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Extending Dependencies with Conditions for Data Cleaning

Abstract

Data cleaning aims to effectively detect and repair errors

and inconsistencies in real life data. The increasing costs

and risks of dirty data highlight the need for data clean-

ing techniques. This paper provides an overview of recent

advances in data cleaning, based on conditional dependen-

cies, an extension of functional and inclusion dependencies

for characterizing the consistency of relational data.

1 Introduction

Real life data in all industries worldwide is routinely

found dirty, i.e., inconsistent, inaccurate, stale or deliber-

ately falsified. Recent statistics reveals that enterprises typ-

ically expect data error rates of approximately 1%–5%. The

costs and risks of dirty data are being increasingly recog-

nized. It is reported that dirty data costs US businesses bil-

lions of dollars annually (cf. [14]), and that wrong price data

in retail databases alone costs US consumers $2.5 billion

each year [15]. It is also estimated that data cleaning ac-

counts for 30%-80% of the development time and budget in

most data warehouse projects (cf. [24]). While the prevalent

use of the Web has made it possible to extract and integrate

data from diverse sources, it has also increased the risks, on

an unprecedented scale, of creating and propagating dirty

data. These highlight the need for data cleaning tools to

effectively detect and repair inconsistencies in the data. In-

deed, the market for data-cleaning tools is growing at 17%,

way above the 7% average forecast for other IT segments,

and is projected to pass $677 million by 2011 [19].

One of the central technical questions associated with

data cleaning is how to characterize the consistency of data,

i.e., how to tell whether the data is clean or dirty? Most data

cleaning tools today, including those embedded in commer-

cial ETL (extraction, transformation, loading) tools, heavily

rely on manual effort and low-level programs that are dif-

ficult to write and maintain [22]. A more systematic ap-

proach is constraint-based data cleaning, to capture incon-

sistencies and errors as violations of integrity constraints

[3, 4, 5, 8, 9, 11, 12, 21, 25]. Indeed, integrity constraints

specify a fundamental part of the semantics of the data,

which is critical to data quality [22]. Better still, inference

∗Supported in part by EPSRC GR/S63205/01, GR/T27433/01 and EP/E029213/1

systems, analysis algorithms and profiling methods devel-

oped for constraints yield systematic methods to effectively

reason about the semantics of the data, and to deduce, dis-

cover and apply cleaning rules. However, constraints used

for data cleaning are mostly traditional dependencies such

as functional and inclusion dependencies. These constraints

were developed mainly for schema design; as will be seen

shortly, they are not capable of capturing errors and incon-

sistencies commonly found in real-life data. This calls for

new constraint languages designed for data cleaning [22].

In response to the need, an extension of functional and

inclusion dependencies, referred to as conditional depen-

dencies, has recently been proposed [16, 7]. In contrast

to their traditional counterparts, conditional dependencies

specify patterns of semantically related data values. They

are capable of capturing many common errors and incon-

sistencies that traditional dependencies cannot detect.

To use conditional dependencies as rules for data clean-

ing, one first wants to make sure that the rules are clean

themselves. With this comes the need for static analyses of

conditional dependencies. There are two important issues

associated with conditional dependencies. One concerns

consistency analysis, to determinewhether or not a given set

of conditional dependencies makes sense. The other con-

cerns implication analysis, to decide whether a set of con-

ditional dependencies logically entails another dependency.

These decision problems are more intriguing for conditional

dependencies than for their traditional counterparts.

We want to detect and repair errors and inconsistencies

based on conditional dependencies. Given a set Σ of condi-
tional dependencies (cleaning rules) and a databaseD, there

are SQL techniques to automatically identify tuples in D

that violate one or more dependencies in Σ. Furthermore,
we want to fix the errors and find candidate repairs by edit-

ingD. While the repairing problem is difficult (intractable),

it is possible to develop scalable heuristic algorithms for

finding database repairs with performance guarantee.

The remainder of the paper is organized as follows. We

present conditional dependencies in Section 2, and their rea-

soning techniques in Section 3, followed by inconsistency

detection and repairing techniques in Section 4. Finally, we

identify open research issues in Section 5. This paper is

by no means a comprehensive survey: a number of related

articles are not referenced due to the space constraint.
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2 Extending Dependencies with Conditions

We extend functional and inclusion dependencies with

conditions, to characterize the consistency of data.

