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Abstract—The explosion of smaller and more powerful 

wearable sensing devices has allowed us to continually record and 

quantify our lives. Undertaking such activities is becoming very 

popular and has grown into a community called the Quantified Self 

(QS). Utilizing this outlet has the potential to benefit many aspects 

of our lives and is gaining momentum within the health sector. 

However, whilst we can easily collect data, interpreting this 

information is more challenging. Without extensive data analysis, 

this information is essentially meaningless in its raw form. This 

paper posits an approach to quantify and cluster levels of physical 

activity from accelerometer and heartrate data, which has been 

obtained from four wearable devices (3 accelerometers and 1 hear 

rate monitor). The approach details our method for pre-processing 

the data, extracting and selecting the features and a comparison 

between hierarchical clustering analysis (HCA) and k-means. The 

results illustrate that, whilst both methods are capable of 

successfully separating the data, the k-means approach out-

performed the HCA method at clustering the data. 

Keywords— Quantified Self, mHealth, Physical Activity, 

Clustering, Heart Rate 

I. INTRODUCTION 

Over the last few decades, technology has advanced at a rapid 
rate. We are now able to instantly communicate across the globe, 
track ourselves 24/7 and share our entire lives with the world. 
Driving such developments has been the Internet, wireless 
communication, sensor technologies and mobile/wearable 
devices, which has enabled the formation of a global network, 
comprised of millions of interconnected devices and objects. 
Such technology is now ubiquitous and has allowed us to monitor 
and quantify our lives in ways that were previously unachievable. 

One area that has capitalized on this trend has been the 
Quantified Self (QS)1. This movement is comprised of a diverse 
group of people, including computer scientists, data analysts, 
health enthusiasts and patients, who subscribe to the concept of 
“self-knowledge through numbers” [1]. It is this idea that is the 
driving force behind this movement and has led to people 
persistently tracking many aspects about themselves. Utilizing a 

                                                           
1 http://quantifiedself.com/ 

range of mobile/wearable devices, we are able to more accurately 
monitor and quantify our lives, including dietary, behavior and 
physical activity patterns, through our data. As a result, we can 
then use this collected data to reflect on our lives and incite 
behavioral change. May researchers and companies have 
recognized the power of self-monitoring, in particular for 
promoting health changes, and have begun incorporating 
automated sensing applications within self-monitoring 
technologies [1]. For instance, Apple’s™ iOS 8 saw the release 
of their Health application2. This integrated dashboard retrieves 
data from the iPhone’s™ on-board accelerometers to display 
your health and fitness data, including step count, distance and 
flights of stairs climbed to illustrate how active you’ve been over 
the last day, week, month or year. Other devices, such as the 
Samsung Gear Fit3, Nike+ Fuelband4 and Fitbit5 all track activity 
through the use of on-board accelerometers. Such devices are 
also synced with the user’s mobile phone so that the collected 
data can be reflected upon through a dashboard on the adjacent 
application. However, these devices are still very crude and many 
are only capable of basic functions, such as counting steps. 
However, it is crucial and more beneficial for such devices to 
communicate to the user the types of activities that they have 
undertaken. In this way, we are more aware of how often certain 
types of physical activity have been undertaken for and can 
quantify our intake of physical activity better. 

Tracking physical behavior is beneficial to many aspects of 
our lives and in particular, is gaining momentum within the 
health community. Being physical inactive is a global issue that 
is increasing and has been identified as one of the leading risk 
factors for death around the world [2]. However, manual methods 
of self-reporting physical activity, such as diaries, are inherently 
inaccurate and suffer from bias and the fallibility of human 
memory [3]. In particular, physical activity tends to be 
overestimated as people overestimate activity duration or 

                                                           
2 https://www.apple.com/uk/ios/whats-new/health/ 
3http://www.samsung.com/uk/consumer/mobile-devices/wearables/gear/SM-

R3500ZKABTU 
4 https://secure-nikeplus.nike.com/plus/products/fuelband/ 
5 https://www.fitbit.com/uk 
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misjudge inactive or light activity as being moderate [4]. 
However, recent advances in technology can alleviate this 
problem, to a certain extent. Over the last decade, the phrase 
mHealth (mobile health) has emerged as a new paradigm within 
the healthcare sector. mHealth utilizes mobile/wearable 
computing, the internet, wireless communication and medical 
sensing to deliver and support healthcare ubiquitously [5].  

