
Analysis of the Suzuki-Kasami Algorithm with SAL Model Checkers

Kazuhiro Ogata
NEC Software Hokuriku, Ltd.

ogatak@acm.org

Kokichi Futatsugi
School of Information Science, JAIST

kokichi@jaist.ac.jp

Abstract

We report on a case study in which SAL model checkers
have been used to analyze the Suzuki-Kasami distributed
mutual exclusion algorithm with respect to the mutual ex-
clusion property and the lockout freedom property. SAL
includes five different model checkers. In the case study,
we have used two model checkers SMC (Symbolic Model
Checker) and infBMC (infinite Bounded Model Checker).
SMC has concluded that a finite-state model of the algo-
rithm has the mutual exclusion property, but has found a
counterexample to the lockout freedom property. The coun-
terexample has led to one possible modification that makes
the algorithm lockout free. We have also used infBMC to
prove that an infinite-state model of the algorithm has the
mutual exclusion property by

�
-induction.

Keywords: counterexamples, distributed algorithms, lock-
out freedom, model checkers, mutual exclusion.

1. Introduction

With the advance of computer hardware technology, effi-
cient model checking algorithms[4] have been devised and
then model checkers such as SMV[6] and SPIN[6] have
been developed. Model checkers can be used to verify
fully automatically that given systems have desired prop-
erties, provided that the systems should be modeled as
finite-state machines. SAL[1, 2] is a toolkit for analyzing
state machines, providing several tools. Unlike other ex-
isting model checkers, each of which usually implements
one model checking algorithm, SAL includes five different
model checkers. The five different model checkers are sym-
bolic, bounded, infinite bounded, witness and explicit-state
model checkers (SMC, BMC, infBMC, WMC and EMC,
respectively). Users can select the most appropriate one
among the five different model checkers for their problems.

The Suzuki-Kasami algorithm[9] is a distributed mutual
exclusion algorithm. We have analyzed the algorithm in
a semi-formal way[7] with respect to the mutual exclusion
property and the lockout (starvation) freedom property. In

the analysis, we have found a hidden assumption that is
needed to make the algorithm lockout free. The assump-
tion is that each node must try to enter its critical section
infinitely often. In a distributed setting where some nodes
try to enter their critical sections only finitely often, how-
ever, it is not guaranteed that the algorithm is lockout free.

In this paper, we report on a case study in which SAL
model checkers have been used to analyze the Suzuki-
Kasami algorithm with respect to the two properties. SMC
has concluded that a finite-state model of the algorithm has
the mutual exclusion property, but has found a counterex-
ample to the lockout freedom property. The counterexam-
ple has led to one possible modification that makes the algo-
rithm lockout free. The modification makes the algorithm
lockout free even if some nodes try to enter their critical
sections only finitely often. We have also used infBMC to
prove that an infinite-state model of the algorithm has the
mutual exclusion property by

�
-induction[3].

The rest of the paper is organized as follows. Section 2
outlines SAL. Section 3 describes the Suzuki-Kasami algo-
rithm. Section 4 models the Suzuki-Kasami algorithm as
a transition system. Section 5 specifies the transition sys-
tem in SAL. Section 6 checks if a finite-state model of the
Suzuki-Kasami algorithm has the mutual exlusion and lock-
out freedom properties with SMC. Section 7 verifies that
an infinite-state model of the Suzuki-Kasami algorithm has
the mutual exlusion property with infBMC by

�
-induction.

Section 8 finally concludes the paper.

2. SAL: Symbolic Analysis Laboratory

SAL[1, 2] (see sal.csl.sri.com) provides the five
different model checkers (SMC, BMC, infBMC, WMC and
EMC). EMC is not provided by SAL 2.3, but will be in-
cluded in a future release of SAL. SMC, BMC, WMC
and EMC deal with state machines defined over finite data
types, while infBMC can also handle infinite data types
such as integers. SMC, BMC, infBMC and EMC checks
if assertions written in LTL hold for state machines, while
WMC can handle assertions in CTL. BMC uses a proposi-
tional SAT solver to find counterexamples no longer than

some specified depth. It can also verify that finite state
machines have LTL properties by

�
-induction[3]. By de-

fault, SAL uses ICS[5] (Integrated Canonizer and Solver;
see www.icansolve.com) as its SAT solver. For infinite
state machines, infBMC can do what BMC does.