Conditional functional dependencies. Let us consider the

following relational schema for customer data:

customer (CC: int, AC: int, phn: int, name: string,

street: string, city: string, zip: string)

where each customer tuple specifies a customer’s phone

number (country code (CC), area code (AC), phone (phn)),

name, and address (street, city and zip code). An instance

D0 of the customer schema is shown in Fig. 1.

Traditional functional dependencies (FDs) on customer

relations include:

f1: [CC, AC, phn ]→ [street, city, zip ]
f2: [CC, AC ]→ [city ]

That is, a customer’s phone uniquely determines her address

(f1), and her country code and area code determine her city

(f2). The instanceD0 of Fig. 1 satisfies f1 and f2. In other

words, when f1 and f2 are used to specify the consistency of

customer data, no errors or inconsistencies can be detected

inD0 and henceD0 is considered clean.

A closer examination of D0, however, reveals that none

of the tuples in D0 is error-free. The inconsistencies are

captured by conditional functional dependencies (CFDs):

ϕ1: ([CC, zip ]→ [street ], T1)

ϕ2: ([CC, AC, phn ]→ [street, city, zip ], T2)

where T1 and T2 are tableaux shown in Fig. 2. Each tu-

ple in T1 or T2 indicates a constraint, in which ‘ ’ denotes

the wild-card that can be an arbitrary value from the corre-

sponding domain. The CFD ϕ1 asserts that for customers in

the UK (CC = 44), zip determines street. In other words, ϕ1

is an “FD” that is to hold on the subset of tuples that satis-

fies the pattern “CC = 44”, e.g., {t1, t2} in D0, rather than

on the entire customer relation D0. Tuples t1 and t2 in D0

violate ϕ1: they have the same zip but differ in street.

The CFD ϕ2 defines three constraints, each by a distinct

tuple in the tableau T2. The first one encodes the standard

FD f1, and the other two refine f1. More specifically, the

second constraint assures that in the UK (CC = 44) and for

area code 131, if two tuples have the same phn, then they

must have the same street and zip, and moreover, the city

must be EDI; similarly for the third constraint. While D0

satisfies f1, each of t1 and t2 in D0 violates ϕ2: CC = 44

and AC = 131, but city 6= EDI. Similarly, t3 violates ϕ2.

More formally, a CFD ϕ defined on a relation schema R

is a pair (R : X → Y , Tp), where (1)X → Y is a standard

FD, referred to as the FD embedded in ϕ; and (2) Tp is a

tableau with attributes inX and Y , referred to as the pattern

tableau of ϕ, where for each A in X ∪ Y and each tuple

tp ∈ Tp, tp[A] is either a constant ‘a’ in dom(A), or an
unnamed variable ‘ ’ that draws values from dom(A). We
write ϕ as (X → Y, Tp) when R is clear from the context.

CC AC phn name street city zip

t1: 44 131 1234567 Mike Mayfield NYC EH4 8LE

t2: 44 131 3456789 Rick Crichton NYC EH4 8LE

t3: 01 908 3456789 Joe Mtn Ave NYC 07974

Figure 1. An instance of customer relation

(a) Tableau T1 of ϕ1 = ([CC, zip ] → [street ], T1)

CC zip street

44

(b) Tableau T2 of ϕ2 = ([CC, AC, phn ] → [street, city, zip ], T2)

CC AC phn street city zip

44 131 EDI

01 908 MH

Figure 2. Example CFDs

To give the semantics of CFDs, we define a match opera-

tor ≍ on data values and ‘ ’: η1 ≍ η2 if either η1 = η2, or

η1 is a constant ‘a’ and η2 is ‘ ’. The operator≍ extends to
tuples, e.g., (Mayfield, EDI) ≍ ( , EDI) but (Mayfield, EDI)
6≍ ( , NYC). We say that a tuple t1 matches t2 if t1 ≍ t2.

