Design and Implementation of a Local Scheduling System with Advance
Reservation for Co-allocation on the Grid

Hidemoto Nakada, Atsuko Takefusa, Katsuhiko Ookubo, Makoto Kishimoto
Tomohiro Kudoh, Yoshio Tanaka, Satoshi Sekiguchi

National Institute of Advanced Industrial Science and Technology (AIST)
Grid Technology Research Center
1-18-13 Sotokanda, Chiyoda-ku, Tokyo, 1010021, Japan,
{hide-nakada, atsuko.takefusa, kisimoto.m, ookubo-k, t.kudoh, yoshio.tanaka, s.sekiguchi} @aist.go.jp

Abstract

While advance reservation is an essential capability for
co-allocating several resources on Grid environments, it is
not obvious how it can co-exist with priority-based First
Come First Served scheduling, that is widely used as lo-
cal scheduling policy today. To investigate this problem,
we 1) developed a scheduling API in Java for TORQUE, a
variant of OpenPBS, that enables users to implement their
own schedulers and replace the original scheduling module
with them, 2) implemented a prototype scheduler module
that has advance reservation capability with the API. We
also provide an external interface for the reservation capa-
bility based on WSRF to enable co-allocation of resources
over the Grid. Using this interface with the job submission
module from Globus toolkit 4, users can make reservation
for resources and submit jobs over the Grid.

Keywords: Grid, Advance Reservation, Scheduling,
Batch Queuing System, Web Services Resource Framework

1 Introduction

One of the goals of Grid computing is to perform huge
computation using numerous resources distributed on the
network, simultaneously [13]. While there have been lots
of experimental runs with resources from several sites[11],
the resources are allocated by the human administrator via
phones, e-mails, or faxes. They are just ’experiments’, not
the daily operations. To bring the huge computation with
multi-site managed resources into reality, we really need to
have fully-automated co-allocation mechanism.

To co-allocate computational resources, advance reser-
vation capability is required for each local resource sched-

uler. A global scheduler (often mentioned as ’Super Sched-
uler’) will find commonly available timeslot for all the
required resources and make advance reservation on the
timeslot, making sure that all the resources will be available
for the time[14].

Advance reservation capability is supported by several
local schedulers. To have advance reservation itself is rela-
tively easy, but the problem is that each local site has its lo-
cal users who expect queuing and priority based scheduling
for their job. We do not know how to make the reservation
based scheduling and the queuing based one consistent.

To study the problem, we need a scheduler that is capa-
ble of advance reservation and can be modified easily, as
a study testbed. The problem here is that there is no such
scheduler that is freely available, easily modifiable and re-
distributable.

Although some commercial scheduling systems, such as
LSF[4] or PBS Professional[7] provide advance reservation
capability, they are not for free and cannot be redistributed
and modified. Maui scheduler[5] is a plug-in scheduler for
OpenPBS[6] or TORQUE[S] that provides various features
including advance reservation. The source code for the
scheduler is freely available but the modified source code
cannot be redistributed. Further more, the internal architec-
ture is not well-defined and it is difficult for the third-party
to modify the scheduling policy of Maui.

We implemented a scheduling module that enables ad-
vance reservation working with TORQUEJ8], a descendant
of OpenPBS, We designed and implemented a Java API that
abstracts the TORQUE server module, and implemented the
scheduling module using the APIL.

We also designed and implemented an interface to pro-
vide the reservation service via network, basing on WSRF
(Web Services Resource Framework)[9]. The interface
provides authentication and authorization based on Globus

Head Node

Scheduler
Module

Compute
Node

Compute
Node

Compute
Node

Figure 1. Overview of TORQUE.

Toolkit ver. 4[2, 12] and enables resource reservation and
job execution on the Grid in secure manner working with
GRAM, a job submission framework provided by Globus
Toolkit.

The structure of the rest of paper is as follows. In 2,
we introduce TORQUE local scheduler. In 3, we describe
the design and implementation of the scheduler. In 4, we
discuss on the WSRF based reservation service and GT4
GRAM interaction. In 5, we show results of preliminary
evaluation. In 6, we conclude the paper showing future
work.

2 Overview of TORQUE
2.1 Architecture of TORQUE

TORQUE is a variant of OpenPBS, an open source
batch scheduling system. While the OpenPBS maintenance
stopped for years, TORQUE is still well maintained by a
company called CLUSTER RESOURCES INC. Under the
license agreement, source modification and redistribution of
the code are allowed.