The SAL language consists of a type system and four
languages for expressions, transition relations, modules and
contexts. The SAL’s type system and expression language
are similar to those of PVS[8] (see pvs.csl.sri.com).
Transition relations can be specified using both guarded
commands and SMV-style variable-wise invariants. A state
machine is written as a module that can have parameters.
A module basically consists of a section of variable decla-
rations, an initialization section and a section of transition
relations. Modules can be composed both synchronously
and asynchronously to generate compound state machines.
Contexts include type declarations, function definitions,
modules and assertions. Contexts can have parameters that
are type and variable declarations. The assertion language
is not primitive in SAL but is defined in libraries associated
with the model checker concerned.

3. The Suzuki-Kasami Algorithm

Let us consider a computer network consisting of a fixed
number, say ��������� , of nodes. The nodes have no mem-
ory in common and can communicate only by exchanging
messages. The distributed mutual exclusion problem is to
solve a mutual exclusion requirement for such a computer
network, namely to allow at most one node to stay in its
critical section at any given moment. The Suzuki-Kasami
algorithm[9] is a distributed algorithm solving the problem.
The algorithm may be called SKDMXA in this paper. The
basic idea in the algorithm is to transfer the privilege for en-
tering the critical sections. Figure 1 shows the algorithm for
node �
	��
������������������� in a traditional style.

requesting and have privilege are Boolean variables. re-
questing indicates whether or not node � either wants to en-
ter or stays in its critical section, and have privilege indi-
cates whether or not node � owns the privilege. queue is
a queue of integers denoting node identifiers. It contains
identifiers of nodes that wait to enter their critical sections.
ln and rn are integer arrays of size � . ln[�] for each node
��	��
������������������� is the sequence number of the node
� ’s request granted most recently. rn records the largest
request number ever received from each one of the other
nodes. Node � uses rn[�] to generate the sequence numbers
of its own requests. For each node ��	��
������������������� , ini-
tially, requesting is false, have privilege is true if � �!� and
false otherwise, queue is empty, and ln[�] and rn[�] for each
�"	#�
������������������� are 0.

If node � wants to enter its critical section, it first calls
its own procedure P1, which first sets requesting to true. If

procedure P1;
begin
requesting := true;
if not have privilege then
begin

rn[�] := rn[�] + 1;
for all � in � 1,2,. . . , ���%$&���'� do
send request(� ,rn[�]) to node � ;

wait until privilege(queue,ln) is received;
have privilege := true

end;
Critical Section;
ln[�] := rn[�];
for all � in � 1,2,. . . , ���($)����� do

if not in(queue,�) and (rn[�] = ln[�] + 1) then
queue := put(queue,�);

if queue *� empty then
begin

have privilege := false;
send privilege(get(queue),ln) to node top(queue)

end;
requesting := false

end;

� requesting(� , +) is received; P2 is indivisible �
procedure P2;
begin
rn[�] := max(rn[�], +);
if have privilege and not requesting

and (rn[�] = ln[�] + 1) then
begin

have privilege := false;
send privilege(queue,ln) to node �

end
end;

Figure 1. The Suzuki-Kasami algorithm

it happens to own the privilege, it immediately enters the
critical section. Otherwise, it generates the next sequence
number, namely, incrementing rn[�], and sends the request
message request(� ,rn[�]) to all other nodes. When it receives
a privilege message privilege(queue,ln), it enters the criti-
cal section. When it finishes executing the critical section,
it sets ln[�] to its current sequence number rn[�], indicat-
ing that the current request has been granted, and updates
queue, namely that identifiers of nodes that want to en-
ter their critical sections and are not in the queue yet are
added to the queue. After that, if queue is not empty, node �
sets have privilege to false and sends the privilege message
privilege(get(queue),ln) to the node found in the front of the
queue, where get(queue) is the queue obtained by deleting

the top element from queue. Otherwise, node � keeps the
privilege. Finally node � sets requesting to false and leaves
procedure P1.