An instanceD ofR satisfies the CFD ϕ, denoted byD |=
ϕ, if for each pair of tuples t1, t2 in D, and for each tuple

tp in the pattern tableau Tp of ϕ, if t1[X ] = t2[X ] ≍ tp[X ],
then t1[Y ] = t2[Y ] ≍ tp[Y ]. Intuitively, each tuple tp in
the pattern tableau Tp of ϕ is a constraint defined on the

set Dtp
= {t | t ∈ D, t[X ] ≍ tp[X ]} such that for any

t1, t2 ∈ Dtp
, if t1[X ] = t2[X ], then (a) t1[Y ] = t2[Y ],

and (b) t1[Y ] ≍ tp[Y ]. Here (a) enforces the semantics
of the embedded FD, and (b) assures the binding between

constants in tp[Y ] and constants in t1[Y ]. Note that this
constraint is defined on the subset Dtp

of D identified by

tp[X ], rather than on the entireD.

Conditional inclusion dependencies. Next consider two

schemas, referred to as source and target, respectively:

Source: order (asin: string, title: string, type: string, price: real)

Target: book (isbn: string, title: string, price: real, format: string)

CD (id: string, album: string, price: real, genre: string)

The source database contains a single relation order, spec-

ifying items of various types such as books, CDs, DVDs,

ordered by customers. The target database has two rela-

tions, specifying customer orders of books and CDs. Exam-

ple source and target databases are shown in Fig. 3.

To find schema mapping from source to target

(e.g., [20]), or to detect errors across these databases

(e.g., [5]), one may want to specify inclusion dependencies

(INDs) such as order(title, price) ⊆ book(title, price), and
order(title, price) ⊆ CD(album, price). These INDs, how-
ever, do not make sense: one cannot expect the title and

price of a book item in the order table to find a matching

CD tuple; similarly for CDs in the order table.

In contrast, one can specify the following conditional in-

clusion dependencies (CINDs), an extension of INDs:
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asin title type price

t4: a23 Snow White CD 7.99

t5: a12 Harry Potter book 17.99

(a) Example order data

isbn title price format

t6: b32 Harry Potter 17.99 hard-cover

t7: b65 Snow White 7.99 paper-cover

(b) Example book data

id album price genre

t8: c12 J. Denver 7.94 country

t9: c58 Snow White 7.99 a-book

(c) Example CD data

Figure 3. Example order, book and CD data

ϕ3: (order(title, price; type) ⊆ book(title, price), T3)

ϕ4: (order(title, price; type) ⊆ CD(album,price), T4)

ϕ5: (CD(album,price; genre)) ⊆ book(title, price; format), T5)

where T3–T5 are pattern tableaux shown in Fig. 4. The

CIND ϕ3 asserts that for each order tuple t, if its type is

“book”, then there must exist a book tuple t′ such that t and

t′ agree on their title and price attribute; similarly for ϕ4.

The CIND ϕ5 states that for each CD tuple t, if its genre is

“a-book” (audio book), then there must be a book tuple t′

such that the title and price of t′ match the album and price

of t, and moreover, the format of t′ must be “audio”.

While the databases of Fig 3 satisfy ϕ3 and ϕ4, they vi-

olate ϕ5. Indeed, tuple t9 in the CD table has an “a-book”

genre, but it cannot find a match in the book table. Note

that while t9 and t7 in the book table agree on their album

(title) and price, the format of t7 is “paper cover” rather

than “audio” as required by the pattern given in tableau T5.

Formally, a CIND ψ defined on schemas R1 and R2 is

a pair (R1[X ;Xp] ⊆ R2[Y ;Yp], Tp), where (1) X,Xp and

Y, Yp are lists of attributes of R1 and R2, respectively, such

that X and Xp (resp. Y and Yp) are disjoint; (2) R1[X ] ⊆
R2[Y ] is a standard IND, referred to as the IND embedded
in ψ; and (3) Tp is the pattern tableau of ψ with attributes

in X,Xp and Y, Yp, such that for each tuple tp ∈ Tp, (a)

tp[X ] = tp[Y ], consisting of unnamed variable ‘ ’; and (b)
for each A inXp or Yp, tp[A] is a constant ‘a’.
An instance (D1, D2) of (R1, R2) satisfies the CIND ψ,

