
Accelerating Linpack Performance with Mixed Precision Algorithm on
CPU+GPGPU Heterogeneous Cluster

WANG Lei1 2 3 ZHANG Yunquan1 2 ZHANG Xianyi1 LIU Fangfang1

1(Lab of Parallel Computing, Institute of Software, Chinese Academy of Sciences, Beijing 100190)
2(State Key Lab of Computing Science, Chinese Academy of Sciences, Beijing 100190)
3(Graduate University of Chinese Academy of Sciences, Beijing 100190)

{lei.beststones, yunquan.zhang, traits.zhang, liuff8265}@gmail.com

Abstract

In this paper, the mixed precision algorithm to solve
the linear system of equations and the implementation
of HPL package are introduced. We use this mixed
precision algorithm to improve HPL package on
CPU+GPGPU heterogeneous clusters, which is named
for GHPL, and give the implementation mechanisms in
detail. The experimental results are measured on the
platforms of multi-core CPUs and CPU+GPGPU
heterogeneous clusters. From the experimental results,
we can find out that our GHPL program has good
scalability on all the experimental environments and
can sustain more than 1.7Teraflops both on the cluster
with 16 nodes containing 32 NVIDIA Tesla C1060
GPUs and on the cluster with 8 nodes containing 32
NVIDIA GeForce GTX 295 GPUs, while the average
speedup of it with respect to HPL is 3.06 and 2.40
respectively.

1. Introduction

The Linpack benchmark is very famous in the HPC
society, since it is adopted as a performance metric for
ranking supercomputers both in the TOP500[1] list of
the world’s fastest computers and in the HPC
TOP100[2] list of the Chinese mainland fastest
computers. In this paper we study and improve the
HPL[3] package, High Performance Linpack, which is
a reference implementation of the Linpack benchmark
written by the researchers of the Innovative Computing
Laboratory at the University of Tennessee. HPL is a
software package that solves dense linear system of
equations using direct LU method in double precision
arithmetic on distributed-memory computers. It’s the
most widely used implementation of the Linpack
benchmark. A testing and timing program is provided
by HPL to quantify the accuracy of the obtained
solution as well as the time it took to finish it. Details
of the HPL implementation are available in [4].

Nowadays, the performance of 32-bit operations is
usually much higher than the performance of 64-bit

operations on General Purpose Graphics Processing
Units (GPGPU). The Mixed precision algorithm uses a
combination of 32-bit and 64-bit floating point
arithmetic to enhance the performance of many dense
and sparse linear algebra algorithms significantly while
still delivering the 64-bit accuracy of the resulting
solution. Thus, in this paper, we try to use the mixed
precision algorithm to improve the HPL package on
CPU+GPGPU heterogeneous clusters, where both
CPUs and GPGPUs are used in synergy.
2. Related work

Mixed precision algorithms stem from the
observation that, in many cases, a single precision
solution of a problem can be refined to the point where
double precision accuracy is achieved. The mixed
precision approach was analyzed by Wilkinson[5] and
Moler[6]. And it can be applied easily to various
problems in linear algebra. The Algorithm 1 is the
mixed precision algorithm to solve the linear system of
equations presented in [7,8]. From this algorithm we
can find out that the most computationally expensive
operation, the factorization of the coefficient A, is
performed using single precision arithmetic to take
advantage of its higher performance. The only parts of
operations that must be executed in double precision
mode are the residual calculation and the iterative
refinement of the solution. In this way that all
operations with computational complexity of 3()O n is
handled in single precision, while operations performed
in double precision are of at most 2()O n complexity. In
[8], Baboulin et al. also demonstrate by experiments
that the maximum number of iterations will be no more
than 5 when the condition number of the coefficient
matrix A is smaller than 610 . The limitation of this
algorithm is that the condition number of such a
coefficient matrix should not exceed the reciprocal of
the accuracy of the single precision; otherwise the
double precision algorithm should be used.
 Dongarra et al. [9] implement the mixed-precision
high performance LINPACK benchmark on the CELL
processor and they also compare the performance of

