
Distributed Neighbor Discovery in Ad Hoc Networks Using Directional
Antennas ∗

Rully Adrian Santosa, Bu-Sung Lee, Chai Kiat Yeo and Teck Meng Lim
School of Computer Engineering, Nanyang Technological University, Singapore

{rull0001,ebslee,asckyeo,limtm}@ntu.edu.sg

Abstract

In this paper, we propose a distributed neighbor discov-
ery algorithm in ad hoc networks using directional anten-
nas. A newly joining node obtains the information about its
neighbors in both its omnidirectional and directional range
by querying a subset of its omnidirectional neighbors. The
main contribution of the proposed algorithm is that it does
not require all neighbor nodes to be involved in the dis-
covery process. Simulation results show that the algorithm
performance closely tracks the theoretical analysis and only
requires a fraction of the neighbors to be involved in the dis-
covery process.

1. Introduction

Neighbor discovery plays an important role in wireless

ad hoc networking. Knowledge about the existence and the

location of the neighbors facilitates a node in making a bet-

ter routing decision. Neighbor discovery becomes more sig-

nificant when directional antennas are used.

Directional antennas offer many benefits over omnidi-

rectional antennas. Using directional antennas, the trans-

mission can be focused only at the direction of the receiver,

minimizing the interference with other nodes within the om-

nidirectional transmission range. The transmission range is

also extended, allowing nodes outside the omnidirectional

transmission range to be reached in one hop. The usual

transmission range for directional antenna can be as high as

twice the transmission range for omnidirectional antenna.

Traditional neighbor discovery algorithm operates by pe-

riodically transmitting beacon (HELLO message) omnidi-

rectionally. The beacon contains the identifier of the node

and possibly the location of the node. All nodes that re-

ceive the beacon will update their respective neighbor lists

to include the sender of the beacon. Using traditional neigh-

∗This project is supported by A*STAR SERC grant: Pervasive Network

for Seamless Mobile Communication (Project number: 042 101 0012).

bor discovery algorithm, a node is able to obtain a com-

plete knowledge of the neighbors inside its omnidirectional

transmission range. However, with the use of directional

antenna, there is a need to know the neighbors outside the

omnidirectional transmission range to benefit from the ex-

tended transmission range of directional antennas.

In this paper, we propose a distributed approach to neigh-

bor discovery using directional antennas. The main idea is

to minimize the number of neighbor nodes involved in the

discovery process. Some neighbor nodes are chosen as rep-

resentatives of other neighbor nodes in the discovery pro-

cess. The decision to choose the representative nodes is

done independently at each node in a distributed manner.

2. Related work

Some neighbor discovery algorithms that exploit the

benefit of directional antennas have been proposed. They

are implemented at the MAC layer. A polling-based

neighbor discovery algorithm is proposed in [6]. A node

sends polling message in a specific direction and waits for

replies from the neighbors in that direction. Polling can be

contention-based or contention-free. The space is succes-

sively scanned until the entire space has been covered. The

node will have complete knowledge of its neighbors after it

finishes polling in all directions.

Similarly in [7], nodes are synchronized with each other

and periodically perform neighbor discovery. During neigh-

bor discovery, a node can either be in scanning or in listen-

ing mode. The selection of the mode can be stochastic or

deterministic. A scanning node scans the space in a prede-

termined sequence and transmits advertisements. A listen-

ing node listens in the directions opposite to the scanning

directions and discovers a scanning node when both nodes

form beams towards each other.

In [8], a node transmits its identifier and location in ran-

dom direction with probability p and listens for transmis-

sions with probability 1− p. A neighbor node is discovered

upon receiving a successful transmission from that neigh-

bor node. Depending on p, the algorithm needs varying

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Figure 1. Sets of neighbors of node i.

time duration to obtain complete knowledge of the neigh-

bors. Neighbor discovery can be synchronous (time-slotted)

or asynchronous (non time-slotted). An enhancement based

on gossip is also proposed. In this algorithm, a node also

transmits the identifiers and locations of the neighbors it has

accumulated so far.