denoted by (D1, D2) |= ψ, iff for each t1 in the rela-

tion D1, and for each tuple tp in the pattern tableau Tp,

if t1[Xp] = tp[Xp], then there must exist t2 in D2 such that

t1[X ] = t2[Y ] and moreover, t2[Yp] = tp[Yp]. That is, tp is
a constraint defined on D(1,tp) = {t1 | t1[Xp] = tp[Xp]},
such that (a) the IND R1[X ] ⊆ R2[Y ] embedded in ψ
is defined on D(1,tp) rather than the entire D1; (b) for

each t1 ∈ D(1,tp), there exists a tuple t2 in D2 such that

t1[X ] = t2[Y ] as required by the standard IND and more-
over, t2[Yp]must match the pattern tp[Yp]. Intuitively,Xp is

used to identify the R1 tuples on which ψ is defined, and Yp

enforces the matching R2 tuples to satisfy a certain form.

From these examples one can see that in contrast to FDs

and INDs, CFDs and CINDs specify patterns of semantically

related constants, and are capable of capturing more errors

and inconsistencies than their traditional counterparts can

catch. In practice dependencies that hold conditionally may

arise in a number of domains. In particular, when integrat-

ing data, dependencies that hold only in a subset of sources

will hold only conditionally in the integrated data.

Traditional FDs and INDs are special cases of CFDs and

CINDs, respectively, in which the pattern tableau consists of

(a) T3 in ϕ3 = (order(title, price; type) ⊆ book(title, price), T3)

title price type title price

book

(b) T4 in ϕ4 = (order(title, price; type) ⊆ CD(album,price), T4)

title price type album price

CD

(c) T5 in ϕ5=(CD(album,price; genre) ⊆ book(title, price; format), T5)

album price genre title price format

a-book audio

Figure 4. Example CINDs

a single tuple, containing unnamed variable ‘ ’ only.

As remarked earlier, dependencies considered for data

cleaning so far include traditional FDs, INDs as well as a

form of full dependencies, referred to as denial constraints

(see [12] for a recent survey). There have also been exten-

sions of CFDs, by supporting inequality and disjunctions,

without incurring extra complexity [6]. Data cleaning tools

based on CFDs and CINDs are also being developed.

3 Reasoning about Dependencies

To use CFDs and CINDs to detect and repair errors and

inconsistencies, a number of fundamental questions associ-

ated with these conditional dependencies have to be settled.

In this section we address three central technical problems,

namely, consistency, implication and axiomatizability.

Consistency. Given a set Σ of CFDs (resp. CINDs), can one
tell whether the dependencies in Σ are dirty themselves? If
the input setΣ is found inconsistent, then there is no need to
check the cleaning rules against the data at all. Further, the

analysis helps the user discover errors in the cleaning rules.

Formally, this can be stated as the consistency prob-

lem for conditional dependencies. For a set Σ of CFDs
(resp. CINDs) and a databaseD, we writeD |= Σ ifD |= ϕ

for all ϕ ∈ Σ. The consistency problem is to determine,
given Σ defined on a relational schema R, whether or not
there exists a nonempty instanceD ofR such that D |= Σ.
One can specify arbitrary FDs and INDswithout worrying

about consistency. This is no longer the case for CFDs.

Example 3.1: Consider two CFDs ψ1 = ([A] → [B], T1)
and ψ2 = ([B] → [A], T2), where dom(A) is bool,

T1 has two patterns (true, b1), (false, b2), and T2 contains

(b1, false) and (b2, true). Then there exists no nonempty in-
stanceD such thatD |= {ψ1, ψ2}. Indeed, for any tuple t in
D, no matter what value t[A] has, ψ1 and ψ2 together force

t[A] to take the other value from the finite domain bool. 2
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It turns out that while for CINDs the consistency problem

is not an issue, for CFDs it is nontrivial. Worse, when CFDs

and CINDs are put together, the problem becomes undecid-

able, as opposed to their trivial traditional counterpart.

Theorem 3.1 [16, 7]: The consistency problem is

• NP-complete for CFDs,

• trivially decidable for CINDs, i.e., for any set Σ of
CINDs defined on a schema R, there always exists a
nonempty instanceD ofR such thatD |= Σ, and

• undecidable for CFDs and CINDs taken together. 2

Fortunately, there are effective approximate and heuristic

algorithms to check consistency for CFDs and for CFDs and

CINDs taken together, respectively (see [16, 6] for details).