TORQUE has following 3 modules(figure 1).

e PBS Server: The central server of the whole system.
One PBS pool has just one PBS Server. This mod-
ule takes job queuing requests from users and manages
the job queue. It manages the status of all the com-
pute nodes communicating with the PBS mom on each
node.

e Scheduler Module: This module is responsible for re-
source allocation for each job. This makes a pair with
the PBS Server and often runs on the same machine
with it. Just like PBS Server, the scheduler module is
just one for one PBS pool.

When an event occurs, such as job submission or
job termination, the PBS Server sends trigger to the
scheduling Module. The scheduling module queries
status of the job queue and the nodes, decides what job
run on which node, and orders PBS Server to perform
the decided operation.

e PBS mom: This module manages each compute node.
It monitors status of the node and reports it to the PBS

(6)Authenticates
ConnectionA

(5)Connects to
E the PBS Server
. via privileged port
Privileged port
(2) qsub process (pbsiff]

connects to
the PBS Server ﬁ(iﬁ) fork, exec
{ gsub J

(1)A user executes ‘qsub’

‘ PBS Server

Figure 2. Authentication in TORQUE.

Server. It is also capable of job invocation and process
management of the job.

2.2 User authentication in TORQUE

The PBS Server operates responding requests from
users. When it receives requests, proper authentication has
to be performed. PBS server authentication process is as
follows.

1. A user executes queuing command, such as ’qsub’.

2. The command program connects to the PBS Server
with a socket connection, shown connection A in fig-
ure 2. As of this time, the connection is NOT authen-
ticated, and the request through the connection will be
refused.

3. The command program forks and execs a program
called ’pbs_iff’, that has setuid flag and owned by root.
It means that the program will run with root privilege.
Pbs_iff is given the file descriptor number for the con-
nection A.

4. Pbs_iff get the port number of connection A, from the
given file descriptor number. Then, it get real user id
to know who did invoke the original command. Note
that the effective user id will be root here, but the real
user id will be kept as the invoking user.

5. Pbs_iff connects to the PBS Server from privileged port
(connection B in figure 2) and sends the port number
and the user name.

6. PBS Server now can trust the Pbs_iff, because it comes
from privileged port, and authenticate the user who is
on the other peer on the connection A.

2.3 TORQUE customization

TORQUE scheduler module can be easily customized to
a certain extent with a simple customization language called
BaSL(Batch Scheduling Language). Although BaSL pro-
vides basic functionalities to manage job allocation based

Head Node

Reservation
commands

Queue management
commands
pbs_cancel,

qsub,qdel,
gstat pbs_modify

Scheduler

Figure 3. Overview of the proposed system.

pbs_reserve,

on queue and nodes status, the simplicity of BaSL restricts
the ability. The scheduler module also can be customized by
writing scheduling routine in C. While you can do anything
you want with this way, it is really hard to do since there is
no well-defined API and requires detailed knowledge of the
implementation of the scheduling module.

Another possibility to customize the scheduling is to re-
place the whole scheduler module. The scheduler module
and the PBS server communicate each other with a rela-
tively simple text-based protocol. The Maui scheduler is
replacing the original scheduler, talking the protocol

We employed the last approach and replace the whole
scheduler with our own Java written scheduler. Also, we
implemented an API that provides functions to get queue
and node status from the PBS server and perform opera-
tions on jobs, to make it easy to implement and try possible
scheduling policies.

3 Design and Implementation of Scheduler
Module

3.1 The proposed system

We define an API to implement scheduling policies in
Java, and implement a scheduling module that is capable of
advance reservation, with the API. The Scheduler module
maintains reservation table to manage reservation entries.
Each reservation entry keeps a unique reservation ID, reser-
vation start time, end time, number of nodes, and reserved
nodes.

While job management commands such as gsub commu-
nicate with PBS Server, reservation related commands have
to communicate with the scheduling module. For the com-
munication, we implemented an interface using Java RMI
on the scheduling module. Figure 3 shows the overview of
the system.

