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ABSTRACT 

Relaying on early effort estimation to predict the required number 

of resources is not often sufficient, and could lead to under or 

over estimation. Software Project managers may not recognize 

that software development process should be refined regularly and 

that software prediction made at early stage of software 

development is yet kind of guesses. Even good predictions are not 

sufficient with inherent uncertainty and risks. The stage-effort 

estimation allows project manager to re-allocate correct number of 

resources, re-schedule project and control project progress to 

finish on time and within budget. In this paper we propose an 

approach to utilize prior effort records to predict stage effort. The 

proposed model combines concepts of Fuzzy set theory and 

association rule mining. The results were good in terms of 

prediction accuracy and have potential to deliver good stage-effort 

estimation.  

Categories and Subject Descriptors 

D.2.9 [Software Engineering]: Management—cost estimation. 

General Terms 

Management, Measurement 

Keywords 

Software Stage-Effort Estimation, Fuzzy Set Theory, Association 

Rule Mining. 

1. INTRODUCTION 
Software effort estimation has long been and still a complex task 

for software industries [6, 7, 8, 9]. Due to dramatic changes in 

software development tools, methods, and methodologies, 

software applications become more complex, time to market is 

shortened, and the need to produce software at reasonable cost 

with high quality is the target of most organizations [1, 2]. 

Consequentially, a reliable and accurate early software effort 

estimation model is required in inception phase and particularly 

when bidding for a contract or making appropriate decisions. 

Unfortunately, this is not enough. Several surveys and reports [3, 

5] revealed that 16% of 8000 complete projects only were 

delivered within budget and time, while 31% were cancelled 

before completion, and 53% were overrun in budget and schedule 

which resulted in project failure. Other authors [3, 4] showed that 

some 60% of large projects significantly overrun their estimates 

(with an error percentage that can vary from 100% to 200%) and 

15% of the software projects are never completed due to the gross 

misestimating of development effort [4]. 

Project managers and software developers often recognize that 

estimate made at the beginning of software development is quite 

sufficient to be relied on until the end of software project [11]. 

However, in most cases this is not true because software 

development is a process of gradual refinement [10, 11]. Even 

good early estimates are only guesses, with inherent uncertainty 

and risks. In other words, the developers cannot depend on these 

estimates throughout software development without any sense of 

update to current project progress. This eventually will lead to 

expected overestimation or underestimation problems. It is 

acknowledged that under-estimation [4] causes understaffing and 

consequentially takes longer to deliver project than necessary. For 

instance, if you provide a project more resources than it really 

needs without sufficient scope controls of how to use them, the 

project is then likely to cost more than it should [4]. On the other 

hand, overestimation could lead to miss opportunities to funds in 

other projects in the same company [7]. This presses the need to 

dynamically predict the software effort during project progress in 

order to update the project schedule, thus, to finish on time and 

within budget. In this context, we understand that software effort 

estimation is a dynamic process and it needs gradual refinement 

during software development process to keep the project schedule 

under control and reduce associated risks. 

In this paper we investigate the significant impact of using effort 

records of prior stages to develop an evolving picture of the 

potential effort for next stage. Stage is often a software life cycle 

phase such as requirements, design, coding, testing, and 

implementation [12]. Recently, most of the proposed approaches 

used statistical methods to map between prior stages and next 

stage [13]. These methods revealed that is difficult to predict next 

stage effort based on prior stages effort; in addition they usually 

require a large amount of data or data that have a certain statistical 

distribution [12]. 

The objective of the present paper is to propose a model that can 

predict stage-effort based on prior stage efforts. We combine the 

concepts of Fuzzy set theory [25] and association rule mining [22] 

to build such a model. Using association rule mining allows us to 

explore the hidden knowledge between prior effort stages and 

next effort stage. The Fuzzy set theory [25] was used to deal with 

linguistic terms that derived after partitioning a dataset to a 

number of intervals. Each interval is represented by a 

corresponding Fuzzy set which will be used for approximate 

reasoning to predict effort of target stage. The rest of the paper is 

structured as follows: in section 2 we review the stage effort 



estimation approaches. Section 3 presents an overview of Fuzzy 

set theory. We then introduce an overview of association rule 

mining in section 4. The proposed approach is discussed in 

section 5.  The results of the empirical validation are discussed in 

sections 6 and 7, followed by conclusions of our study and 

recommendations for future work. 

