows that

∇θE [GT | ST−1]

T−1∏
t=1

1 (St ∈ Ssafe)

= E [G1∇θ log πθ(AT−1 | ST−1) | ST−1] , (35)

where we have used that G1 = GT
∏T−1
t=1 1 (St ∈ Ssafe).

Substituting the previous expression in the left-hand side of
(28) it follows that

E

[
∇θE [GT | ST−1]

T−1∏
t=1

1 (St ∈ Ssafe) | S0

]
= E [E [G1∇θ log πθ(AT−1 | ST−1) | ST−1] | S0] . (36)

The law of total expectation completes the result claimed in
(28) and therefore completes the proof of Theorem 1.

The expression for the gradient in Theorem 1, allows us
to directly tackle safe RL problems that take the form of
(2) using policy optimization techniques. It is worth pointing
out that the proof of Theorem 1 is similar to policy gradi-
ent theorems in the literature [6], [25]. Although promising,
stochastic approximations of the gradient introduce challenges.
Unlike the classic policy gradient (where policy parameters
update each iteration), under this framework, the parameters
in (5) only update when every step of the trajectory is safe,
i.e., when G1 =

∏T
t=1 1 (St ∈ Ssafe) = 1. Addressing this

issue is beyond the scope of this work and opens up several
interesting future research avenues. Despite this limitation, we
demonstrate in the next section that the estimate proposed can
solve problems of the form (2).

IV. NUMERICAL EXPERIMENTS

To illustrate the ability of using (5) to train safe policies,
we consider a continuous navigation task in an environment
populated with hazardous obstacles (see Figure 1). The coor-
dinates of the obstacles’ centers are (7, 7), (3, 7), (1.5, 4), (4.5,
3), (8, 3) with the corresponding radii {2, 1, 0.5, 1.5, 0.75}.
The state in this example is the position of the agent on the
x− and y−axis, namely, s = (x, y). We set the continuous
state space as S = [0, 10]× [0, 10]. The goal of the agent is to
reach a goal position sgoal = (9, 1.5) within the time horizon



Fig. 1. Navigation policy learned after 40,000 iterations for probabilistic
constraint formulation selecting λ = 6, η = 0.002. The agent is trained to
navigate starting from (1, 8.5) to a goal (9, 1.5).

T = 20, while avoiding 5 obstacles. Accordingly, the safe set
is defined as the whole map/state space excluding regions of
5 obstacles.

The agent’s action a is a two-dimensional velocity. For a
given state and action at time t, the state evolves according to
st+1 = st + atTs with Ts = 0.05. The policy of the agent is
a multivariate Gaussian distribution

πθ(a|s)=
1√

2π|Σ|
exp

(
−1

2
(a− µθ(s))>Σ−1(a− µθ(s))

)
,

(37)

where µθ(s) and Σ denote the mean and covariance matrix
of the Gaussian policy. We parameterize µθ(s) as a linear
combination of Radial Basis Functions (RBFs)

µθ(s) =

d∑
k=1

θk exp

(
−||s− s̄k||

2

2σ2

)
, (38)

where θ = [θ1, θ2, · · · , θd]> are parameters that need to be
learned, s̄k are centers of each RBFs kernel and σ their
bandwidth. In this experiment we set Σ = diag(0.5, 0.5),
σ = 0.5, d = 1681 and s̄k = (xk, yk), k = 1, 2, · · · , 1681
where s̄k forms a uniform lattice with separation 0.25 in each
direction. The reward is the negative squared distance to the
goal position sgoal, i.e., r(st, at) = −‖st − sgoal‖2.

To solve problem (3) in this set-up, we consider a stochastic
approximation of the gradient ascent, which yields the follow-
ing update rule for the parameters θ of the policy

θk+1 = θk + η

(
∇̂θV (θk) + λ∇̂θP

(
T⋂
t=0

{St ∈ Ssafe}

))
,

(39)

where the first term in bracket on the right-hand side is
computed by a stochastic approximation of the Policy Gradient

(a) Evolution of the averaged cumulative reward

(b) Evolution of the averaged safety probability

Fig. 2. Evolution of the averaged cumulative reward and averaged safety
probability as the algorithm iterates. The step-size η and time horizon T are
fixed to 0.0006 and 2000000. The color bar represents that λ is selected from
[0.5, 14] in which red and blue denote large and small values of λ respectively.

Theorem [6] and the second term is a stochastic approximation
of (5).

Figure 1 demonstrates that the agent with probabilistic
safety constraints is trained to safely navigate to the goal
position (9, 1.5) from the initial state (1, 8.5) after 40,000
episodes of training, during which λ is fixed to be 6 and with
η = 0.002.

Note that to attain different levels of safety, in general,
different values of λ are required. Subsequently, we run (39)
with different λ to find solutions to problem (3). The worst-
case scenario requires η = 0.0006 and 2,000,000 episodes.
As depicted in Figure 2, the color bar represents that λ is
chosen from [0.5, 14] in which red and blue denote large
and small values of λ respectively. To quantitatively analyze
the effect of λ on safety and task performance, the safety
probability is defined as the fraction of safe episodes over 1000



independent episodes under different random seeds and then
averaged across the evaluation episodes. Similarly, we estimate
the value function by averaging the cumulative reward across
the evaluation episodes. It is not surprising that larger λ yields
larger safety probability and lower cumulative rewards.

We thus demonstrated that stochastic approximations of
the gradient of the probabilistic constraints (Theorem 1) can
successfully be employed for solving the task at hand. Notice
that the algorithms used in this numerical section are Monte
Carlo methods [32, Chapter 5]. In the RL literature there
exist algorithms that exploit temporal differences [5] and/or
trust regions [27] which result in faster convergence rates. As
mentioned in Section III the estimation of the gradient of the
probabilistic constraint is zero for every unsafe episode, thus
hindering the rate of convergence. Analyzing alternatives to
overcome this issue is out of the scope of this work.

V. CONCLUSIONS

In this work, we considered the problem of learning prob-
abilistic safe policies. Unlike cumulative constraints often
considered in the literature, we aim to guarantee that the state
of the agent remains in the safe set with high probability.

We have provided the first expression for the gradient of a
probabilistic constraint safety requirement, thus enabling the
application of Policy Optimization methods in these settings
as well. We have also demonstrated that updates based on
this gradient can be used to solve continuous navigation prob-
lems in cluttered environments. The stochastic approximation
presented is not without issues. In particular, the gradient
estimate is zero unless the agent remains on the safe set during
the episode. Future work includes improving this estimate
and characterizing the convergence and data-efficiency of
algorithms that use this gradient.
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