The scheduling module allocates and returns a unique
ID for each reservation request. User specifies the
timeslot when a job should be executed by speci-
fying the reservation ID as an optional argument to
the submit command. The specified reservation ID
is stored as an extra attribute of the job and passed

public interface PBSInterface({
void setSocket (Socket socket);
Socket getSocket();
void authenticateUser(String userName,

int localPort);
void disconnect();
ServerStatus statusServer();
BatchReplyStatusNode statusNode() ;

BatchReplyStatusQueue statusQueue();
BatchReplyStatusSelect selectStatus(
String queueName) ;

(String jobId,

String destination);

(String jobId,

Collection<NodeInfo> nodes);

void deletedob(String jobId);

void holdJob (String jobId,
HoldJobType holdType);

void rerundob (String jobId);

void modifyJob(String jobId,

String attr,

String value);

void runJob

void runJob

Figure 4. PBSInterface.

to the scheduler module along with the job, like follows.

gsub -W x=rsvid:XXXXXXX

The scheduler module looks up the reservation time table
with the ID and when it finds that the reservation time has
come it allocates reserved nodes to the job and execute the
job.

The reservation timetable has to be persistent, since it has
to survive crashes and reboots of the PBS head node. We
use an object database written in Java, called db4objects[1].
Thanks to the simple interface provided by db4objects, im-
plementation was really easy, compared with writing it with
JDBC and RDB.

3.2 Overview of the Scheduling API

To make it easy to implements scheduling policies with
Java, we provide an API. In figure 4, we show the primal
interface of the API, PBSInterface. This interface is an ab-
straction of the PBS server and provides methods to get in-
formation from PBS Servers, such as node and queue status,
and methods to operate jobs, such as job execution, removal
and stop. Figure 5 shows a simple FIFO scheduler with
the API, demonstrating the easiness of implementation of
scheduling policy with the API.

3.3 Command Line Interface for reservation

Table 1 shows command to handle reservation. The com-
mands are implemented as shell scripts that invoke corre-
sponding Java programs. The Java programs communicate
with the scheduling module with Java RMI(Remote Method
Invocation). The scheduling module has to authenticate
the user who invoke the commands. We enabled this by
implementing customized ServerSocket and Socket classes
and modifying the RMI SocketFactory. For authentication
mechanism, we employed the technique described in 2.2.

public class SimpleFifoScheduler ({
public static void main(String[] args) {

// start scheduling server
PBSServerConfig servConf =

new PBSServerConfig();
ScheduleStarter starter =

new ScheduleStarter(servConf);
PBSInterface pbs = new TorqueImpl();

// get scheduling order, and run
ScheduleOrder order;
PBSSchedulerCommandType cmd =
PBSSchedulerCommandType.NULL;
do {
order = starter.waitOrder();
Socket socket = order.getPBSServerSocket();
pbs.setSocket (socket);
cmd = order.getSchedulerCommand() ;

if (cmd.mustRunSchedule()) {
try {
schedule(pbs) ;
} catch (PBSException e) {}

socket.close();
} while (cmd!=PBSSchedulerCommandType.QUIT) ;
}

private static void schedule(PBSInterface pbs)
throws PBSException ({
ServerStatus server = pbs.statusServer();
if (!server.isReadyToUse() |
server.getQueuedJobs() == 0)
return; // no jobs to schedule
Collection<NodeStatus> nodes =
pbs.statusNode().getAllStatus();
for (QueueStatus queue : pbs.statusQueue()) {
if (!queue.isReadyToRun() ||
queue.getQueuedJobs() == 0)
continue; // no jobs to run

for (JobStatus job :

pbs.selectStatus(queue.getName())) {

if (!job.isReadyToRun())
continue; // cannot run now

for (NodeStatus node : nodes) {
if (!job.isRunnableOn(node))

continue; // node is down

String jobId = job.getJobId();
String destination = node.getName() ;
pbs.modifyJob(jobId, "comment",

"Job started on " + new Date());
pbs.rundob(jobId, destination);
return;

Figure 5. A Simple FIFO Scheduler imple-
mented in the Proposed API.

4 WSREF based interface for advance reser-
vation

To enable co-allocation over several sites, we have
to have an inter-site advance reservation interface. We
designed and implemented a interface based on WSRF
(Web Service Resource Framework) with Globus Toolkit 4
(GT4), that is a de facto standard in Grid.

WSREF is a standard being specified in OASIS, one of
the international standard bodies in the Web Services field.
While Web Services does not have status in general, WSRF
introduce status as ’resources’ of services. GT4 provides
not only WSRF implementation but also several compo-
nents implemented on WSREF, including GRAM service for
invoking jobs, and MDS service for gathering and publish-
ing information.

Reservation
GRAM ID

Reservation

Client Command

Client Command

J L Head Node J L

Reservation Commands

Queue management
commands

Scheduler
PBS Serve

Figure 6. Integration with GT4.

We implemented reservation service based on WSRF
with GT4. Using the service and GRAM mentioned above,
we enabled authenticated and authorized reservation and
execution of jobs on the Grid.