2. RELATED WORK 
Although much researches have been carried out in the context of 

software effort estimation [15, 16, 17, 18], very little research 

effort has been put into the area of software stage-effort 

estimation. The term stage has been used in different contexts 

where some of them considered it as phase of software 

development lifecycle [13, 14] and others considered as calendar 

month [12]. 

MacDonell [13] investigated the potential of using prior effort 

data records to develop stage effort estimation. His model was 

built over sixteen projects collected from a single organization. 

The developed model revealed that there was no improvement on 

estimation accuracy when using only regression techniques. In 

contrast, he showed that prediction could be improved when 

combining regression technique with expert estimates.  Ohlsson et 

al. [14] used phase-based data (proxy) such as number of 

requirements, flowcharts, number of test case, etc. to build a 

stage-effort prediction model using regression analysis. They 

injected each stage with several related proxies to improve 

prediction accuracy. The analysis based on 26 projects showed 

that no single proxy was found to be a good measure for stage 

effort prediction. This result emphasizes the need to make 

appropriate decisions regarding proxy selection. The authors came 

to conclude that it is difficult to improve stage effort prediction 

during software development, at least if the early estimation was 

fairly good. 

In the opposite direction, Wang and colleagues [12] built a gray 

learning method based on GM(1,1) for stage effort prediction, 

where the stage in their study was a calendar month. They claimed 

it is more frequently used by managers to plan and control the 

progress of a project. Thus, the manager needs to predict project 

schedule regularly. Results on 10 datasets demonstrated that the 

model has a considerable potential to deliver good stage 

estimation. 

 

3. FUZZY SET THEORY 
Fuzzy set theory as introduced by Zadeh [25] provides a 

representation scheme and mathematical operations for dealing 

with uncertain, imprecise and vague concepts. Fuzzy logic is a 

combination of a set of logical expressions with Fuzzy sets. Zadeh 

[25] defined the meaning of the membership for Fuzzy sets to be a 

continuous number between zero and one. Each Fuzzy set is 

described by membership function such as Triangle, Trapezoidal, 

Gaussian, etc., which assigns a membership value between 0 and 

1 for each real point on universe of discourse. 

 

4. ASSOCIATION RULE MINING 
Association rule mining is one of the important techniques in data 

mining [19] which aims to discover the associations and frequent 

patterns amongst set of items in a particular database [20, 21]. It 

has been successfully applied in various fields such as: market 

management [19], product purchasing logs of retail stores [20], 

website traffic logs [21] and classification [22]. The association 

rules do not imply causality which means that each rule is 

attached with a weight that relates to the statistical confidence of 

this rule. Association rule is denoted by an expression (A=>B) 

where A is Antecedent and B is Consequent, both A and B are sets 

of items [20]. For example, in an online book store there are 

always some tips displayed when you purchase a particular book 

containing a list of some related books as recommendation for 

further purchasing. Below we explain the association rule 

technique in more details: 

Let D be database of different transaction records, I= {I1, I2, I3, 

I4…, Im} be a set of m distinct binary attribute values called items 

[19, 20].  Each transaction T∈D is a set of items such that T ⊆ I. 

Association rule is an implication in the form A=>B which means 

that whenever T contains A, then T also contains B with specified 

confidence [21, 22], where A, B ⊂ I are sets of items called 

itemsets. Since the data base is large and users only concern about 

frequent interesting patterns, there are two measures used to 

capture the statistical strength of a pattern: support and confidence 

[19, 20]. Support is an indicator of rule frequency. The rule 

confidence is the probability that consequent B will follow 

antecedent A and is expressed as the percentage of transactions 

containing A and B to the overall number of transactions 

containing A. The pre-defined thresholds for interesting 

association rule are called minimal support and minimal 

confidence respectively [19, 20, 21].   

Most of association rule mining algorithms are not applicable to 

software engineering data because these data are often represented 

in numeric scale but the algorithms deal only with categorical 

(nominal) data [20, 23]. In this paper we would like to extend the 

association rule technique to take of advantage of the numeric 

values by distributing them to intervals as discussed in the next 

section, and then represent each interval with nominal data. All 

extracted association rules should be filtered according to target 

stage. For example, if the target stage prediction is the “design 

phase” then we have to filter all extracted rules that contain 

design phase as consequent only.  