978-0-7695-4108-2/10 $26.00 © 2010 IEEE
DOI 10.1109/CIT.2010.212

1169

2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

978-0-7695-4108-2/10 $26.00 © 2010 IEEE
DOI 10.1109/CIT.2010.212

1169

2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

978-0-7695-4108-2/10 $26.00 © 2010 IEEE
DOI 10.1109/CIT.2010.212

1169

mixed-precision Linpack with double precision one. A
new parallel processing environment for matrix
multiplications by using both CPUs and GPUs and a
load balancing method for minimizing the execution
time are proposed in [10]. Fatica at NVIDIA
Corporation [11] accelerates HPL package by
implementing a library to intercept the calls to
DGEMM and DTRSM on heterogeneous clusters with
NVIDIA GPUs.

3. Improvement method

3.1. Preliminary implementation

In our preliminary implementation we simply
convert the double precision (64-bit) operations into
single precision (32-bit) operations and substitute the
calls to double precision subroutines of BLAS to single
precision one. The data structure and functions called
to check the convergence are maintaining no change.
Because the iterative refinement process uses double
precision floating point operations, some data
structures and functions should be provided with
double precision. In our program, we define the data
structure HPL_T_dpmat to store the double precision
coefficient matrix A. The double precision operations
functions such as HPL_pddmatgen are used to generate
the double precision coefficient matrix randomly,
HPL_ddgemv, HPL_ddgemm, HPL_ddtrsm etc. are
used to call the subroutines in BLAS, and the
HPL_recv_D, HPL_send_D, HPL_broadcast_D,
HPL_all_reduce_D, HPL_sum_D, HPL_max_D etc.
are used to communicate between processes.

3.2. L triangular matrix pivoting and
permutation matrix P storage problem

HPL solves the dense linear system of equations of
order n:
 ; ; ,n n nAx b A R x b R×= ∈ ∈
by first performing LU factorization with partial
pivoting on the n by (n+1) coefficient matrix:
 [] [], , ,P A b L U y⎡ ⎤= ⎣ ⎦

Since the row pivoting (represented by the permutation
matrix P) and the lower triangular factor L are applied
to b as the factorization progresses, the solution x is
obtained in one step by solving the upper triangular
system U x y= .The lower triangular matrix L is
left un-pivoted and the array of pivots is not returned.
However, these information will be used at the 5th step
of the Algorithm 1. Thus, we improve the HPL package
in the following two aspects:
1) Creating an array ipiv[] to store the row pivoting

information in every process.
2) Modifying the function of HPL_pdgesv0 and

HPL_pdgesvk2 to store the row pivoting
information and apply it to the previous columns
of L after factoring a panel.

3.3. L y P b= implementation

In HPL package it only uses one function to
implement the 1st and 2nd step of Algorithm 1. But the
5th step of Algorithm 1 also needs the function
Ly Pb= to be computed alone. Thus we first apply
the row pivoting matrix generated in 3.2 to the vector b
and then implement a function called HPL_pdtrsv_L to
solve Ly Pb= .

As Figure 1 shows, the operations in this function
progress step by step on the block size of NB as
factoring the panel does. To facilitate description, we
assume that we are now dealing with the block kkL on
the diagonal. First we call the function HPL_dtrsv to
solve 'kkL y b= and get the solution vector x. Then we
send the solution x to the process that owns the blocks
at the below of the block kkL so that the processes that
receive x will call function HPL_dgemv to update their
partial b elements. After finishing that, the updated
partial b elements will be broadcasted along the row
process grid, then the next block on diagonal can be
operated in the same way until the block nnL .

To improve the performance, we use the look-ahead
technology in this paper to implement this function.
After computing the block kkL , we first send the
solution x just to the process that owns the block next
to kkL (the block with sloping grain in Figure 1) rather
than send it to all the process in the current column.