4.1 The design of the reservation service based on
WSRF

We implemented two services, one is PBSReservation
that stands for one reservation, and PBSReservationFacto-
ryService, that creates the PBSReservation, based on the
factory service design pattern, that is commonly used in
WSRE. Table 2 shows operations for these services.

The PBSReservationFactoryService is a factory service
that has just one operation; ’createPBSReservation’ to cre-
ate the PBSReservation service and return the reference
to the service (EPR: End Point Reference). Note that al-
though the operation takes parameters to make reservation
and stores it to the PBSReservation service, it just creates
the service and does not actually make reservation.

The PBSReservation service has 4 operations, that are
corresponds to the reservation commands shown in table 1,
and actually, invokes the commands on the server. These
operations do not have output. All the outcomes from the
invocation of commands will be reflected to the resource
properties shown below.

Table 3 shows resource properties for the PBSResrva-
tion. When operations are invoked on a PBSReservation,
corresponding reservation commands will be performed on
the server side. The commands will update the resource
properties when they finish.

4.2 Authentication and authorization for the
reservation service

The reservation service has to identify the user who made
request and map him/her into a local user. We implemented
this so that it is compliant with the GT4 GRAM service;
i.e. we use PKI base X.509 certificate to authenticate the

Table 1. Reservation Commands.

Command Name | Function | Input | Output
pbs_reserve make reservation [-R SCHEDULER _HOST] -s START_TIME RESERVATION_ID
-¢ END_TIME -n NUM_OF_NODES
pbs_rsvcancel cancel reservation [-R SCHEDULER_HOST] -r RESERVATION.ID
pbs_rsvmodify modify reservation [-R SCHEDULER.HOST] -r RESERVATION.ID
[-s START_TIME] [-e END_TIME]
[-n NUM_OF_NODES]
pbs_rsvstatus show reservation status | [-R SCHEDULER_HOST] [-r RESERVATION.ID] | RESERVATION_STATUS
Table 2. Reservation operations.
Operation Name | Function | Input | Output

PBSReservationFactoryService

createPBSReservation |

create PBSReservation service | start/end time, No. of Nodes | EPR of the created service

PBSReservation
reserve make reservation N/A N/A
getStatus renew the status N/A N/A
cancel cancel reservation N/A N/A
modify modify reservation start/end time, No. of Nodes | N/A

Table 3. Resource property of PBSReserva-
tion.

Prop. Name | Meaning
StartTime Reservation Start Time
EndTime Reservation End Time
NodeNum No. of Reserved Nodes
Caller Distinguished Name on the Cert.
LocalUsername | Local user name on the site
Reserveld Reservation ID
ResultStatus Command Result
ResultStdout Command stdout
ResultStderr Command stdin
IsBusy Command exec. status

incoming user and map the distinguished name on cert into
local user using a mapping file, called grid-mapfile.

4.3 Working with GRAM

GRAM is a job submission interface provided by Globus
toolkit. GRAM uses modules called Job Managers that is
written in Perl, to submit a job into backend batch queuing
system, such as TORQUE.

To submit a job at the reservation time, the qsub’ com-
mand has to receive the reservation ID from the upstream
module. To enable this, we used GRAM RSL extension
mechanism that provides a generic way to pass extra infor-
mation to the Job Manager. '

We leveraged this extension mechanism and
slightly modified the Job Manager for TORQUE, so

'As of now, the latest release of the Globus Toolkit (4.0.2) does not
includes this capability and administrators have to install update packages
to have this. It will be included in the next release.

that it takes RSL with extension entry shown be-
low and pass the reservation ID to ’qsub’ command.

<extensions>

<schedulerAttrs name="reservationID">
HAXXXHXXXKXKX

</schedulerAttrs>
</extensions>

4.4 Advance reservation and execution via GT4
container

The following shows the steps to execute a job with ad-
vance reservation.

1. A client creates a PBSReservation service providing
reservation timeframe and number of nodes, and gets
an EPR for the service.

2. The client invokes operation ’reserve’ on the EPR.

3. The client gets resource properties from the EPR to
make sure that the reservation successfully completed.

4. The client gets reservation ID from the ReservationID
resource property. reservation ID.

5. The client submits a job using GRAM client program
with an RSL that embed the reservation ID in it.

S Preliminary Evaluation

As a basic data of the proposed scheduler and the reser-
vation service, we conducted a measurement for some basic
reservation operations with 1) direct access through com-
mand line programs, 2) indirect access via the reservation
service. Note that the reservation service is using the com-
mand line programs behind the scene.

