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Abstract—In this paper, we propose a new method for deter-
mining shared features of and measuring the distance between
data sets or point clouds. Our approach uses the joint factor-
ization of two data matrices X, X2 into non-negative matrices
X, = AS1,Xo = AS> to derive a similarity measure that
determines how well the shared basis A approximates X, Xo.
We also propose a point cloud distance measure built upon
this method and the learned factorization. Our method reveals
structural differences in both image and text data. Potential
applications include classification, detecting plagiarism or other
manipulation, data denoising, and transfer learning.

Index Terms—nonnegative matrix factorization, topic model-
ing, point cloud distance, data set distance

I. INTRODUCTION

Identifying similar or dissimilar features in the underlying
structures of point clouds is a useful technique across a wide
array of fields. Point cloud comparison methods and point
cloud distances have applications in document clustering [1],
[2] and in computer vision such as object classification [3],
object detection [4], and semantic segmentation [5]. These
applications often turn to classical metrics for dataset or point
cloud comparison, such as the Chamfer distance [6], which is
defined as the sum of the averages of the minimum distances
between points in data matrices X; and Xo,

deham (X1, X2) = |X E Z ;Iell)? ly — |3 QY
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where, in a slight abuse of notation, we let x € X mean that
x is a column of the data matrix X. Other popular metrics
include the Hausdorff distance [7], [8], the earth mover’s
distance [9], and recent metrics based on optimal transport [10]
However, these measures can be computationally expensive

This work is supported by NSF DMS award #2211318.

Amani R. Maina-Kilaas
Department of Computer Science
Harvey Mudd College
Claremont, CA, USA
amainakilaas@hmc.edu

Julianna Schalkwyk
Department of Mathematics
Harvey Mudd College
Claremont, CA, USA
jschalkwyk @hmc.edu

Jamie Haddock
Department of Mathematics
Harvey Mudd College
Claremont, CA, USA
jhaddock@hmc.edu

or ineffective [11]. Recent efforts for point cloud comparison
include density-aware approaches [12], [13]. Additionally, data
set or point cloud distances have applications in measuring
generalizability of machine learning models [14]-[16] and
transfer learning [17].

Nonnegative matrix factorization (NMF) is a useful tool for
interpretable dimension reduction. Many types of data, includ-
ing documents and images, can be represented by nonnegative
matrices, making NMF a widely applicable method for data
analysis [18]. NMF has been previously used in the creation of
data set similarity metrics: Shahnaz et al. [2] clusters semantic
features or topics in document data and uses NMF to preserve
nonnegativity. Liu et al. [19] introduces a multi-view clustering
approach based on NMF.

Joint non-negative matrix factorization (jJNMF) allows for
joint factorization of two data sets with a common basis [20],
[21]. Additionally, j]NMF for topic modeling has been used to
identify similarities across data sets. Kim et al. [20] proposes a
JNMF method for identifying both common and distinct topics
among document data sets.

In this paper, we propose a new method for evaluating
similarity between a pair of distinct point clouds or data sets.
Our method analyzes the outputs of jNMF and measures the
contributions of the basis vectors to each set. In our method,
we first run jJNMF on the two data matrices and then, moti-
vated by statistical distribution comparison tests, we compare
the empirical distribution functions that represent the jNMF
coefficient factor matrices. We use this learned information to
propose a point cloud distance measure. In addition to a point
cloud distance measure, our method provides information
about how the data are structurally similar and dissimilar via
the learned jNMF basis vectors and their measured association
with each data set.

In Section II, we give a brief overview of NMF and jJNMF.
In Section III, we propose a method for determining shared
features in data sets, a distance measure based on this method,



and we list some desirable properties of a distance measure. In
Section IV, we present examples of this method applied to real
world data and experimentally verify our desired properties.

II. OVERVIEW OF NMF AND INMF

Given a nonnegative m X n matrix X, the goal of non-
negative matrix factorization (NMF) is to find nonnegative
matrices A and S such that

X~ AS

where A is m x k and S is k xn [18]. One typically chooses k
so that AS is a low rank approximation of X; there are many
heuristics for choosing the model rank k, which are beyond
the scope of this paper. NMF produces A and S by attempting
to minimize the non-convex objective function,

IX — AS||E = > (Xi; — (AS)i)*.
ij

NMF models can be trained with many methods. One of
the most popular methods is multiplicative updates, which
is a variant of gradient descent that ensures entrywise non-
negativity in the factors [22]. We typically interpret columns
of A as a set of “basis” vectors and the ith column of S as
the coefficients of the conic combination of those basis vectors
that approximates the +th data point. We do not focus on how
basis vectors are combined to create individual elements, but
instead analyze the rows of S to measure the contribution of
each basis vector to the entire data set.