5. THE PROPOSED APPROACH  
The proposed approach combines the concepts of Fuzzy set theory 

[25] and association rule mining [19, 20]. The Fuzzy set theory 

[25] is used to represent the corresponding linguistic variables for 

each interval instead of representing them as crisp interval. Thus, 

this should help us to derive the final prediction after determining 

the corresponding Fuzzy set for the target stage. Determining the 

corresponding Fuzzy set for the target stage is performed by using 

association rule which attempts to find confident rules between 

prior stage(s) and stage under prediction. The approach is 

described by 5 steps as explained below: 

Step1: define the universe of discourse U for each stage in 

historical dataset, then divide it into several equal intervals 

(lengths). In this step the minimum (Dmin) and maximum (Dmax) 

value of each universe of discourse is determined. 

Consequentially, based on Dmin and Dmax we define the universe U 

as [Dmin-D1, Dmax+D2] where D1 and D2 are two proper positive 

numbers used to make the universe U more clear containing all 

possible values in the dataset. After that, each U should be 

partitioned into a number of equal intervals where the number and 

length of intervals should be predefined by estimator. Assuming n 



is the number of intervals then the length of interval L is 

calculated as follows: 

L=
[ ]

n

DDDD )()( 1min2max −−+
 (1) 

Then each interval is defined as follows: 

[ ] niiLDDLiDDWi ≤+−−+−= ,)(,)1()( 2max1min  (2) 

For example, let us consider the “specification stage” has the 

following boundary: (Dmin=22) and (Dmax=162). For simplicity we 

choose D1=12 and D2=8, thus the universe of discourse for the 

specification stage is defined as U=[10 , 170]. This means that 

based on available historical data the effort records of 

specification stage is delimited between 10 to 170 man- months. 

Let U be divided into four equal intervals with equal length as 

following: 

 

L=
[ ]

40
4

)1222()8162(
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with: W1 =[10, 50), W2 =[50, 90), W3 =[90, 130) and W4 =[130, 

170).  

Step 2: define a corresponding linguistic variable (Fuzzy set) for 

each interval in the universe of discourse U. The number of Fuzzy 

sets must be related to the number of intervals. Let A1, A2 , A3 

,…,An be Fuzzy sets which are linguistic terms defined as depicted 

in equation 3:   

( ) [ ]{ }ninjRWWWWA jjAjjAi ii
≤≤≤≤∈∈= 1,1,,1,0)(|/)( µµ  (3) 

 

where: 

� )( jA W
i

µ is the membership degree of interval jW in 

Fuzzy set iA . 

� n corresponds to the number of intervals. 

Therefore the linguistic terms A1, A2 , A3 ,…,An will be defined as 

follows:  

}/0,/0,/0......,/0,/0,/5.0,/1{ 1243211 nnn WWWWWWWA −−=  

}/0,/0,/0......,/0,/5.0,/1,/5.0{ 1243212 nnn WWWWWWWA −−=  

…  …  … … 

…  …  … … 

}/1,/5.0,/0...../0.,/0,/.0,/0{ 124321 nnnn WWWWWWWA −−=  

 

Based on the previous example in step 1, the possible Fuzzy sets 

for the four intervals W1 , W2 ,W3 ,W4 should be defined as 

follows: 

}0,0,5.0,1{
4321

1 WWWW
A =  

}0,5.0,1,5.0{
4321

2 WWWW
A =  

}5.0,1,5.0,0{
4321

3 WWWW
A =  

}1,5.0,0,0{
4321

4 WWWW
A =  

Step 3: determine the target stage and discover association rules 

between prior stage(s) and target stage. In this step we used 

predictive APRIORI algorithm [22] that is implemented in 

WEKA data mining tool [26]. The minimum support is set by 

0.01 and minimum confidence is set by 0.8. These values have 

been carefully chosen to avoid too few rules that would occur if 

the confidence was very high.  

In this paper we will replace the name of all stages with the 

following abbreviations. The number preceding the abbreviation 

represents the order of stage in software development process. 