Table 4. Reservation operations latency.
|| reserve [s] | cancel [s]
Direct Access 0.78 0.68
Via GT4 container 1.7 1.3

The testing set-up is as follows. We used a PC with dual
Pentium III 1.4 GHz, 2Gbytes. All the participating com-
ponents; service client, service container, PBS scheduling
module, are all on the PC. We measured time spent to make
reservation, and cancel it.

Table 4 shows the result of the measurement. Even with
the direct access, it takes almost one second. We have in-
vestigated the reason and found that most of time is spent to
load (and JIT compile) Java library modules.

The reservation service with GT4 container is posing ex-
tra half to one second. This is due to the authentication and
authorization by the container.

The implication of these numbers varies depending on
the usage of the service. It might be considered fast enough
for one-shot reservation. It might be too slow if the co-
allocation protocol requires multiple reserve/cancel opera-
tions on each resource.

6 Conclusions

We have designed and implemented a scheduler module
as a testbed to study scheduling policies based on queuing
based system with advance reservation. We provide easy
to use API for the scheduler module and implemented ad-
vance reservation capability. Furthermore, we designed an
external interface for advance reservation based on WSRF
with GT4, that enabled reservation based job submission on
a Grid, coordinated with GT4 GRAM.

The followings are our future work.

¢ Grid Engine support: We are now implementing a
version that works with GridEngine[3]. The goal for
this is that one scheduling policy written in Java API
works with both TORQUE and GridEngine.

o Study of scheduling policy: In the current implemen-
tation, the reserved jobs are always have higher prior-
ity than the usual jobs, i.e. when the reservation time
comes, the jobs already running on the reserved nodes
will be just preempted. And there is no priority con-
cept for making reservation. All the reservations from
valid users will be accepted in First Come First Served
base. It means one user can occupy all the resources
forever by making a bunch of reservations. Obviously,
this is not acceptable for the real usage. We will study
this issue to find acceptable allocation policy for users
and administrators.

e Deployment and Operation in the real environ-
ment: We are planning to deploy this framework with
our super scheduler [14] on the PRAGMA[10] testbed
to provide inter cite co-allocation for them. With the
feedback from real operation experience, we will im-
prove the software and scheduling policy.

Acknowledgement

This work is partly funded by the Science and Technol-
ogy Promotion Program’s ”"Optical Paths Network Provi-
sioning based on Grid Technologies” of MEXT, Japan.

References

[1] db4objects. http://www.db4o.com/.

[2] Globus project. http://www.globus.org.

[3] Grid Engine. http://gridengine.sunsource.net.

[4] LSF. http://www.platform.com/Products/-
Platform.LSF.Family/.

[5] Maui cluster scheduler. http://www.clusterresources.-
com/pages/products/maui-cluster-scheduler.php.

[6] OpenPBS. http://www.openpbs.org/.

[7] PBS Professional. http://www.altair.com/software/pbspro.htm.

[8] TORQUE Resource Manager. http://www.-
clusterresources.com/pages/products/torque-resource-
manager.php.

[9] WSREF. http://www.oasis-open.org/committees
/tc_home.php?wg_abbrev=wsrf.

[10] P. Arzberger and P. Papadopoulos. PRAGMA: A
Community-Based Approach to Using the Grid. June 2004.

[11] S. Brunett, K. Czajkowski, S. Fitzgerald, 1. Foster, A. John-
son, C. Kesselman, J. Leigh, and S. Tuecke. Application
experiences with the globus toolkit. In Proceedings of 7th
IEEE Symp. on High Performance Distributed Computing,
July.

[12] 1. Foster. Globus toolkit version 4: Software for service-
oriented systems. In IFIP International Conference on Net-
work and Parallel Computing, Springer-Verlag LNCS 3779,
pages 2-13, 2005.

[13] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid
Computing: Making the Global Infrastructure a Reality,
chapter The Physiology of the Grid. John Wiley & Sons
Ltd, March 2003.

[14] A. Takefusa, M. Hayashi, N. Nagatsu, H. Nakada, T. Ku-
doh, T. Miyamoto, T. Otani, H. Tanaka, M. Suzuki,
Y. Sameshima, W. Imajuku, M. Jinno, Y. Takigawa,
S. Okamoto, Y. Tanaka, and S. Sekiguchi. G-lambda: Co-
ordination of a grid scheduler and lambda path service over
gmpls. In Future Generation Computing Systems, 2006.