Joint NMF (jJNMF) finds low-rank, non-negative approxima-
tions for two matrices, X and Y, that share a common factor
matrix [20]. When applied to supervised NMF, jNMF typically
factors X (the data) and Y (e.g., class labels) as X ~ A;S
and Y = A,S, so that S is shared between the factorizations.
To control the emphasis put on the labels, a weighting factor
A can be introduced into the objective function,

IX = A1S[|E + AllY — A28]%,

but we focus on the cases where the approximation terms are
weighted equally, A = 1. When A\ = 1, the factorization can
easily be learned by performing NMF on the matrix obtained
by stacking X on top of Y, resulting in the factorization

X Ay

)=l
Lee et al. [23] and Haddock et al. [24] apply jNMF to semi-
supervised tasks like document classification.

We apply jNMF via NMF on the matrix obtained by
stacking data matrices X; and X, side-by-side, denoted by
[X1 X3, which we factorize by [X; X3] = A[S7 S3]. This
model may be represented as minimizing objective

IX1 = ASy[[F + || X2 — AS2||% 2)

with respect to the factor matrices A, Sy, .S;. For the method
to be well-defined, the data points in the two sets Xj, Xo
must have the same dimension. Geometrically, NMF can be
interpreted as learning basis vectors such that the cone of these

Fig. 1: Visualization of a joint NMF learned for two datasets
(X7 in red and X5 in blue). Note that the data points in X; are
well approximated by the basis elements visualized in black
and red (their conic span is given in red), while the data points
in X, are well approximated by the basis elements visualized
in black and blue (their conic span is given in blue).

vectors best approximates a given data set [25]. Thus, jNMF
attempts to learn basis vectors (columns of A) so that the
cone of these vectors contains good approximations of all data
points in X and X5; see Figure 1 for a visualization of a joint
NMF learned for two datasets (X; in red and X5 in blue).

III. PROPOSED METHOD AND DISTANCE MEASURE

Our proposed distance measure identifies how well two data
sets, X1 € RY;™ and X, € RZT;"2, can be approximated
by the common basis learned through jNMFE. The existence
of such a set of basis vectors implies a similar underlying
structure between the data sets. However, one may obtain a
basis set in which some elements primarily contribute to the
first data set and some contribute to the second, but very
few are shared; see Figure 1 for a visualization of such a
scenario. This scenario suggests some structural differences in
the data. We analyze the contributions of the basis vectors to
the different data sets to identify features in one data set that
are not expressed well by a basis for the other data set.

A. Proposed Similarity Method

Given a rank-k jNMF approximation [X; Xs] &~ A[S] Sa],
our method produces a length-k vector p where each element
represents the ratio of the corresponding basis vector’s con-
tribution to each of the data sets. We compute p; from the
ith rows of S and S5, because the magnitudes of the entries
in row ¢ of S; and Sy indicate how much A. ;, the ith basis
vector, contributes to each data matrix. The entries of p are
between -1 and 1; p; is positive if A.; contributes more to
X1 and negative if A.; contributes more to X5. Pseudocode
for our method is provided in Algorithm 1.



Algorithm 1 jNMF similarity

Require: data matrices X; € RZ; "™ and X, € RT; "2,
number of samples K for averaging, model rank k
1: Scale each column in X, X5 to be mean one.!
2: Learn rank-k jNMF approximation via (2),

[Xl XQ} =~ A[Sl SQ]
3: Fori=1,---,k, define
$; = max ({s(l) U {3(2) ;”1)
where 351), 52), o ,55711)1 and 8(2)781(»2), E ,352)2 are the
entries of the ith rows of S; and S5, respectively.
4: for j=1,...., K do
5: fori=1,--- k do
6: Choose T; ~ unif([0, s;]) for i = 1,2,--- ,m.
7: Compute pV’) := F\*(T;) — F\")(T;), where
1 &
1 1
F(Ty) = — sl <)
1
and -
F(T) = — Z [si; <)

are the empirical distribution functions (EDFs) of
{s(l)}’gl and {sgjz-)};ﬁl evaluated at T, respectively.
end for
9: end for