1. EP: Effort of Planning stage. 

2. ES: Effort of Specification stage. 

3. ED: Effort of Design stage. 

4. EB: Effort of Building stage. 

5. ET: Effort of Testing stage. 

6. EI: Effort of implementation stage. 

 

Step 4: filtering extracted rules. All generated rules are filtered to 

obtain interesting rules that contain specified target as consequent 

and all rules should respect stage order integrity. This means that 

all stages in antecedent parts should not precede target stage in 

consequent part. For example, if the target stage is the “design 

phase: ED” then all rules that contain this phase only will be 

taken for further processing and others are neglected. The 

following rules are taken for further processing:   

EP1=>ED4 

ES2 and EP3=>ED2 

The number after abbreviation denotes corresponding Fuzzy set 

(interval). 

Conversely, the following rules are neglected because there are 

problems in either antecedent or consequent part: 

EP1 and ES2=>ED1 & ET3: because ED1 should appear alone in 

consequent part 

ES1 and EI=>ED1: because EI cannot precede ED 

 

Step 5: calculate the predicted output. Firstly, defuzzify all 

expected outputs with regards to target stage: 
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where )( jWm is the centre value of expected interval of target 

stage in historical dataset. Secondly, the estimated effort is 

calculated by computing the weight average of defuzzification 

values. The weight here is confidence ratio of extracted rules as 

shown in equation 5. 
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where k is the number of rules.   

For example assume we want to predict specification stage of a 

project. Consider prior stage is software plan phase and its effort 

value is located in the first interval (EP1). Based on association 

rule, the following rules have been extracted:  

 

EP1=>ES4 (confidence= 0.932) 

EP1=>ES3 (confidence= 0.843) 

EP1=>ES1 (confidence= 0.78)  

Then corresponding Fuzzy sets that represent expected target 

stage based on previous rules should be defuzzfied. From this 

example we can observe that the input interval has many relations 

with target intervals, i.e. EP1 has three significant relations with 

ES4, ES3 and ES2 in the specification phase. Therefore we need 

to take their impacts on the final estimate. The effort for 

specification phase stage is calculated as following: 
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By using equation 5 the predicted effort is: 
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6. EVALUATION CRITERIA 
Many evaluation criteria are introduced in software engineering 

literature, among them we selected three evaluation criteria are 

Bias, Mean Magnitude of relative errors (MMRE) and Median 

Magnitude of relative errors (MdMRE). Bias in equation (6) is 

used to check whether the proposed prediction model is biased 

and tends to under or over estimation. MMRE in equation (7) 

computes the degree of estimation error in an individual estimate 

and should be less than 25% to be acceptable. Since the MMRE is 

sensitive to the individual prediction with large MRE we adopt 

median MRE (MdMRE) which is less sensitive to the extreme 

value of MRE. The acceptable target for MMRE and MdMRE is 

less or equal to25%. 
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7. RESULTS AND DISCUSSIONS 
The dataset used in empirical validation came from ISBSG [24]. 

The obtained dataset contains effort records for six phases are: 

plan effort, specification effort, design effort, building effort, 

testing effort, implementation effort. As a preliminary stage of 

data pre-processing we attempted to select the most representative 

data, therefore we ignored the projects records that contain 

missing values. 

Determining the possible number of intervals in each stage is 

carried out based on the distribution of effort data in each stage as 

shown in Figures 1 to 6. There is no clear mechanism for how to 

determine the perfect number of intervals therefore we attempted 

to study density of data for each stage separately. The performed 

analysis resulted in different number of intervals between stages. 

The obtained number of intervals reflects the density and range of 

data in each stage. 

Table 1. Number of intervals 

Stage Number of Intervals 

Planning  7 

Specification 8 

Design 10 

Building 9 

Testing  8 

Implementation  11 

 

The theme of this paper is to address the following arising issue: 

can project manager relay on prior effort records to predict next 

stage effort? To answer this question, the proposed model has 

been evaluated using jack-knifing method. We used 34 projects 

with complete effort records. 