Whenever request(� , +) is delivered to node � , node � ex-
ecutes its own procedure P2. But, procedure P2 has to be
atomically executed. When node � executes procedure P2,
it sets rn[�] to + if + is greater than rn[�]. Then, if node
� owns the privilege, neither wants to enter nor stays in its
critical section, and the + th request of node � has not been
granted, that is, rn[�] = ln[�]+1, then it sets have privilege
to false and sends the privilege message privilege(queue,ln)
to node � .

4 Modeling SKDMXA

The algorithm is modeled as a transition system � ��� ��� ��	�
that consists of a set
 ��� ��� ��
� of variables, the initial con-
dition � ��� ��� ��
� and a set � ��� ��� ��
� of transitions. The way
of modeling the algorithm basically follows the one used in
[7]. A transition may involve a condition called the effective
condition. A transition can be executed only if the effective
condition holds.

 ��� ��� ��
� includes �����	���
��������� � corresponding to re-
questing, !�"$#$� %&�'��#(��)*�+���$� corresponding to have privilege,
�
���	��� � corresponding to queue,),� � corresponding to
ln, and �'� � corresponding to rn, for each node � 	
�
������������������� .
 ��� ��� ��
� also includes �.-	/ � corresponding
to � , %�0 � , which indicates which part of the algorithm node
� is about to execute, and ���21 354 �6���$� , which holds the
number of requests node � has made, for each node ��	
�
������������������� . In addition,
 ��� ��� ��
� includes variables de-
noting the network. How to model the network in SAL will
be described in the coming section.

Whenever node � executes procedure P1, the sequence
number �'�87 ��9 is incremented. Therefore, in order to make
the state space of the transition system � ��� ��� ��	� finite, the
number of requests made by each node � should be finite,
say :�� � ��� . ���21 3;4 �6���<� is used to allow node � to make
at most : requests.

� ��� ��� ��	� contains 13 transitions, which are ���'= � ,
�
�	� �6���<� , 0�!>��0�? %��'��#�� , ���&0 �6��� �&3@� , �
�	�&- �6���<� , AB"$��� %&�'��# � ,
�6/C��� � , 0�3$1D%&)*�	�E� �6���$� , �(%>-C"$�E� �
���	���(� , 0�!���0�? �
���	���(� ,
�F�6"@�>�G4
�	� %��'��# � , �6�
�
�	� �6���<� and �6��0��	��#<� �6���<� for each node
�(�
������������������� . The transitions exhaustively and exclu-
sively correspond to parts of the algorithm. The first 12
kinds of transitions are given labels (rem, l1, l2, l3, l4, ll5,
cs, l6, l7, l8, l9 and l10, respectively). %�0<� is set to one of
the labels.

We describe (1) the effective condition of each transi-
tion and (2) how the transition changes variables in
 ��� ��� ��	�
when the transition is applied; variables that the transition
does not change may not be described explicitly. For each