An integrated neighbor discovery and MAC protocol is

proposed in [3]. Time is segmented into consecutive frames

and nodes are synchronized with each other. Neighbor dis-

covery is performed in the search slot at the start of each

frame. The search slot is divided into two sub-slots. In the

first sub-slot, each node randomly chooses whether to trans-

mit pilot tone or to receive, together with the direction for

transmission/reception. If the node chooses to transmit pilot

tone in the first sub-slot, it will receive in the second sub-

slot, and vice versa. Two nodes discover each other upon

successful exchange of pilot tones.

In [5], a synchronized directional neighbor discovery is

proposed. It aims to get two nodes that do not know of

each other’s existence to beamform towards each other si-

multaneously. A direction is chosen based on the synchro-

nized time. Each node alternates randomly between trans-

mitting in that direction and listening in the opposite direc-

tion. When the transmit beamform of a node aligns with the

receive beamform of another node, the two nodes can dis-

cover each other. A complete knowledge of the neighbors

is available after one such cycle covering all directions.

3. Proposed algorithm

In typical antennas with omnidirectional transmission

range of d, the directional transmission range is usually

much longer [4][2]. For simplicity of analysis, we assume a

directional transmission range of 2d. Let Ni denote the set

of neighbors of node i in its directional transmission range

2d. Let No
i denote the set of neighbors of node i in its om-

nidirectional transmission range d. No
i is a subset of Ni.

Let Nd
i = Ni −No

i , that is the set of neighbors of node i in

its directional transmission range 2d, but outside its omnidi-

rectional transmission range d. Fig. 1 shows the neighbors

sets of node i. We assume an ideal communication channel.

Consider the case when a new node joins the system and

begins the neighbor discovery process. All existing nodes

in the system are assumed to have a complete knowledge

of the neighbors in their respective directional transmission

ranges 2d. Given a new node x joining the system, x can

obtain complete knowledge of the neighbors in its direc-

tional transmission range 2d (i.e. Nx) using the information

provided by only a subset of the neighbors in its omnidirec-

tional transmission range d (i.e. No
x).

When x joins the system, it broadcasts information about

itself via omnidirectional transmission. This information

includes the node identifier and its location. The broadcast

message from x is received by all nodes inside the omnidi-

rectional transmission range of x (i.e. No
x). Upon receiving

the broadcast message, all nodes in No
x update their respec-

tive neighbor lists with information about x.

Note that each node i in No
x has complete knowledge of

other nodes in No
x . In addition, each node i in No

x also has

partial knowledge of some nodes in Nd
x . These relation-

ships are shown in Fig. 2. Hence, some nodes in No
x can be

chosen as representative nodes to provide x with the infor-

mation about the neighbors in its directional transmission

range 2d (i.e. Nx). Let S denote the set of the representa-

tive nodes. Each node in S sends the neighbor information

to x using directional transmission.

The nodes included in set S should be chosen such that

• the union of the directional transmission range 2d of all

nodes in S covers the directional transmission range 2d
of node x, i.e.

Nx ⊂
⋃
i∈S

Ni

• the number of nodes in S is minimized.

Intuitively, the best case for the number of nodes in

S is 1, i.e. when the representative node is located

extremely close to x.

As it has first been assumed that all nodes in No
x have

complete knowledge of other nodes in No
x , they can com-

pute and determine independently which nodes should be

included in the set S in order to meet the two goals above.

Although each node in No
x computes the set S indepen-

dently, they will agree on the same set S because each node

runs the same selection algorithm to determine the set S.

After set S has been determined, each node checks

whether it belongs to set S, i.e. whether it is one of the rep-

resentative nodes that is responsible for sending the neigh-

bor information to x. If it does not belong to set S, it ceases

to be further involved in the neighbor discovery process of

node x. Hence it does not need to transmit any information

to node x. However, if it belongs to set S, it will be required

to transmit some neighbor information to node x.