Given the nomadic and connectivity nature of smartphones 
and wearables, these outlets provide an ideal platform to build 
upon so that we can support the delivery of mHealth in a number 
of ways [6]. For instance, a QS system that monitors and gathers 
data, over a sustained period of time could significantly improve 
the prevention, diagnosis and treatment of several non-
communicable diseases, including obesity and depression [7], 
[8]. As the system gathers more information about the user (e.g. 
physiological data), it can “learn” about their lifestyle. These 
patterns of behavior can then be analyzed to recommend healthy 
lifestyle changes and the user can also use this information to 
reflect on their levels of activity to improve the quality of life [9]. 

However, whilst wearable and mobile devices can easily 
collect data, interpreting this information is more challenging. 
Without extensive data analysis, this information is essentially 
meaningless in its raw form. This paper posits an approach to 
quantify levels of physical activity from 1) accelerometer and 2) 
heartrate data, which has been obtained from four wearable 
devices; 3 accelerometers located around the chest and on the 
dominant wrist and ankle and a heart rate monitor around the 
chest. In order to achieve this, the raw data has first been 
transformed into a set of features. This enables a large set of data 
to be condensed into a more manageable size, which can then be 
used within the clustering algorithm. The approach is being used 
to test the system’s ability in separating data into higher and 
lower occurrences of activity. This information can then be used 
by patients and care givers to gain a greater insight into the 
activities of the user by enabling their actions to be quantified in 
a more accurate manner. In this way, our approach can determine 
the frequency of high-energy (e.g. running) and low-energy (e.g. 
sitting) activities, as opposed to simply counting steps/distance. 

The reminder of this paper is constructed as follows. Section 
2 describes previous related works, while section 3 illustrates the 
materials and methods that have been used to pre-process the 
data and extract the features, as well as the clustering process. 
Section 4 presents the results of the data evaluation and a 
discussion of the findings. The paper is then concluded in section 
5 and future directions of the research are presented. 

II. RELATED WORK 

The widespread availability and lower cost of sensors has 
enabled the Quantified Self (QS) community to expand [10]. This 
group is a worldwide collaboration of users (academic, industrial 
and the general public) who are interested in self-tracking tools. 
They hold regular international meetings, conferences and 
expositions to discuss self-tracking technologies and 
advancements in the field. As a result, there have been many 

approaches and studies that have been undertaken to explore this 
area of personal data collection and activity recognition [11]–
[16]. 

Habib ur Rehman et al. [17] present a taxonomy for personal 
data mining in resource-constrained environments (e.g. 
smartphones). Their results illustrate that mining personal data 
for patterns has a great potential in monitoring the physiologies 
of users and in the diagnosis of irregularities in a user’s daily life. 
In other works, Dias and Machado da Silva [18] have created a 
wearable textile prototype, consisting of leggings that are 
embedded with eight sensors to capture kinematic information. In 
other works, Lee and Shiroma [19] report the issues and 
challenges of using accelerometers to measure physical activity. 
After undertaking a large scale epidemiologic study, which relied 
on the participants wearing the accelerometers for a week, they 
reported on the logistical, data reduction and analysis challenges 
that they faced. Such issues included participants not 
wearing/returning the devices, the size of the datasets that were 
produced (~20 terabytes) and issues relating to the “correct” cut 
points for classifying sedentary behavior. Uddin et al.’s [20] 
wearable sensing framework utilizes a 9-axis wristband to 
continuously monitor a users’ daily activities. The data has then 
been preprocessed and segmented before being passed to the 
activity recognition algorithm. In other works, Saeedi et al. [21] 
have developed an automatic on-body sensor platform, consisting 
of accelerometers and gyroscope sensors, to monitor physical 
activity. 

Similarly, Qiu et al. [22] use accelerometer data, from a 
SenseCam, and machine learning tools to automatically identify 
user activity. In their approach, a Support Vector Machine (SVM) 
is trained to automatically classify accelerometer features into 
user activities (sitting or standing, driving, walking or lying 
down) [22]. The accuracy of each activity ranged from 90% to 
98%. This work illustrates how machine learning, and a wearable 
accelerometer can be used to identify the activities of a wearer to 
a very high accuracy [22]. Nevertheless, whilst these results are 
encouraging, this work only considers one type of data, 
acceleration. However, our approach uses a combination of 
acceleration and heart rate data. This enables us to better quantify 
the activities of the user. 