variable H , H and H I denote the values before and after a
transition, respectively.J ���'=C� : (1) %�0K� � rem. (2) If �L�21 3;4 �6���@�NMO: , then
%>0KI� � l1 and �L�21 3;4 ����� I� �P�L�21 354 �6���<�2Q&� , and other-
wise %�0KI� � rem and ���21 354 �6��� I� �R�L�21 3;4 ����� � .J �	�
� �6���<� : (1) %�0K� � l1. (2) %�0 I� � l2 and �6���
���
�'�F��� � I� �
true.J 0�!>��0�? %��'��#�� : (1) %>0K� � l2. (2) If !>"@#<� %��'��#K��)S�����@� � true,
then %�0KI� � cs, and otherwise %�0(I� � l3.J ���&0 �6��� �&3@� : (1) %>0K� � l3. (2) %�0 I� � l4, �'� I� 7 ��9 �R�'� � 7 ��96Q
� and �.-K/ I� � � .J �
�	�&- �6���<� : (1) %�0K� � l4. (2) If �.-K/ � � � , then %>0 I� � l5
and �.-K/ I� �R�.-K/ � , and otherwise %�0KI� � l4 and �.-	/ I� �T�.-	/ � Q
� . Besides, a request message with � and �'� � 7 �F9 is sent to
node �.-	/ � (is put into the network) unless �.-	/ � �&� .J AB"$��� %&�'��# � : (1) %�0	� � l5 and there exists a privilege
message with a queue U of integers and an integer array
LN of size � , whose destination is node � , in the network.
(2) %�0	I� � cs, !>"@#<� %��'��#K��)S����� I�"� true, �	���
���(I� �VU and
),� I� �XWZY . Besides, the privilege message is removed from
the network.J ��/C��� � : (1) %�0 � � cs. (2) %�0KI� � l6.J 0�3$1D%&)*�	�+� �����<� : (1) %�0	� � l6. (2) %>0KI� � l7,),� I�67 ��9 �P�'� � 7 ��9
and �.-	/ I� � � .J �(%>-C"$�E� �	���	���K� : (1) %>0K� � l7. (2) If �.-K/ � � � then
%>0KI� � l8 and �.-	/ I� �[�.-	/ � , and otherwise %�0KI� � l7 and
�.-	/ I� �T�.-	/ � Q � . If �'� � 7*�.-	/ � 9 �R),� � 7*�.-	/ � 9�Q � and �.-	/ � is not
in �
���	���(� , then �
���	��� I� � put �6�	���
���(�'�	�.-K/ � � , and otherwise
�
���	���(I� �\�	���	���K� .J 0�!>��0�? �	���	���K� : (1) %�0K� � l8. (2) If �	���	���(� is empty, then
%>0KI� � l10, and otherwise %�0KI� � l9.J ���6"$����4
�	� %&�'��# � : (1) %>0K� � l9. (2) %>0 I� � l10 and
!>"@#<� %��'��#K��)*�+��� I� � false. Besides, the privilege message
with get ���
���	���(� � and),� � is sent to node top �6�	���	���(� � .J �6�
�	�
� �����<� : (1) %>0K� � l10. (2) %�0KI� � rem and
�6���
���
�'�F��� � I� � false.J �6��0��
��#$� �6���<� : (1) There exists a request message with
�%� *� � � and + in the network, whose destination is node � .
(2) �'��I� 7 �]9 � max �;�'� � 7 �]9 �'+ � . Let ^ be !�"$#$� %&�'��#(��)*�+��� �Z_` �6���
���
�'�F��� � � _ �'��I� 7 �]9 �),� � 7 �]9aQ � . If ^ is true,
then !�"$#$� %&�'��#(��)*�+�C� I� � false and the privilege message
with �
���	��� � and),� � is sent to node + , and otherwise
!>"@#<� %��'��#K��)*�+��� I� �b!�"$#$� %&�'��#(��)*�+�C�@� . Besides, the request
message is removed from the network.

� ��� ��� ��
� is that �6���
���
�'�F��� ��� is false, !�"$#$� %&�'��#(��)*�+�C�@� is
true if � � � and false otherwise, �
���	��� � is empty, each
element of),� � is 0, each element of �'� � is 0, �.-	/ � is 1, %>0K�
is rem and �L�21 3;4 �����@� is 0 for each � 	 � ����� ���������'� � .
In addition, variables denoting the network are set to values
denoting the empty network.

5. Specification of �
��� ��� ��	� in SAL

We describe how to specify � ��� ��� ��
� in SAL, specifically
how to encode queues in more basic types, how to model
the network and how to specify the behavior of each node.