The neighbor information a representative node needs to

send to node x depends on the order of the node in S. Let

ik denote the kth representative node in S. The first repre-

sentative node, i1, sends the information about all neighbor

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

nodes it knows that also fall in the directional transmission

range 2d of node x. The second representative node, i2,

sends the information about all neighbor nodes it knows that

also fall in the directional transmission range 2d of node x,

minus all neighbor nodes that has been covered by the first

representative node, i1. Similarly, the third representative

node, i3, sends the information about all neighbor nodes it

knows that also fall in the directional transmission range 2d
of node x, minus all neighbor nodes that has been covered

by the first and the second representative nodes, i1 and i2. In

general, the kth representative node sends the information

about all neighbors it knows that also fall in the directional

transmission range 2d of node x, minus all neighbor nodes

that has been covered by the previous representative nodes:

(
Nik

⋂
Nx

)
−

k−1⋃
j=1

Nij

Note that the information about a particular neighbor node

of x will be sent once by exactly one representative node.

The neighbor information sent by different nodes in S does

not overlap. Thus there is no redundant neighbor informa-

tion being sent, and hence less traffic is generated. The cal-

culation to determine which node information to send by

a particular representative node is based on the locations

of the representative node itself, the previous representative

nodes, node x and the neighbor nodes.

A simple selection algorithm based on heuristic is used

to choose the representative nodes to be included in set S
and to determine the order of the representative nodes in

S. To choose the first representative node i1 in S, pick the

node in No
x closest to x. By doing this, Nx will overlap sub-

stantially with Ni1 . A tie between two nodes with the same

distance from x is resolved using the additional rule; i.e.

choose the first node in clockwise direction starting from

the north. By choosing the first representative node, i1, a

minimum of 68.4% of x’s directional transmission range

2d area would have been covered. The worst case scenario

occurs when i1 lies on the border of x’s omnidirectional

range, i.e. the distance from x to i1 equals to d (see Fig. 2).

Note that i1 is able to provide x with the information about

all nodes in No
x , plus the nodes in Nd

x ∩ Ni1 :

Nx ∩ Ni1 = (No
x ∪ Nd

x) ∩ Ni1

= (No
x ∩ Ni1) ∪ (Nd

x ∩ Ni1)
= No

x ∪ (Nd
x ∩ Ni1)

To cover the remaining area Nx − Ni1 , the second rep-

resentative node, i2, is chosen from No
x to send additional

information to x. i2 is the next node in No
x closest to x.

As mentioned before, i2 needs to send only the informa-

tion about the nodes it knows which have not been covered

by i1. This step is repeated by choosing i3, i4 and so on

Figure 2. Worst case scenario in choosing the
first representative node, i1.

Algorithm 1 Node x joining the system

1: Let Nx be the neighbor list of node x
Nx ← Ø

2: broadcast request message using omnidirectional transmission to ini-

tiate neighbor discovery process

3: wait for response messages containing neighbor information from the

representative nodes

4: for all neighbor information R contained in the received response

messages do
5: Nx ← Nx ∪R
6: end for

until no more node in No
x is able to send additional neigh-

bor information to x that has not been covered by previous

representative nodes.

The pseudocode of the proposed neighbor discovery al-

gorithm is presented in Algorithm 1 and Algorithm 2.

To keep the neighbor information updated, every node

x periodically requests for updates by broadcasting the in-

formation about itself using omnidirectional transmission to

the nodes in No
x , similar to the procedure performed when

the node joins the system for the first time. Upon receiv-

ing the broadcast message, all nodes in No
x can update their

respective neighbor lists with the information about x. The

representative nodes in S will then send the update infor-

mation to x using directional transmission.