10: return p = % Ef:r p¥)

We note that Step 7 in the Algorithm 1 compares the fraction
of sample {s;; (1) 7L, below a randomly sampled threshold to

the fraction of sample {sw 1 below the same threshold.
That is, we measure the difference between these samples by
calculating the difference between their EDFs Fl.(l)(T) and
Fi@)(T) [26]; this is akin to the fundamental idea of the
Kolmogorov-Smirnov test [27], [28] and Cramer-von Mises
criterion [29], [30] See Figure 2 for an example visualization
of the samples {s }”1 , and {s 21, and their empirical
distribution functions F( )( T) and F(Z)( T'); these histograms
and EDFs might correspond to the third (blue) basis vector in
Figure 1, as the entries indicate that this basis vector is more
heavily used by the blue data set. Note that p; is simply the
difference between these EDFs averaged over random samples
taken uniformly from the data interval.

We additionally note that while in Step 6 of Algorithm 1
we choose to uniformly sample from the interval [0, s;], one
could instead evenly subdivide this interval and iterate through
these break points or instead iterate through the ordered values

(1)yny (2)yn2
{52‘]‘ }jzl and {Sij j=1

Example. For illustrative purposes, suppose a rank 3 jNMF
approximation of datasets X; and X, produces the vector

ITo address the case where v ~ 0, we add a threshold so that v € X is
only normalized if ||v|| > 0.05 * avg,,¢ x, |[ul[.
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F(lg). 2: Ex?n)lple histogram of the values s;;",---,s;, and
2 2 . .
817" s Sin, encountered in Step 6 and the corresponding

empirical distribution functions Fi(l)(T) and Fi(z) (T).

p = [—0.500,0.001, 0.998]. The first basis vector contributes
to both data sets, but appears with higher frequency in Xo,
the second basis vector contributes equally to both data
sets, and the third basis vector appears almost exclusively
in X;. In the toy visualization of Figure 1, the entries of
p = [-0.500,0.001,0.998] might correspond to the blue,
black, and red basis vectors, respectively.

B. Distance Measure

Although the basis vectors and the p vector are inter-
pretable, a single scalar value that measures similarity or
distance between two data sets is often useful. We define the
distance measure between the two data matrices X1, Xo as

d(X1, Xa) := |Ipll1,

where p is computed via the Algorithm 1 in Subsection III-A.
We list here a few desirable properties of a distance measure

d(X1, X5), which are satisfied by the Chamfer distance, and of

the vector p. These properties will be experimentally verified

for our proposed measure in Subsection IV-A. Let X; be a

data matrix with n columns.

(P1) Symmetry: d(X;,X2) = d(X2,X;) with p; = —po
where p; corresponds to the comparison d(X7, X2) and
P2 corresponds to the comparison d(Xa, X7).

(P2) Self-similarity: d(X;,X;) =0 and p = 0.

(P3) Permutation invariance: If P, is an n X n permutation
matrix, d(X1,X1P;) =0 and p = 0.

(P4) Scaling invariance: d(X1,A\X1) =0, p =0 for A > 0.

(PS) Large subsets: If the columns of X, are a large subset
of those of X, then d(Xl,Xl) ~ 0, and d(th(l)
decreases monotonically as the number of columns of
X, approaches n.

(P6) Additive noise: If ¢ > 0 is small and N is a noise
matrix, d(X1, X1 +€eN) = 0 and d(X1, X; +€N) grows
monotonically with e.

IV. EMPIRICAL RESULTS

In this section, we illustrate the proposed method and
distance measure on a toy image dataset called the Swimmer
dataset [31], which is composed of 11 x 20-pixel images such
as that of Figure 6a, and the 20 Newsgroups dataset [32]. Let
X1 be the matrix with columns that are the vectorized images
from the Swimmer dataset and let NV be a noise matrix of the



same size as X7, with entries sampled i.i.d. from unif([0,1]).
All Swimmer jJNMF experiments are run with rank k£ = 10.