5.1. Encoding Queues

Since recursive data types cannot be used in SAL spec-
ifications to be model checked, queues should be encoded
in more basic types. Arrays and integers are used to encode
queues. Type Queue is declared as a record type whose
fields are data and tl as follows:

Queue: TYPE =
[# data: ARRAY Queue_Idx OF Node_Id,

tl: Queue_Idx #];

Types Node_Id and Queue_Idx are declared as bounded
integers [1..N] and [0..(L+1)], respectively. N is the
number of nodes involved in the algorithm and L is the ca-
pacity of each queue.

Given an instance q of Queue, the L spaces from
q.data[1] to q.data[L] are used to store queue ele-
ments; q.data[1] is always the top element of the queue
if the queue is not empty; q.tl points the space where an
element will be put next if the queue is not full and therefore
q.data[q.tl - 1] is always the last element of the
queue if the queue is not empty. We declare 9 functions re-
lated to Queue, which are new empty queue returning
the empty queue, full? checking if a given queue is full,
empty? checking if a given queue is empty, in? checking
if a given queue includes a given element, in aux? that is
an auxiliary function for in?, top returning the top ele-
ment of a given queue, put returning the queue obtained
by putting a given element into a given queue at the end,
get returning the queue obtained by deleting the top ele-
ment of a given queue, and get aux that is an auxiliary
function for get.

In this paper, we only show the definitions of in aux?,
in?, get aux and get:

in_aux?(queue : Queue, node : Node_Id,
i : Queue_Idx): BOOLEAN =

IF i = L+1 THEN false
ELSIF queue.data[i] = node

THEN i < queue.tl
ELSE in_aux?(queue, node, i+1)
ENDIF;

in?(queue : Queue,
node : Node_Id): BOOLEAN =

in_aux?(queue, node, 1);

get_aux(queue : Queue,
i : Queue_Idx): Queue =

IF i = L+1
THEN queue WITH .tl := (queue.tl - 1)
ELSE get_aux(queue WITH .data[i] :=

queue.data[i+1], i+1)
ENDIF;

get(queue : Queue): Queue =
IF empty?(queue)
THEN queue ELSE get_aux(queue, 1) ENDIF;

Given an array
 , an index � and a value H , the expression

 WITH � ��� � H denotes the array obtained by assigning H
to the � th place of
 .

In order to use a function in a SAL specification to be
model checked, SAL must be able to prove the function ter-
minating. If a function has a conditional choice (IF THEN
ELSE ENDIF) statement whose condition is
 ��� such
that both
 and � include variables whose values can be de-
termined only at runtime, then SAL cannot be able to prove
the function terminating. Therefore, SAL cannot prove
the following definition of in aux? (which seems more
straightforward than that shown above) terminating:

in_aux?(queue : Queue, node : Node_Id,
i : Queue_Idx): BOOLEAN =

IF i = queue.tl THEN false
ELSIF queue.data[i] = node THEN true
ELSE in_aux?(queue, node, i+1)
ENDIF;

In the first definition of in aux?, since the value of L is
given in advance and is not mutable, the value of L+1 can
be determined statically.

5.2. Modeling the Network

For each kind of message and each ordered � ��� � � pair of
nodes, we use a cell with which node � sends to node � one
message of this kind. For each kind of message, we then
use an array whose elements are arrays of messages of this
kind. Since there are two kinds of messages, request and
privilege messages, we use two such arrays to model the
network.

In a module called node where the behavior of each
node is written, we use two global variables reqmedium
and privmedium to denote the network. The type of
reqmedium is

ARRAY Node_Id OF ARRAY Node_Id OF ReqMsg

reqmedium[i][j] denotes the cell with which node
i sends a request message to node j. The type of
privmedium is

ARRAY Node_Id OF ARRAY Node_Id OF PrivMsg

privmedium[i][j] denotes the cell with which node i
sends a privilege message to node j.