Implication. Another central technical problem is the im-

plication problem: given a set Σ of CFDs (resp. CINDs) and
a single CFD (resp. CIND) ϕ defined on a relational schema

R, it is to determine whether or not Σ entails ϕ, denoted
by Σ |= ϕ, i.e., whether or not for all instances D of R, if
D |= Σ then D |= ϕ. Effective implication analysis allows

us to deduce new cleaning rules and to remove redundancies

from a given set of rules, among other things.

It is known that for FDs, the implication problem is

decidable in linear time, while for INDs, it is PSPACE-

complete. It becomes more intriguing for CFDs and CINDs.

Theorem 3.2 [16, 7]: The implication problem is

• coNP-complete for CFDs,

• EXPTIME-complete for CINDs, and

• undecidable for CFDs and CINDs taken together. 2

The undecidability result is not surprising: the problem

is already undecidable for FDs and INDs put together.

In certain practical cases the consistency and implication

analyses for CFDs and CINDs have complexity comparable

to their traditional counterparts, as stated below. For data

cleaning in practice, the relational schema is often fixed,

and only dependencies vary and are treated as the input.

Theorem 3.3 [16, 7]: For CFDs and CINDs defined on a re-

lational schemaR, if eitherR is predefined, or no attributes
in the given dependencies have a finite domain, then

• the consistency and implication problems are both de-
cidable in quadratic time for CFDs; and

• the implication problem is PSPACE-complete for
CINDs, the same as for standard INDs. 2

Axiomatizability. Armstrong’s Axioms for FDs are found

in almost every database textbook, and are fundamental to

the implication analysis of FDs. Similarly, there exists a

finite set of inference rules for INDs. For conditional de-

pendencies the finite axiomatizability is also important, as

it reveals insight of the implication analysis and helps us

understand how cleaning rules interact with each other.

Dependencies Consistency Implication Fin. Axiom

CFDs NP-complete coNP-complete Yes

FDs O(1) O(n) Yes

CINDs O(1) EXPTIME-complete Yes

INDs O(1) PSPACE-complete Yes

CFDs + CINDs undecidable undecidable No

FDs + INDs O(1) undecidable No

with predefined schema or in the absence of finite domain

CFDs O(n2) O(n2) Yes

CINDs O(1) PSPACE-complete Yes

Table 1. Complexity and finite axiomatizability

This motivates us to find a finite set I of inference
rules that are sound and complete for implication analysis,

i.e., for any set Σ of CFDs (resp. CIND) and a single CFD
(resp. CIND) ϕ, Σ |= ϕ iff ϕ is provable from Σ using I.
The good news is that when CFDs and CINDs are taken

separately, they are finitely axiomatizable. However, just

like their traditional counterparts, when CFDs and CINDs are

taken together, they are not finitely axiomatizable.

Theorem 3.4 [16, 7]: There exist finite inference systems

that are sound and complete for CFDs and CINDs taken sep-

arately. When CFDs and CINDs are taken together, they are

not finitely axiomatizable. 2

Table 1 compares the complexity bounds for static analy-

ses as well as the finite axiomatizability of CFDs and CINDs

with their traditional counterparts.

4 Detecting and Repairing Inconsistencies

Given a set Σ of conditional dependencies defined on a
schema R and an instance D of R, we want to effectively
detect inconsistencies in D that emerge as violations of Σ,
and moreover, if D is dirty, to find candidate repairs ofD.

Detecting inconsistencies. Given Σ and D, one needs an
automated method to find all the inconsistent tuples in D

w.r.t. Σ, i.e., the tuples that (perhaps together with other D
tuples) violate some dependencies in Σ.
In contrast to traditional FDs, a CFD ϕ = (X → Y, Tp)

carries a possibly large pattern tableau Tp. Nevertheless,

one can use a single pair of SQL queries (QC
ϕ ,Q

V
ϕ ) to find all

tuples in D that violate ϕ. In a nutshell, QC
ϕ detects single-

tuple violations, i.e., the tuples t in D that match some pat-

tern tuple tp ∈ Tp on the X attributes, but t does not match

tp on the Y attributes. On the other hand, query Q
V
ϕ finds

multi-tuple violations, i.e., tuples that match tp[X ] for some
tp ∈ Tp but violate the standard FD embedded in ϕ. The

size of the SQL queries is independent of the size of Tp.