A. Distance measure properties

In this section, we verify some of the desired properties
from Subsection III-B experimentally. We note that our dis-
tance measure d(X;, X2) appears to exhibit the self-similarity
property (P2), the permutation invariance property (P3), and
the scaling invariance property (P4). Our measure, like the
Chamfer measure, produces d(X;, X2) =0 and p = 0 when
applied to X; and X5, an identical, permuted, or scaled copy
of X;. Note that we scale the data prior to applying either
distance measure as indicated in Step 1 of Algorithm 1. See
Table L.

TABLE I: Average value of our distance measure, d(X7, X5),
and the Chamfer distance, dcham(X1,X2), over fifty trials,
where P, represents the permutation matrix corresponding to
a randomly sampled permutation 7, and A > 0 represents a
randomly sampled value in {0.1,1, 10,100}, X is X7 with
10% of its columns randomly removed, and N is a matrix
with entries i.i.d. from unif([0, 1]).

X2 | X1 [ XhP | X1 | Xi | Xi+N | N
d(X1,X2) | 0000 | 0.000 | 0.000 | 0.052 | 1509 | 2.297
deham (X1, X2) | 0.000 | 0.000 | 0.000 | 0.000 | 0.741 | 1.560

It appears that the distance measure exhibits the large
subsets property (P5) since d( X7, X 1) remains small when X,
is formed as a large column subset of X;. While d(X LX 1)
is small, our method is still able to distinguish between X
and X;, whereas dcham(Xl,f(l) = 0 for all the X; we
examine. To verify this, we form )~(1 as a random sample of
q% of columns in X3, where ¢ € [88,98] and plot d(X1, X2)
and dcham(Xl,X'l) for each value of ¢; see Figure 3. The
distance measure also appears to exhibit the additive noise
property (P6). In Figure 4, we see that d(X7, X7 + eN), like
denam (X1, X1 + €N), grows monotonically with € € [0, 1]. All
experimental values are averaged over fifty trials.

X5)
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Fig. 3: The jNMF distance measure (blue) and Chamfer
distance (green) d(Xl,X 1) where X is the Swimmer data
matrix and X is formed as a random sample of ¢% of columns
in X4, for ¢ € [88,98], decrease monotonically as the g grows.
Values are averaged over fifty trials.

Fig. 4: The jNMF distance measure (blue) and Chamfer
distance (green) d(X1, X7 + €N), where X; is the Swimmer
data matrix, N is a matrix with entries sampled i.i.d. from
unif([0, 1]), and € € [0, 1], grow monotonically with e. Values
are averaged over fifty trials.

Our method not only satisfies convenient distance properties
like the Chamfer method, but also provides additional insight
into the relationships between the datasets via the basis vectors
produced by jJNMF. Figure 5 shows the basis vectors and their
associated p scores produced by our method applied to X
and X7 + N. The images with the dark background are good
approximations for the basis vectors of the Swimmer data set.
The primarily white basis vector is used almost exclusively in
the noisy data, so this vector is the primary difference between
our two data sets. The method was able to isolate the basis
vectors for the original dataset from the noise.
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Fig. 5: Basis vectors produced by our method applied to
Swimmer data matrix X; and X; + N where the entries in N
are sampled i.i.d. from unif([0, 1]). The associated p values
for each basis image are, reading left to right and top to bot-
tom, [0.063,—0.901,0.076,0.065,0.069, 0.058, 0.058, 0.069,
0.079,0.079] and d(X1, X;+N) = 1.517 (note that this value
is computed on a single trial while the corresponding entry of
Table I is averaged over 50 trials). All basis vectors contribute
roughly equally to both data sets, with the exception of the
basis vector in the second position of the first row, which
contributes almost exclusively to the noisy data set X; + V.




B. Swimmer experiments

Before we can use our measure to compare data sets, we
must consider what it means for d(X;, X5) to be small.
Since 0 < |p;| < 1, the maximum value of the proposed
distance measure is the rank of the jNMF approximation,
k. However, d(X7, X5) is frequently significantly below this
value. As a benchmark for considering the significance of
these distance values, we measure the distance between our
structured Swimmer image matrix X; and noise matrix N to
be d(X1,N) = 2.297. While this value is larger than other
distance values observed in our previous experiments, is it
far below the upper bound of k = 10. Despite this relatively
low distance measure, d(X;,N) can serve as a baseline for
interpreting d(X1, X3) for other matrices Xo.