III. MATERIALS AND METHODS 

As sensing devices become smaller and more widely 
available, this presents us with unique opportunities to collect 
and analyze data so that QS technologies can move forward into 
intelligent systems that can learn and react to the user. Utilizing a 
data processing flow to process accelerometer and heartrate data 
signals (see Fig. 1), our approach is capable of separating 
instances of user activities in clusters of higher and lower energy. 
By successfully separating such occurrences enables a clear 
pattern of behavior to be established. 
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Fig. 1. Our proposed accelerometer and heart rate data processing flow 

Our approach focuses on using widely available 
accelerometer and heartrate sensors, which are extensively used 
in the area of activity recognition [5], [18], [19]. In this sense, 
raw data from three wearable tri-axil accelerometers and a heart-
rate monitor have been obtained from the PAMAP2 Physical 
Activity Monitoring Data Set [16]. The accelerometers have been 
placed on the user’s dominant wrist and ankle, as well as on the 
chest. The sampling frequency of the accelerometers was 100 Hz, 
whilst the heart-rate monitor was 9 Hz. 

The data has been recorded from seven subjects. Each 
volunteer undertook a series of nine activities that are a blend of 
inactive/low states (e.g. sitting) and highly activity (e.g. running). 
Each subject adhered to the data collection protocol, which 
included performing each activity for up to three minutes, with 
one-minute breaks. Table I lists the level of activity and 
associated activities that were performed for each category. In 
total, the dataset contains 13,524,350 raw records. Once the data 
has been collected, the signals will be pre-processed before 
features have been extracted and selected. 

A. Data Pre-processing 

The accelerometer data has been normalized using a second-
order forward-backward digital low-pass Butterworth filter, with 
a cut-off frequency of 3 Hz. A sliding average window of 512 
samples, with a 50% overlap (256 samples), has also been 
applied to the data so that the records can be reduced, without 
losing information.  

B. Feature Extraction 

Features have then been extracted from the raw data. This has 
been undertaken in two different modes, time and frequency. 
These two modes differ as time domain analysis measures the 
signal over the period of the recording. In contrast, frequency 
domain analysis depicts how the signal's energy is distributed 
over a range of frequencies [23]. As such, frequency domain 
techniques have been extensively used to capture the repetitive 
nature of a sensor signal. This repetition often correlates to the 
periodic nature of a specific activity such as  

TABLE I. SUMMARY OF THE ACTIVITIES THAT HAVE BEEN PERFORMED BY THE 

PARTICIPANTS [16] 

Level of Physical 

exertion 
Activity 

Light 

Lying 

Sitting 

Standing 

Ironing 

Moderate 

Descending Stairs 

Vacuum Cleaning 

Normal Walking 

High 
Running 

Ascending Stairs 
 

walking or running [24]. The advantage of frequency-related 
parameters is that they are less susceptible to signal quality 
variations [25]. Utilizing the mathematical operators Fast Fourier 
Transform (FFT) and Power Spectral Density (PSD) the raw 
signal has been converted between these two modes. From the 
time domain, the mean, median, standard deviation, root mean 
square (RMS), variance and correlation have been calculated for 
the accelerometer signals. From the heart rate monitor, the mean 
of this signal has also been determined. From the frequency 
domain, energy, entropy, peak frequency and median frequency 
have been calculated for the accelerometer signals. This has been 
confirmed by analyzing the literature [11], [13], [14], [16].  

These features comprise the complete original feature set. 
Each accelerometer that was placed on the ankle, chest and hand 
has its own feature vector (e.g. ankle_mean, chest_mean, 
hand_mean, ankle_energy, chest_energy, hand_energy, etc.). In 
the Time Domain 1,197 feature records have been generated, 
whilst the Frequency Domain contains 756 records, thus totaling 
1,953 records. 