 1: LU PA← ()sε
 2:solve Ly Pb= ()sε
 3:solve 0Ux y= ()sε
 do k = 1, 2, ……..
 4: 1k kb Ar x −← − ()dε
 5:solve kL y P r= ()sε
 6:solve kU z y= ()sε
 7: 1k k kx x z−← + ()dε
 check convergence

done

Algorithm 1. Mixed precision, iterative
Refinement for Direct Solvers[5]

117011701170

After that, this process will update its partial b elements
and broadcast along the row process grid. After that the
block 1 1k kL + + on the diagonal can be computed
while the other processes owing blocks below kkL are
updating the partial b elements. In this way, these two
parts can run in parallel, the performance can be
improved a lot.

L

U
Lkk

Figure 1. The progress diagram of HPL_pdtrsv_L

3.4. Iterative refinement and convergence
checking

 The iterative refinement process is implemented in
accordance with the 4th to 7th step of Algorithm 1 that
uses our improved functions. The convergence
checking process is to check whether

*/(*()*) 16.0AX b eps X A b N∞ ∞ ∞ + ∞− <
(eps=1.110223e-16) is satisfied just as HPL does. The
operations to check convergence are using 64-bit
floating point arithmetic.
3.5. Implementation on CPU+GPU
heterogenous cluster platform

The SGEMM and STRSM subroutines are running

simultaneously on both GPUs and CPU cores through
linking with the library of GotoBLAS and CUBLAS for
their intensive computational work.

The idea used in this work is as follows:
The SGEMM operation:
 C AB Cα β= +
can be expressed as(as shown in figure 2):
 1 2 1 2() ()C AB AB C Cα β= + + +

Figure 2.The green portion(left part) is performed on the GPU,
while the red portion(right part) is performed on the CPU[11]

The STRSM operation:

()* *op A X alpha B=
can be expressed as (as shown in figure 3):

1 2()* *()op A X alpha B B= +

Figure 3.The green portion(left part) is performed on the GPU,
while the red portion(right part) is performed on the CPU

 The optimal split of the matrix size should keep the
time consumed by the GPUs and CPUs equal and this is
analyzed in [10,11].

In order to reduce the data transferring time cost
between the host to device and device to host, we use
the pinned memory mechanism provided by CUDA[12].
4. Experimental results

Our experimental results consist of two parts. In the
first part we conducted our experiments on the system
described in Table 1. In this part we compared the
performance of our improved CPU-only HPL (not link
with CUBLAS) with the typical HPL on multi-core
platform. To be convenient, our improved HPL is
named for MHPL.

Architecture Clock

[GHz]
Memory
[GB]

BLAS HPL MPI Compiler

AMD
Opteron
870

2.0 16 Netlib* HPL-
2.0

Mpich-
1.2.7

gcc3.4.3

Table 1. Hardware and software configuration of the multi-core
system for performance experiments

From Figure 4 we can find out that the speedup is
increased along with the increase of the matrix size.
When the size of matrix is very small the speedup can
below 1 since the time consumed by iterative
refinement process is nearly the same as the time to

* http://www.netlib.org/blas/

117111711171

factor the matrix. The performance is decreased due to
the extra operations. Figure 5 also shows that MHPL
has good scalability when the number of processes
increase.

0

0.5

1

1.5

2

2.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

sp
ee

du
p

the size of matrix

NB=64 P=2 Q=4

Figure 4 The speedup of MHPL over HPL when increasing

the matrix size on CPU cluster

0

200

400

600

800

1000

1200

1*1 1*2 2*2 2*4

ti
m

e(
s)

process grid P*Q

N=8000 NB=64

MHPL

HPL

Figure 5. The performance comparison of MHPL and HPL

with different number processes

Figure 6 and Figure 7 reflect the performance impact of
the iterative refinement process. From them we can find
out that along with the increase of the matrix size, the
time consumed to refine the solution decreased and can
be ignored to some extent.