Types ReqMsg and PrivMsg denote cells with which
messages are transferred. ReqMsg is declared as follows:

[# new: BOOLEAN, req: Request #]

PrivMsg is declared as follows:

send_req:
pc = l4 --> pc’ = IF idx = N THEN l5 ELSE l4 ENDIF;

reqmedium’[i][idx]
= (# new := true,

req := (# node := i, no := rn[i] #) #);
idx’ = IF idx = N THEN idx ELSE idx + 1 ENDIF

([] (j : Node_Id):
receive_req:

reqmedium[j][i].new AND NOT(j = i)
--> reqmedium’[j][i] = (# new := false,

req := (# node := 1, no := 0 #) #);
rn’[j] = IF rn[j] < reqmedium[j][i].req.no

THEN reqmedium[j][i].req.no
ELSE rn[j] ENDIF;

have_privilege’
= IF have_privilege AND NOT(requesting) AND rn’[j] = ln[j] + 1

THEN false ELSE have_privilege ENDIF;
privmedium’[i][j]
= IF have_privilege AND NOT(requesting) AND rn’[j] = ln[j] + 1

THEN (# new := true,
priv := (# queue := queue, done := ln #) #)

ELSE privmedium[i][j] ENDIF)

Figure 2. Guarded commands corresponding to �
�	�&- �����]� and �6��0��
��#$� �6���<�
mutex: THEOREM

system |- G(FORALL (i : Node_Id, j : Node_Id):
(pc[i] = cs AND pc[j] = cs) => (i = j));

lofree: THEOREM
system |- (FORALL (i : Node_Id, j : Node_Id):

G((G(pc[i] = l5 AND
(EXISTS (k : Node_Id):

privmedium[k][i].new AND NOT(k = i)))
=> F(pc[i] = cs)) AND

(G(reqmedium[i][j].new) => F(NOT(reqmedium[i][j].new))))
=> G(pc[i] = l5 => F(pc[i] = cs)));

Figure 3. Assertions for the mutual exclusion and lockout freedom properties

[# new: BOOLEAN, priv: Privilege #]

For each record type, the second field holds a message to be
transferred, and the first field indicates whether or not the
cell contains a message.

Types Request and Privilege denote request and
privilege messages, respectively. Request is declared as

[# node: Node_Id, no: Bnat #]

Privilege is declared as

[# queue: Queue,
done: ARRAY Node_Id OF Bnat #]

Type Bnat is [0..M] and M is the number of requests
made by each node.

5.3. Specifying the Behavior of each Node

The behavior of each node is written in module node,
which has a parameter i whose type is Node Id. In ad-
dition to the two global variables representing the network,

namely reqmedium and privmedium, the following lo-
cal variables are declared: requesting whose type is
BOOLEAN, have privilege whose type is BOOLEAN,
rnwhose type is ARRAY Node Id OF Bnat, lnwhose
type is ARRAY Node Id OF Bnat, queue whose type
is Queue, idx whose type is Node Id, pc whose type is
Label, where Type Label is an enumeration type whose
values correspond to the 12 labels such as rem and l1, and
num of req whose type is Bnat. The variables corre-
spond to �6���	���'�'������� � , !>"@#<� %��'��#K��)*�+��� � , �'� � ,),� � , �
���	��� � ,
�.-	/ � , %>0K� and ���21 354 �6��� of transition system � ��� ��� ��	� de-
scribed in Sect.4, respectively. The variables are initialized
as described in Sect.4.

The 13 transitions described in Sect.4 are written using
guarded commands. A guarded command is in the form
WZ"����
) : � ��"$�6- --> ���D��0	� , where Label is the label given
to the guarded command, which is an option, � ��"$�6- is the
condition, of the guard of the guarded command, and ���D��0
�
is the effects (i.e. how to change the values of variables)

of the guarded command. The guarded commands cor-
responding to the 13 transitions are asynchronously com-
posed to specify the behavior of each node as follows

W " ���) � : � ��"@�6- � --> ���D��0
� �
7E9[W " ���)�� : � ��"@�6-�� --> ���D��0
� �

�����
7E9[W " ���) �	� : � ��"$�6- �	� --> ���D��0	� �	�

Some transition is written as multiple guarded commands
that are asynchronously composed as follows:

�;759 � � �
 � � W : ��� --> �
��� ,

which is equivalent to

W : � � --> � � 759
�����K759GW : � � --> � � ,

where

is 7 �
� �'� 9 .
Figure 2 shows the guarded commands corresponding to

�
�	�&- �����@� and �6��0��
��#$� �6���<� . �6��0��
��#$� �6���<� is written as N
guarded commands. The remaining transitions are written
using guarded commands likewise.