We measure the distance between X; and a matrix X
formed by swapping the zeros and ones in X; see Figure 6a.
Note that the data points in X; can be constructed by starting
with the body and adding in limbs, while those in X5 can be
constructed by starting with a body with all possible limbs and
covering the limbs that are not being used in a particular data
point. Figure 6b shows that this data set can be represented
well with eight common basis vectors and two additional basis
vectors, each of which is strongly associated with one data
set. The common basis vectors are used differently by the
two data sets; in X7, they are used to add limbs to the body,
while in X5, they are used to cover up limbs. The method
both identifies similar structures between the two datasets and
extracts the features necessary distinguish them.

N CHEEE
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(a) (b)

Fig. 6: (a) Sample data points from the Swimmer data
set (top) and the modified swimmer data set, where all
zeros and ones are switched (bottom). (b) Basis vectors
learned by jNMF with rank & = 10 on the Swimmer
data set (X;) with an inverted copy of the Swimmer data
set such that all the zeros and ones are switched (X5).
Ordering the basis vectors left to right and top to bottom,
p = [-0.999,1.000,0.010,—-0.017,0.003, —0.004, 0.015,
0.004, —0.001, —0.000] and d(X7, X5) = 2.054. The leftmost
basis vector in the top row contributes almost exclusively to
X, and the basis vector in the second position of the top row
contributes almost exclusively X;. The other basis vectors
contribute roughly evenly to both, adding limbs to X; and
removing them from Xo.

C. 20 Newsgroups experiments

As a final illustration of the promise of our proposed method
and distance measure, we measure distances between the term
frequency-inverse document frequency (tf-idf) representations
of the various newsgroups (categories) in the 20 Newsgroups
dataset [32]. The 20 Newsgroups dataset is a collection of
approximately 20,000 newsgroup documents. The data set con-
sists of six groups partitioned roughly according to subjects,
with a total of 20 subgroups, and is an experimental benchmark
for document classification and clustering; see e.g., [23].

In Figures 7 and 8, we present heatmaps with colors cor-
responding to average jNMF distances and average Chamfer
distances, respectively, between samples of 100 documents of
each of the twenty newsgroups, averaged over 50 trials. We
remove headers, footers, and quotes from the 20 Newsgroups
dataset, and then apply the tf-idf transformation to the entire
set. In each trial, we sample 100 documents (represented as
tf-idf vectors with length equal to the size of the entire data
corpus) uniformly from each newsgroup and calculate pairwise
distances between each sample. The rows and columns of
the resulting distance matrix are then re-ordered and line-
segregated according to cluster labels assigned by k-means
with k = 6 applied to the columns of the distance matrix.

Applying clustering to the jJNMF and Chamfer distance
matrices reveals existing block structure. While neither dis-
tance clustering respects the newsgroups divisions, the iden-
tified clusters represent highly related topics. The clustering
applied to the Chamfer distance matrix correctly identifies
“comp” newsgroup, while the JNMF clustering adds the “for
sale” group to this cluster. Both distance clusterings group
the “hockey” and “baseball” groups. Each clustering has an
“atheism”/“politics” cluster, but the j]NMF clustering separates
these into two clusters and includes the ‘“‘sci.med” group,
while Chamfer groups “sci.med” with “sci.space” but places
“sci.crypt” into the “atheism”/“politics™ cluster.

Qualitatively, the clusters identified by the jNMF distance
and the Chamfer distance are coherent. However, the jNMF
distance matrix produces clusters with significantly lower
relative intra-cluster to inter-cluster distance ratio than that of
the Chamfer distance.

CONCLUSION

In this work, we proposed a promising distance measure
for datasets based on shared features learned by jNMF. Our
proposed distance measure indicates similarity of two datasets
and the proposed method learns which basis components are
shared between the datasets and which are not. As one would
hope, our proposed distance measure exhibits permutation and
scaling invariance, symmetry, and monotonicity over subset
relationships and additive noise in the data.

Future work includes applying the measure in tasks like
anomaly or plagiarism detection, investigating hyperparameter
choice, and exploring distance measures derived from different
matrix factorizations or low-dimensional approximations.
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7: Average jNMF based distance between samples of 100

documents of the twenty newsgroups (averaged over 50 trials).
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