0

0.5

1

1.5

2

2.5

3

3.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

nu
m

be
r o

f i
te

ra
ti

on
s

the size of matrix

NB=64 P=2 Q=4

Figure 6. The number of iterations with the increasing of matrix
size of MHPL

0

5

10

15

20

25

30

35

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

pe
rc

en
t %

the size of matrix

NB=64 P=2 Q=4

Figure 7. The ratio of the time consumed by iterative refinement
process to the total execution time of MHPL

In the second part, the experimental results were
measured on the systems described as follows:
1. One cluster with 16 nodes, each node equipped

with 2 Tesla C1060 GPUs and 2 Intel Xeon
E5410(2.33GHz), with 8GB of memory. These
nodes are connected with DDR Infiniband.

2. One cluster with 8 nodes, each node equipped with
4 GeForce GTX 295 GPUs and 2 Intel Xeon
E5430(2.66GHz) with 16GB of memory. These
nodes are connected with DDR Infiniband.

The experiments are conducted on Linux RHEL4
64-bit OS using GotoBLAS2-1.08 as the host BLAS
library. The compiler and MPI version are gcc-4.1.2
and openmpi-1.2.8 respectively, while the CUDA
toolkit version is CUDA2.2 and the GPU driver version
is NVIDIA x86_64 Kernel Module 190.18. In this
paper we use GHPL to refer to this GPU accelerated
HPL package. Each GPU is working in collaboration
with 2 CPU cores.
 In order to get the highest performance, we need to
find out the optimal division of computation between
CPUs and GPUs. Thus, we run the program with
different portions of matrix on GPUs to perform
SGEMM and STRSM. And we define the split ratio of
matrix on GPU as Rsgemm for SGEMM and Rstrsm
for STRSM. As Figure 8 shows that different split ratio,
especially the Rsgemm, of matrix on GPU influence the
performance greately. And we also find out that when
Rsgemm and Rstrsm both equal to 0.92, we can get the
optimal performance on our platform.
 Table 2 and 3 show the experimental performance
results using GHPL on the platform with different
number of GPUs. For each process grid size between 1
and 32, we run GHPL with different size of NB
parameter and different size of N parameter. Then we
select the optimal results. Due to the limited host
memory we can’t run the program on larger matrix size
to get higher performance. But we still get the score
that break the Teraflop barrier on both heterogeneous
clusters. From the tables we can also find out that the

117211721172

NB size is bigger than the one a typical CPU Linpack
running used. The reason for this is that it controls the
parameter K for SGEMM. From figure 9 we can find
out that GHPL has good scalability as the number of
process increases. Figure 10 shows that along with the
increase of the matrix size the performance is getting
higher and higher. Thus, we can expect our GHPL’s
perspective performance on the cluster with larger host
memory. Figure 11 and Figure 12 show the speedup of
GHPL with respect to HPL for different number of
processes on platform 1 and platform 2. Due to the
limited host memory, the speedup is drop significantly
as the number of processes increase.

0

20

40

60

80

100

120

140

160

180

200

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94

G
fl

o
p

s

Rstrsm

Rsgemm=0.8 Rsgemm=0.82 Rsgemm=0.84 Rsgemm=0.86

Rsgemm=0.88 Rsgemm=0.9 Rsgemm=0.92 Rsgemm=0.94

Figure 8. The performance results of using different portions of
matrix on GPU to perform SGEMM and STRSM

T/V N NB P*Q Time(s) Gflops
WR05R2R4 24000 1600 1 47.25 195.1
WR05R2R4 24000 1664 2 34.09 270.4
WR05R2R4 32000 960 4 51.74 422.2
WR05R2R4 48000 832 8 87.01 847.4
WR05R2R4 63360 960 16 118.52 1431
WR05R2R4 63360 896 32 98.96 1714
Table 2. Performance results using GHPL on platform with
Tesla C1060

T/V N NB P*Q Time(s) Gflops
WR05R2R4 32000 1920 1 88.736 246.2
WR05R2R4 32000 1664 2 67.28 324.7
WR05R2R4 32000 1600 4 44.39 492.2
WR05R2R4 48000 1152 8 83.79 880.0
WR05R2R4 62720 1152 16 109.73 1499
WR05R2R4 62720 1152 32 92.72 1774
Table 3. Performance results using GHPL on platform with
GeForce GTX 295.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 4 8 16 32