C. Feature Selection 

Whilst a range of features have been generated, some may be 
redundant. In this instance, dimensionality reduction, utilizing 
Principal Component Analysis (PCA), has been performed to 
find a subsection of the most important features. The features 
have been analyzed in terms of “blocks”. For example, all of the 
median feature vectors (ankle_median, chest_median, 
hand_median) have utilized PCA. During the next iteration, all of 
the root mean square vectors have been processed (ankle_rms, 
chest_rms, hand_rms). This process has been repeated until all of 
the features have been processed, and the top two components 
with the best discriminant capabilities have been chosen. Fig. 2 
illustrates an example of one PCA graph that has been generated 
per feature set. Each feature in the bi-plot (see Fig. 2) are 
represented as an eigenvector and the direction and length of the 
vector (blue line) indicates how each variable contributes to the 
principal components in the plot. The feature closest to the 
horizontal axis, of Fig. 2 shows that in this instance 
ankle_median is nearest to the principal component, which has  
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Fig. 2. An example of one principle component analysis graph that has been 

generated for the median features 

the most discriminant capabilities of the considered features. The 
feature closest to the vertical axis illustrates hand_median as the 
second component with very good discriminant capabilities. 
Once the top two features of each set have been selected, it is still 
unclear if this is the optimal number of features. In this instance, 
we have used a scree plot to overcome this and to dispute or 
validate the number of features that have been selected via PCA 
(see Fig. 3). 

This graph plots the generated eigenvalues and arranges them 
in descending order. The point at which the curve of decreasing 
eigenvalues decelerates to a flat slope (also known as the 
“elbow”) is the cutoff point and determines the number of 
features to use. Fig. 3 illustrates the generated scree plot of the 
data set. As it can be seen, after four features, the “elbow” of the 
graph appears and the plot trails off to zero. This indicates that 
out of the PCA features, four of them have the best 
discriminative capabilities to represent the entire dataset. In 
summary, PCA has established that ankle_root_mean_square, 
ankle_mean and hand_mean, hand_root_mean_square, are the 
best features to use in the study. This new dataset of features is 
now known as the ClustFeature set and now includes only the 
features that contain the most information, which are highly 
associated with each other.  

 

 

Fig. 3. Scree Plot of the feature set. The graph illsutrates that after four features, 

the “elbow” of the graph appears  

TABLE II. SILHOUETTE AVERAGES FOR K CLUSTERS 

Cluster (k) Silhouette Average (SA) 

2 0.6492 

3 0.6442 

4 0.6037 

5 0.5312 

D. Clustering 

Clustering methods can be divided into two main groups: 
hierarchical and partitioning. The hierarchical approach 
constructs the clusters by recursively partitioning the instances in 
either a top-down or bottom-up fashion, whereas partitioning 
relocates instances by moving them from one cluster to another, 
starting from an initial partitioning. Following an analysis of the 
literature, the techniques that have been selected for our 
evaluation include agglomerative (hierarchical) and k-means 
(partitioning) algorithms. 

The k-means approach requires the user to define the number 
of clusters (k) beforehand. The centroid is the mean position of 
the clusters and this is then initialized. Each object is then 
assigned to its nearest centroid (cluster) and the mean of the new 
centroids (clusters) are then calculated. This process is repeated 
until the centroids (clusters) don’t change. However, defining the 
number of clusters (K) can be challenging. In this instance, 
calculating the silhouette averages can be used to overcome this 
issue. This value is used as a measurement of the quality of the 
resulting clusters. The value of k that has the largest SA indicates 
the most appropriate value to use.  

Using this method, the value of k has been increased, from 2 
to 5, and evaluated using the silhouette function. Table II 
illustrates the SA’s of the various cluster sizes for the dataset. As 
it can be seen in this table, for this dataset, the most appropriate 
number of clusters to use is 2. As a results k = 2 will be used 
within the k-means results. 

IV. RESULTS AND DISCUSSION 

This section presents the results that have been obtained from 
our approach to cluster the data using Hierarchical Clustering 
Analysis (HCA) and k-means. Each clustering algorithm is being 
evaluated on its ability to separate instances into periods of 
high/low energy so that we can quantify the user’s activities. For 
example, a large cluster of lower energy activities would indicate 
that they have been particularly inactive over a given period of 
time. 

Fig. 4 illustrates the results of the k-means analysis. In this 
graph, the center of each cluster has been marked by the 
“Centroids” symbol. As it can be seen, there is a clear divide in 
the data. After analyzing the results, the majority of the activities 
are located within cluster 2 and relate to higher energy activities, 
such as walking, running and ascending stairs. Cluster 1 refers to 
lower energy activities, such as sitting, descending stairs and 
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vacuum cleaning. Since cluster 2’s activities do exert more 
energy than cluster 1, the algorithm has correctly grouped the 
information into activities that have higher energy, since walking, 
running and ascending stairs use additional energy as opposed to 
descending stairs and vacuum cleaning. This has been confirmed 
by analyzing the dataset directly. 