Instances of module node are asynchronously com-
posed to obtain the SAL specification of � ��� ��� ��	� , which
is written as follows:

system: MODULE
= ([] (i : Node_Id): node[i])}.

6. Model Checking �
� � � � ��	�

By having each of N, L and M fixed, say 2, we use SMC
to check if � � � � � ��	� has the mutual exclusion property and
the lockout freedom property. The properties are written
as the assertions labeled mutex and lofree, respectively,
shown in Fig. 3. G and F are LTL temporal operators Hence-
forth (Always) and Eventually, respectively. We use the as-
sumption that weak fairness is given to each of wait priv
and receive req transitions to check the lockout free-
dom property. SMC concludes that mutex holds for � � � � � ��	� ,
namely system such that
)�!� , : � � and � � � , but
presents a counterexample to lofree.

A counterexample generated by a SAL model checker
is composed of two lists � and
 of pairs, each of which
consists of a state (assignments to system variables) and the
label of the guarded command applied to reach the state of
the next pair. The next of the last pair of � is the first of

 and the next of the last pair of
 is the first of
 . �
corresponds to a finite path beginning in an initial state and
leading to a loop represented by
 . The loop represents a
state or a transition sequence that violates a given formula.

Figure 4 shows an excerpted counterexample to the lock-
out freedom generated by SMC. The counterexample says

Counterexample:
========================
Path
========================
Step 0:
--- System Variables (assignments) ---
... pc[1] = rem; pc[2] = rem; ...

Transition ... i = 1 ... try ...

Step 1:
--- System Variables (assignments) ---
... pc[1] = l1; pc[2] = rem; ...

Transition ... i = 1 ... set_req ...

...
Step 23:
--- System Variables (assignments) ---
... pc[1] = l10; pc[2] = l5; ...

Transition ... i = 1 ... receive_req ...

Step 24:
--- System Variables (assignments) ---
... pc[1] = l10; pc[2] = l5; ...

Transition ... i = 1 ... reset_req ...

Step 25:
--- System Variables (assignments) ---
... pc[1] = rem; pc[2] = l5; ...
========================
Begin of Cycle
========================
Step 25:
--- System Variables (assignments) ---
... pc[1] = rem; pc[2] = l5; ...

Transition ... i = 1 ... try ...

Step 26:
--- System Variables (assignments) ---
... pc[1] = rem; pc[2] = l5; ...

Figure 4. An excerpted counterexample to the
lockout freedom

that if node 1 receives a request message from node 2 at
l10, then node 2 may have to wait for a privilege message
forever at l5. When node 1 receives a request message
from node 2 at l10, node 1 does not transfer the privilege
to node 2 because its requesting is true. If node 1 will
not execute procedure P1 anymore, node 1 will never trans-
fer the privilege to node2 and node 2 will wait for a privilege
message forever.

The counterexample suggests that each node should not
receive any request messages at l10. Therefore, the condi-
tion NOT(pc = l10) is added to the guard of receive.
But this is not sufficient. Two more performances of
model checking have us notice that NOT(pc = l8) and
NOT(pc = l7) should also be added to the guard. SMC

lemma1: LEMMA
system |- G(FORALL (i : Node_Id):

((pc[i] = l2) => requesting[i]) AND
((pc[i] = l3) => requesting[i]) AND
((pc[i] = l4) => requesting[i]) AND
((pc[i] = l5) => requesting[i]) AND
((pc[i] = cs) => (requesting[i] AND have_privilege[i])) AND
((pc[i] = l6) => (requesting[i] AND have_privilege[i])) AND
((pc[i] = l7) => (requesting[i] AND have_privilege[i])) AND
((pc[i] = l8) => (requesting[i] AND have_privilege[i])) AND
((pc[i] = l9) => (requesting[i] AND have_privilege[i])));

lemma2: LEMMA
system |- G(FORALL (i : Node_Id, j : Node_Id, k : Node_Id, l : Node_Id):

((have_privilege[i] AND have_privilege[j]) => (i = j)) AND
(have_privilege[i] => NOT(privmedium[j][k].new)) AND
((privmedium[i][j].new AND privmedium[k][l].new)

=> (i = k AND j = l)));

Figure 5. Lemmas

finally concludes that both mutex and lofree hold for
the revised � � � � � ��
� .