When node x leaves the system, other nodes in No
x will

not receive any more update requests from x. After a time-

out period, the nodes in No
x will drop the information about

x from their respective neighbor lists. Alternatively, the

leaving node x can explicitly broadcast a leave message

to other nodes in No
x before leaving the system. This will

speed up the leaving procedure without having to wait for

the timeout period.

3.1. Example

Consider the scenario in Fig. 3. 7 nodes are currently

active (nodes 1 to 7). A new node x joins the system and

starts the neighbor discovery process. Firstly, x broadcasts

the information about itself using omnidirectional transmis-

sion. Nodes 1, 2, 3 and 4 in the omnidirectional transmis-

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Algorithm 2 Each node i in the omnidirectional transmis-

sion range of x
1: receive broadcast request message from x
2: Let Ni be the neighbor list of node i

Ni ← Ni ∪ {x}
3: W ← (Ni ∪ {i})− {x}
4: for all j ∈W do
5: if distance(x, j) > 2d then
6: W ←W − {j}
7: end if
8: end for
9: Z ←W

10: sort all j ∈ W in ascending order based on distance(x, j), then

based on angle(x, j)
11: for all j ∈W do
12: if j = i then
13: exit for
14: end if
15: Z ← Z − {j}
16: for all k ∈W, k �= j do
17: if distance(j, k) <= 2d then
18: Z ← Z − {k}
19: end if
20: end for
21: end for
22: if Z �= Ø then
23: send Z to x using directional transmission

24: else
25: do nothing

26: end if

Figure 3. Scenario of a new node x starting
the neighbor discovery process.

sion range d of x receive the broadcast message and update

their respective neighbor lists with information about x.

Next, nodes 1, 2, 3 and 4 compute and determine inde-

pendently whether they are representative nodes who pro-

vide x with the neighbor information. Node 1 finds that it is

closest to x among other nodes in the omnidirectional trans-

mission range d of x. Hence it becomes the first represen-

tative node. Node 1 sends the information about all nodes

in the omnidirectional transmission range d of x (nodes 1,

2, 3 and 4) plus information about a node in the directional

transmission range 2d of x that it knows (node 5).

Node 2 finds that it is second closest to x. Node 2 has

the information about all nodes in the omnidirectional trans-

mission range d of x (nodes 1, 2, 3, and 4), plus information

about some nodes in the directional transmission range 2d
of x (nodes 5 and 6). However, node 2 computes that in-

formation about nodes 1, 2, 3, 4, and 5 has been sent to x
by node 1. Thus, node 2 only sends information about the

node that has not been covered by node 1 (node 6).

Similarly, node 3 finds that it is the third closest to x.

Node 3 has information about nodes 1, 2, 3, 4, 5 and 6, all of

which have been covered by previous representative nodes

(nodes 1 and 2). Thus, node 3 will not send any neighbor

information to node x.

Finally, the last closest node to x is node 4. Among all

nodes that are known to node 4, only node 7 has not been

covered by previous representative nodes (nodes 1, 2 and

3). Thus, node 4 sends the information about node 7 to x.

At this point, no more nodes in the omnidirectional trans-

mission range d of x have additional neighbor information

that has not been covered by previous representative nodes.

4. Analysis

We focus our analysis on the coverage of the proposed

neighbor discovery algorithm, i.e. how many percent of

its neighbors a newly joining node can discover by per-

forming the proposed neighbor discovery algorithm. When

a new node joins the system and performs the proposed

neighbor discovery algorithm, it may be able to obtain a

complete or partial knowledge of the neighbors in its di-

rectional transmission range, depending on the number and

the placement of neighbors residing in its omnidirectional

transmission range. Having more neighbors in the omni-

directional transmission range leads to a higher chance of

covering the whole directional transmission range, provided

that the neighbors are distributed enough in the omnidirec-

tional transmission range. Having some neighbors clustered

in one spot within the omnidirectional transmission range is

as good as having only one neighbor in the same spot.