Example 4.1: When evaluated against a customer relation

D0, the two SQL queries given in Fig. 5 find all tuples inD0

that violate CFD ϕ2 of Fig. 2. Here t[A] ≍ tp[A] denotes the
SQL expression (t[A] = tp[A] OR tp[A] = ‘ ’), while t[B] 6≍
tp[B] denotes (t[B] 6= tp[B] AND tp[B] 6= ‘ ’). 2
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QC
ϕ2
select t from customer t, T2 tp
where t[CC] ≍ tp[CC] AND t[AC] ≍ tp[AC] AND t[phn] ≍ tp[phn]

AND (t[street] 6≍ tp[street] OR t[city] 6≍ tp[city] OR
t[zip] 6≍ tp[zip])

QV
ϕ2
select distinct t[CC], t[AC], t[phn] from customer t, T2 tp
where t[CC] ≍ tp[CC] AND t[AC] ≍ tp[AC] AND t[phn] ≍ tp[phn]
group by t[CC], t[AC], t[phn]
having count(distinct t[street], t[city], t[zip])> 1

Figure 5. SQL queries for checking CFD ϕ2

This method can be extended to a set Σ of CFDs (resp.
CINDs): one can find a single pair of SQL queries to find

all inconsistent tuples in D w.r.t. Σ, such that the size
of the queries depends on neither the number of CFDs

(resp. CINDs) in Σ nor the size of pattern tableau in each
dependency in Σ (see [16, 6] for details).

Finding candidate repairs. Given Σ and possibly dirtyD,
we want to find a candidate repair ofD, i.e., an instanceD′

ofR that is consistent, i.e.,D′ |= Σ, and moreover,D′ min-

imally differs from the original databaseD. That is, we edit

D to fix the errors and to make the data consistent. This is

the data cleaning approach that US national statistical agen-

cies, among others, has been practicing for decades [17].

The effectiveness and complexity of data repair methods

depend on what repair model is used. One model allows tu-

ple deletions only [11], assuming that the information in D

is inconsistent but complete. Here a repairD′ is a maximal

subset of D such that D′ |= Σ. Another model allows both
tuple deletions and insertions [3], assuming that D is nei-

ther consistent nor complete. Here a repairD′ is an instance

of R such that (D \ D′) ∪ (D′ \ D) is minimal when D′

ranges over all instances of R that satisfy Σ. A more prac-
tical model is based on updates, i.e., attribute value mod-

ifications. It is common that in an inconsistent tuple, only

some fields contain errors. One should fix these fields rather

than remove the entire tuple, to avoid loss of correct infor-

mation. This is the model adopted by US national statistical

agencies [17] and recently revisited by [25, 5].

An immediate question about the update model concerns

what values should be changed and what values should be

chosen to replace the old values. One should make the de-

cisions based on both the accuracy of the attribute values

to be modified, and the “closeness” of the new value to the

original value. Following the practice of US national statis-

tical agencies [17], one can define a cost metric as follows.

Assuming that a weight in the range [0, 1] is associated with
each attribute A of each tuple t in D, denoted by w(t, A)
(if w(t, A) is not available, a default weight can be used in-
stead). The weight reflects the confidence of the accuracy

placed by the user in the attribute t[A], and can be propa-
gated via data provenance analysis in data transformations.

For two values v, v′ in the same domain, assume that a dis-

tance function dis(v, v′) is in place, with lower values in-
dicating greater similarity. One way to define the cost of

changing the value of an attribute t[A] from v to v′ is:

cost(v, v′) = w(t, A) · dis(v, v′),

Intuitively, the more accurate the original t[A] value v is and
more distant the new value v′ is from v, the higher the cost

of this change. The cost of changing the value of a tuple t to

t′ is the sum of cost(t[A], t′[A]) when A ranges over all at-
tributes in t for which the value of t[A] is modified. The cost
of changingD toD′, denoted by cost(D,D′), is the sum of
the costs of modifying tuples inD. A repair ofD in the up-

date model is an instance D′ of R such that cost(D,D′) is
minimal whenD′ ranges over all instances ofR that satisfy
Σ. This allows us to reduce repairing problem to an opti-
mization problem. In practice, we want to pick new values

v′ from a reference database or from the active domain of

the database based on certain statistical analysis.