7. Verification of �
� � � � ��	� with

�
-induction

In � ��� ��� ��
� analyzed with SMC, we made the number :
of requests made by each node finite to make the state space
of � ��� ��� ��
� finite. We relax the restriction, namely allowing
each node to make an arbitrary number of requests. Let
such � ��� ��� ��
� is represented by � ��� ��� ��	� . infBMC can be
used to analyze � ��� ��� ��
� whose (even reachable) state space
is infinite. Let both of
 and � be 2.

The property to be analyzed is the mutual exclusion
property. We can use infBMC to search for a counterex-
ample to mutex no longer than some specified depth, say
10. infBMC concludes that there are no counterexamples in
the specified range.

We can also use infBMC to verify that � � � ��� ��
� has the
mutual exclusion property with

�
-induction. To this end,

first we should verify that two lemmas hold for � � � ��� ��
� .
The first lemma is written as the assertion labeled lemma1
shown in Fig.5. infBMC can verify that lemma1 holds for
� � � ��� ��
� with 1-induction. The second lemma is written as
the assertion labeled lemma2 shown in Fig.5. infBMC can
verify that lemma2 holds for � � � ��� ��
� with 1-induction us-
ing lemma1 as a lemma. Using the two lemmas, infBMC
can verify that mutex holds for � � � ��� ��
� with 1-induction.

The structure of the verification with
�

-induction would
be useful when we verify that the infinite model involving
an arbitrary number of nodes has the mutual exclusion prop-
erty with a theorem prover such as PVS[8]. In other words,
we would need the two lemmas to verify that � ��� ��� ��	� in-
volving an arbitrary number � of nodes has the property.
Actually, when we verified it in a semi-formal way[7], we
used two lemmas that were almost the same as lemma1 and

lemma2.

8. Conclusion

We reported on a case study in which SAL model check-
ers, precisely SMC and infBMC, have been used to analyze
the Suzuki-Kasami algorithm with respect to the mutual ex-
clusion property and the lockout freedom property. In the
case study, we have found out one possible modification
that makes the algorithm lockout free even if some nodes
try to enter their critical sections only finitely often.

References

[1] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar,
M. Sorea, and A. Tiwari. SAL 2. In 16th CAV, LNCS 3114,
pages 496–500. Springer, 2004.

[2] L. de Moura, S. Owre, and N. Shankar. The SAL language
manual. CSL Technical Report SRI-CSL-01-02 (Rev. 2), Au-
gust 2003.

[3] L. de Moura, H. Rueß, and M. Sorea. Bounded model check-
ing and induction: From refutation to verification. In 15th
CAV, LNCS 2392, pages 14–26. Springer, 2003.

[4] J. Edmund M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 2001.

[5] J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: inte-
grated canonizer and solver. In 13th CAV, LNCS 2102, pages
246–249. Springer, 2001.

[6] G. J. Holzmann. The SPIN Model Checker – Primer and Ref-
erence Manual. Addison-Wesley, 2004.

[7] K. Ogata and K. Futatsugi. Formal analysis of Suzuki&Kasa-
mi distributed mutual exclusion algorithm. In 5th FMOODS,
pages 181–195. Kluwer, 2002.

[8] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype
verification system. In 11th CADE, LNAI 607, pages 748–
752. Springer, 1992.

[9] I. Suzuki and T. Kasami. A distributed mutual exclusion al-
gorithm. ACM TOCS, 3(4):344–349, 1985.