We begin the analysis by finding how much of the direc-

tional transmission range is covered on average when there

are n neighbors in the omnidirectional transmission range.

We notice that calculating the area of intersecting circles

purely by geometry is difficult. Therefore, we use the monte

carlo method to approximate the expected coverage.

A large number of sample points (≈ 10000 points)

are scattered randomly inside the directional transmission

range. n neighbor nodes are placed randomly inside the om-

nidirectional transmission range. Then, each sample point

is evaluated on whether it falls inside the directional trans-

mission range of any neighbor nodes. If it is, the sam-

ple point is marked as covered. Otherwise, it is marked

as not covered. After all sample points have been evalu-

ated, the percentage of the covered sample points is cal-

culated. The procedure is repeated a large number of times

(≈ 10000 times) with different placements of sample points

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Figure 4. Expected coverage c(n) against the
number of neighbor nodes inside the omnidi-
rectional transmission range.

and neighbor nodes. Averaging over all runs, the expected

coverage when the number of neighbor nodes inside the om-

nidirectional transmission range is n can be found. We de-

note this expected coverage as c(n). We calculate the ex-

pected coverage c(n) for n from 0 to 20. The directional

transmission ranges used are twice (2d) and four times (4d)

the omnidirectional transmission range (d). The result is

shown in Fig. 4. This result is used to obtain the expected

coverage of the proposed neighbor discovery algorithm:

We assume the nodes are uniformly distributed in a large

area. Let ρ denote the node density, i.e. the average number

of nodes in a unit area. The expected number of nodes in

the omnidirectional transmission range, denoted as λ, can

be found as follows:

λ = ρπd2 (1)

The probability of finding n nodes in the omnidirectional

transmission range follows the Poisson distribution with

mean λ:

p(n) =
λne−λ

n!
(2)

Thus, the expected coverage of the proposed neighbor dis-

covery algorithm, E[c(n)], performed by a newly joining

node can be calculated as follows:

E[c(n)] =
∞∑

k=0

p(k)c(k) (3)

We compute the expected area not covered by the pro-

posed algorithm, 1 − E[c(n)], for node density from 10 to

100 nodes/km2. The omnidirectional transmission range d
used is 200 m. The directional transmission ranges used are

2d = 400 m and 4d = 800 m the omnidirectional transmis-

sion range. Fig. 5 shows the result.

It can be seen from the graph that in a sparse population,

a considerable percentage of the directional transmission

Figure 5. Expected area not covered by
the proposed neighbor discovery algorithm
against the node density.

range is not covered by the proposed neighbor discovery

algorithm. However, as the population density increases,

the expected not-covered area decreases rapidly. When the

node density is greater than 50 nodes/km2, the percentage

of the not-covered area drops to less than 1% and hence be-

comes insignificant. We conclude that the proposed neigh-

bor discovery algorithm works better in a dense population.

It is crucial for a newly joining node x to obtain as com-

plete knowledge as possible about neighbors in its direc-

tional transmission range. This is due to the assumption

used by the proposed algorithm that all existing nodes in the

system have complete knowledge of neighbors in their re-

spective directional transmission ranges. Thus, in order for

the algorithm to be applicable for subsequent new joining

nodes, the assumption has to be still valid after the neigh-

bor discovery process of node x. Hence, node x shall ob-

tain a complete knowledge of the neighbors in its directional

transmission range, which can be accomplished in a dense

population where the percentage of the not-covered area is

considerably small.

5. Simulation

We perform simulation to evaluate the actual coverage of

the algorithm and compare the result with the expected cov-

erage derived in Section 4. n nodes are randomly scattered

inside a square area of 1500 m × 1500 m according to the

uniform distribution, such that the node density equals to ρ.

We use the omnidirectional transmission range of 200 m,

and directional transmission range of 400 m. The coverage

simulation was performed using a custom-tailored C++ pro-

gram. In addition, we repeat the simulation using QualNet

Network Simulator 3.8 [1].