Fig. 5 and Fig. 6 demonstrates the results of the Hierarchical 
Clustering Analysis (HCA) algorithm. Fig. 5 is the resulting 
dendrogram. As it can be seen, this algorithm has separated the 
data into three main clusters. Fig. 6 illustrates the results of Fig. 5 
in a scatter diagram. In comparison to the k-means results in Fig. 
4, the pattern of the cluster in Fig. 6 is similar, however HCA has 
partitioned the data differently. The majority of the activities are 
located within cluster 3 and relates to running, walking, 
ascending and descending stairs and vacuum cleaning. Cluster 1 
contains one instance of walking, ascending and descending 
stairs and vacuum cleaning, whilst cluster 2 is primarily 
composed of descending stairs and vacuum cleaning. This has 
been confirmed by analyzing the dataset directly. Whilst the 
pattern of the clusters is similar to the k-means approach in Fig. 
4, the data has not been separated correctly as cluster 1 only has 
one instance of each activity. This approach has not been as 
effective as k-means. 

 

Fig. 4. Clustering results of the data using k-Means Analysis 

 

 

Fig. 5. Clustering results of the data using Hierarchical Clustering Analysis 

(HCA) 

 

Fig. 6. Scatter plot of the HCA results from Fig. 5 

A. Discussion 

The approach posited in this paper is seen as a technique to 
quantify physical activity data so that patients and care givers can 
gather a more accurate overview of activity data. Currently, other 
works, such as [20]–[22] only consider the data from 
accelerometers. However, this is in contrast to our approach that 
supports multimodal inputs in the form of acceleration and heart 
rate data. This enables us to better quantify the activities of the 
user and to illustrate how such signals can be combined together. 
The results have provided positive results. These results can be 
used to determine, for example, significant periods of inactivity. 
For example, in the case of a patient suffering from obesity, their 
doctor may advise them to undertake more physical activity and 
to keep track of their progress. However, as previously discussed, 
accurately recording such data, using manual methods, such as 
diaries, can be quite inaccurate. However, using our approach, if 
the care giver had access to such data they could see that the 
patient may not be engaging in enough physical activity. 

Providing a comparison between the k-means and hierarchical 
results also proved interesting. The hierarchical approach was not 
as effective in separating the data and provided some anomalies 
in terms of the clusters that were produced. Hierarchical 
clustering does not require the user to input the number of cluster 
that they require. This resulted in the creation of very small 
clusters that only contained a couple of instances, which was not 
statistically significant. However, calculating the silhouette 
values, as in the k-means approach, enables the data to be 
quantified in terms of the similarity between objects to discern 
the appropriate number of clusters. This measure of quality has 
enabled the k-means approach to produce better results. 
Nevertheless, it was interesting that the shapes of the clusters 
between the two approaches were very similar, even if the data 
has been analyzed differently. This could be attributed to how the 
clustering algorithms separate. The hierarchical approach 
constructs the clusters by recursively partitioning the instances in 
either a top-down or bottom-up fashion, whereas k-means 
relocates instances by moving them from one cluster to another, 
starting from an initial partitioning. However, in terms of this 
data, k-means performed better at separating the data.  
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V. SUMMARY AND FUTURE WORK 

This paper has posited our approach to quantify physical 
activity for use within mHealth applications. In this sense, the 
system is able to separate instances of high and low energy to 
determine the user’s overall level of activity, during a given 
period. In achieving this, the methodology that has been used to 
pre-process raw accelerometer data has been discussed. Features 
have then been extracted and analyzed, using a variety of 
methods, including PCA. Overall, the system provides a 
promising and flexible solution, which can be extended in the 
future. Its application has the potential to influence our lives by 
providing a method of learning about ourselves through our data. 

However, whilst we can quantify our activity data, future 
work would consider incorporating other pieces of data, such as 
photos and location of events so that a visual illustration of our 
activities can begin to emerge. Additionally, testing the 
algorithms ability at separating similar activities would also be 
further line of enquiry. For instance, determining how well we 
can separate high energy activities into periods of intense 
physical exertion and those that require some movement. 
Furthermore, allowing the user to question their data, such as 
“How many hours do I watch TV?” or “How many hours do I sit 
at work?” would be interesting. 
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