G
flo

ps

P*Q

Tesla C1060

GeForce GTX 295

Figure 9. GHPL performance results with different number of
processors

0

200

400

600

800

1000

1200

1400

1600

1800

2000

17600 32000 48000 51200 54400 57600 59520 63360

G
Fl

op
s/

s

size of the matrix

P*Q=32

P*Q=16

Figure 10. The performance results of GHPL with different
matrix sizes

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4 8 16 32

sp
ee

du
p

number of processes P*Q

Figure 11. The speedup of GHPL with respect to HPL on
platform 1

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8 16 32

sp
ee

du
p

number of processes P*Q

Figure 12. The speedup of GHPL with respect to HPL on
platform 2

117311731173

6. Conclusions and future work

In this paper, we use mixed precision algorithm to
improve HPL package. Some experiments are
conducted on both multi-core platform and
CPU+GPGPU heterogeneous clusters. From our
experimental results, we find out that the improved
HPL which is named for GHPL has good scalability on
all the experimental environments. On multi-core
platform the average speedup of GHPL with reference
to HPL is nearly 2, very close to the speed of the full
single precision solver while delivering the same
accuracy as the full double precision one. On the two
CPU+GPGPU clusters, though the host memory is
limited, the performance of GHPL can sustain more
than 1.7Teraflops, while the average speedup of GHPL
with respect to HPL is 3.06 and 2.40 respectively.
 In future, we can test our GHPL program on the
platform with large host memory so that we can obtain
much higher performance. We can also transplant our
program to the heterogeneous platform with ATI GPU
by linking with ACML-GPU library.

7. Acknowledgement

 We thank Prof. Wei Ge and Dr. Xianfeng He for
their kindly support and providing us with the
CPU+GPGPU experimental environments. Our work is
partially supported by the NSFC project (No.
60533020), and national 863 project
(No.2006AA01A125, No.2009AA01A134 and
No.2009AA01A129).

8. References

[1] http://www.top500.org

[2] http://www.rdcps.ac.cn/English.htm

[3] http://www.netlib.org/benchmark/hpl/

[4] J. Dongarra, P. Luszczek, A. Petitet, “ The Linpack

Benchmark: Past, Present and Future”, Concurrency and
Computation: Practice and Experience, Vol. 15, No. 9,
2003.

[5] Moler, C. B.: Iterative Refinement in Floating Point. J.

ACM(2) (1967) 316-321
.
[6] Wilkinson, J. H.: The Algebraic Eigenvalue Problem.

Oxford, U.K.: Clarendon, 1965.

[7] J.Langou, J. Langou, P.Luszcek, J.Kurzak, A.Buttari and

J.J.Dongarra. Exploiting the performance of 32bit
floating point arithmetic in obtatining 64 bit accuracy. In
Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, 2006, Tampa USA.

[8] M.Baboulin et al., Accerlating scientific computations

with mixed precision algorithms, Computer Physics
Communications(2008), doi:10.1016/j.cpc.2008.11.005

[9] Jakub Kurzak, Jack Dongarra. Implementation of the

Mixed-Precision High Performance LINPACK
Benchmark on the CELL Processor. University of
Tennessee Computer Science, Tech. Rep. UT-CS-06-580,
LAPACK Working Note 177), September 2006.

[10] Ohshima S, Kise K, Katagiri T, et al. Parallel Processing

of Matrix Multiplication in a CPU and GPU
Heterogeneous Environment[C]//VECPAR'06 - 7th
International Meeting on High Performance Computing
for Computational Science. Rio de Janeiro, Brazil:
Springer, 2006: 305-318.

[11] M.Fatica, “Accerlerating linpack with CUDA on

heterogenous clusters,” in Proc. Of 2nd Workshop on
General Purpose Processing on Graphics Processing
Units, 2009

[12] NVIDIA CUDA Compute Unified Device Architecture

Programming Guide

117411741174