A newly joining node x is placed at a random position in-

side the square area. Then, the proposed neighbor discovery

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Figure 6. Actual not-covered area obtained
from the simulation vs expected theoretical
not-covered area.

algorithm is started for node x. At the end of the neighbor

discovery process, the number of undiscovered neighbors

of x is compared with the number of actual neighbors of x.

We ran the simulation with different values of ρ, from

4 nodes/km2 to 44 nodes/km2. For each ρ, the simulation is

repeated 1000 times. By averaging over all simulation runs

for each ρ, we obtain the average not-covered area. The

simulation results are compared with the theoretical analy-

sis as shown in Fig. 6. It can be seen from the graphs that

the simulation results closely track the theoretical analysis.

In addition, we also record the number of neighbor

nodes inside the omnidirectional transmission range of x
that transmit neighbor information to x, i.e. the represen-

tative nodes of x. By averaging over all simulation runs

for each ρ, we obtain the average number of representa-

tive nodes. Fig. 7 shows the result. It can be seen from

the graph that the average number of representative nodes

is lower than the average number of neighbor nodes inside

the omnidirectional transmission range. The difference in-

creases dramatically with node density. Thus, we conclude

that the proposed neighbor discovery algorithm is more effi-

cient since only a small subset of the neighbor nodes inside

the omnidirectional transmission range are involved in the

discovery process.

6. Conclusion

We propose a distributed neighbor discovery algorithm

in ad hoc networks using directional antenna. A newly

joining node obtains information about neighbors in both

its omnidirectional and directional transmission ranges by

querying a subset of its omnidirectional-range neighbors.

The proposed algorithm possesses a number of benefits.

Firstly, it does not require all neighbor nodes to be involved

in the discovery process. Only some nodes, chosen as repre-

Figure 7. Average number of representative
nodes against the node density.

sentatives nodes, are required to send neighbor information

to the newly joining node. Secondly, there is no overlap-

ping of information being sent. Each representative node

only sends the neighbor information that has not been cov-

ered by previous representative nodes. As a consequence,

the neighbor discovery process is faster and more efficient.

Future works will investigate the performance of the al-

gorithm under dynamic network condition, where nodes

join and leave the system dynamically.

References

[1] Scalable network technologies. [Online]. Available:

http://www.scalable-networks.com/.
[2] A. Alexiou and M. Haardt. Smart antenna technologies for

future wireless systems: Trends and challenges. IEEE Com-
munications Magazine, pages 90–97, Sept. 2004.

[3] G. Jakllari, W. Luo, and S. V. Krishnamurthy. An integrated

neighbor discovery and MAC protocol for ad hoc networks

using directional antennas. In Proc. IEEE WoWMoM, pages

11–21, June 2005.
[4] P. H. Lehne and M. Pettersen. An overview of smart antenna

technology for mobile communications systems. IEEE Com-
munications Surveys, 2(4):2–13, Fourth Quarter 1999.

[5] R. Ramanathan, J. Redi, C. Santivanez, D. Wiggins, and

S. Polit. Ad hoc networking with directional antennas: A

complete system solution. IEEE J. Select. Areas Commun.,
23:496–506, Mar. 2005.

[6] T. Ren, I. Koutsopoulos, and L. Tassiulas. Efficient media

access protocols for wireless LANs with smart antennas. In

Wireless Communications and Networking, 2003, volume 2,

pages 1286–1290, Mar. 2003.
[7] M. E. Steenstrup. Neighbor discovery among mobile nodes

equipped with smart antennas. In Proc. 3rd Scandinavian
Workshop on Wireless Ad-hoc Networks, May 2003.

[8] S. Vasudevan, J. Kurose, and D. Towsley. On neighbor dis-

covery in wireless networks with directional antennas. In

Proc. IEEE INFOCOM 2005, volume 4, pages 2502–2512,

Mar. 2005.

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