The accuracy of a repair can be measured by precision

and recall metrics, which are the ratio of the number of er-

rors correctly fixed to the total number of changes made,

and the ratio of the number of errors correctly fixed to the

total number of errors in the database, respectively.

It is prohibitively expensive to find a repair by manual

effort. The objective of data cleaning is to develop effec-

tive methods that automatically find candidate repairs ofD,

which are subject to inspection and changes by human ex-

perts. It is, however, nontrivial to find a candidate repair.

Theorem 4.1 [5]: Given a set Σ of dependencies and a
database D, the problem of determining whether there ex-

ists a repair D′ with minimal cost(D,D′) is NP-complete,
when Σ is either a fixed set of FDs or a fixed set of INDs. 2

To cope with the tractability, several heuristic algorithms

have been developed (e.g., [5, 13]). A central idea is to sep-

arate the decision of which attribute values should be made

equal from the decision of what value should be assigned to

these attributes. Delaying value assignment allows a poor

local decision to be improved in a later stage of the repair-

ing process, and also allows a user to inspect and modify a

repair. To this end an equivalence class eq(t, A) can be as-
sociated with each tuple t in the dirty database D and each

attribute A in t. The repairing is conducted by merging and

modifying the equivalence classes of attributes in D. For

example, if tuples t1, t2 inD violate an FDX → A, one can

fix the inconsistency by merging eq(t1, A) and eq(t2, A)
into one, i.e., by forcing t1 and t2 to agree on their A at-

tributes. If a tuple t1 violates an IND R1[X ] ⊆ R2[Y ], one
can resolve the conflict by picking a tuple t2 in the R2 rela-

tion that is close to t1, or inserting a new tuple t2 into theR2

table, such that for each corresponding attribute pair (A,B)
in [X ] and [Y ], t1[A] = t2[B] by merging eq(t1, A) and
eq(t2, B) into one. A target value is picked and assigned to
each equivalence class when no more merging is possible.

Based on this idea, heuristic algorithms have been devel-

oped for repairing databases using FDs and INDs [5]. The
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algorithms modify tuple attributes in the right-hand side of

an FD or an IND in the presence of a violation. This strat-

egy, however, no longer works for CFDs: the process may

not even terminate if only tuple attributes in the right-hand

side of a CFD can be modified. Heuristic algorithms for re-

pairing CFDs have been developed [13], which may modify

tuple attributes in either the left-hand side or right-hand side

of a CFD. Together with a statistical method, this approach

guarantees that the accuracy of the candidate repairs found

is above a predefined bound with a high confidence.

5 Concluding Remarks

The primary goal of this paper is to provide an overview

of recent advances in conditional dependencies for data

cleaning. There is much more to be done. One topic for fu-

ture research is to find heuristic methods, with performance

guarantees, for reasoning about CFDs and CINDs taken to-

gether. Another topic is data profiling, to develop effective

methods to discover useful CFDs and CINDs from sample

data. While there has been work on discovering FDs and

INDs, we are not aware of any solid technique for discov-

ering CFDs and CINDs, which is more involved than their

traditional counterpart. A more challenging topic is to de-

velop scalable algorithms for finding repairs based on both

CFDs and CINDs, with performance guarantee.

The notion of constraint-based repairs is introduced in

[3]. Also proposed in [3] is the notion of consistent query

answers, which, given a query Q posed on an inconsistent

databaseD, is to find tuples that are in the answer ofQ over

every repair of D [3, 9, 11, 21, 25] (see [10, 11] for sur-

veys). Another alternative to finding database repairs is by

developing finite and succinct representations of all possi-

ble repairs [25, 1, 2]. Data cleaning systems reported in the

literature include AJAX [18], which provides users with a

declarative language for specifying cleaning programs, and

Potter’s Wheel [23] that extracts structure for attribute val-

ues and uses these to flag discrepancies in the data. Most

commercial ETL tools have little built-in cleaning capabil-

ity, covering mainly data transformation needs such as type

conversions, string functions, etc (see [22] for a survey).

While a constraint repair facility will logically become part

of the cleaning process, we are not aware of analogous func-

tionality currently in any of the systems. It is interesting to

extend these systems by supporting CFDs and CINDs.
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