Table 2 and Table 3 depict the results obtained by our proposed 

approach compared to exponential regression (where target stage 

is regarded as dependent variable and all pervious stages as 

independent variables). From Table 2 we can observe that all 

outputs tend to be under estimation. Three out of five stages 

producing good estimate are specification, building and testing, 

while design stage produced better results compared to 

implementation stage (which produced the worst stage effort 

estimation in terms of MMRE). The reason is related to that the 

ISBSG is scattered as result of collection from different 

worldwide companies. The effort records have complex structure 



in which there is no consistent structure for all effort records. 

Based on MdMRE we can observe that our approach in most of 

stages produced comparable estimation accuracy with maximum 

30.2% in implementation stage. Results shown in Table 3 

revealed that most of predictions are under estimation which 

supports our approach findings. The best estimation accuracy was 

obtained in building stage, which also corroborates our findings 

that best estimation accuracy was in building stage. The negative 

values in Bias criterion show underestimation. It is acknowledged 

that MMRE is unbalanced in many validation circumstances and 

leads to overestimation more than underestimation. In our case, 

we found that MMRE leads to underestimation in most stages. 

This is may be related to the absence of systematic scheme 

between all prior effort records. 

 

 

  

Fig. 1. Effort distribution of Planning stage  Fig. 2. Effort distribution of Specification 

stage  

  

Fig. 3. Effort distribution of Design effort stage  Fig. 4. Effort distribution of Building stage  

  

Fig. 5. Effort distribution of Testing stage  Fig.6. Effort distribution of Imp. stage  



 

Table 2. Results using the proposed approach 

Stage Bias MMRE MdMRE 

Specification effort -8.5% 27.0% 17.0% 

Design effort -33.1% 40.5% 13.7% 

Building effort -2.8% 9.3% 7.5% 

Testing Effort -11.6% 16.7% 7.23% 

Implementation effort -20% 91.0% 30.2% 

 

Table 3. Results using exponential regression 

Stage Bias MMRE MdMRE 

Specification effort -24.3% 81.3% 49.7% 

Design effort -72.3% 120.4% 54.224% 

Building effort 0.7% 44.35% 37.6% 

Testing Effort -45.4% 81.1% 39% 

Implementation effort -179% 184% 104% 

 

The comparison between our approach and exponential regression 

technique showed that there are considerable improvements in 

estimation accuracy on all phases of software development 

lifecycle. MMREs of our approach have been reduced by at least 

35.05% and at most 93%. Biases have been reduced by at least 

3.5% and at most 159%.We have to bear in mind that the length 

of interval plays important role in estimation accuracy, thus, when 

the universe of discourse is partitioned into several equal 

intervals, the distribution of data should be taken into account. 

Moreover, we should remove the extreme values because they 

affect interval partitioning, thus, estimation accuracy. 

Figures 7 to 11 show comparison between proposed approach and 

exponential regression in each stage by using Boxplot. The 

Boxplot [17] offers a way to compare between estimation models 

based on their absolute residuals. The Boxplot is non-parametric 

statistics used to show the median as central tendency of 

distribution, interquartile range and the outliers of individual 

models [17]. The length of Boxplot from lower tail to upper tail 

shows the spread of the distribution. The length of box represents 

the interquartile range that contains 50% of observations. The 

position of median inside the box and length of Boxplot indicate 

the skewness of distribution. A Boxplot with a small box and long 

tails represents a very peaked distribution while a Boxplot with 

long box represents a flatter distribution. 

The prominent and common characteristic among these figures is 

the spread of absolute residuals for our approach is less than 

spread of exponential regression which presents more accurate 

results. The larger interquartile of exponential regression indicates 

a high dispersion of the absolute residuals. The Boxplot revealed 

that the box length for our models is smaller than exponential 

regression which also indicates reduced variability of absolute 

residuals. The median of our model is smaller than median of 

exponential regression which revealed that at least half of the 

predictions of our model are more accurate than exponential 

regression. The lower tails of our model is much smaller than 

upper tail which means the absolute residuals are skewed towards 

the smaller value. 

Figure 11 illustrates the reason of why prediction of 

implementation stage in our approach produced the worst 

accuracy. The reason related to the existing of outlier. Although 

one project is considered as an outlier the MMRE is easily 

influenced with that project.  

Based on the obtained results, we can observe that exponential 

regression gave bad accuracy. The reason may relate to the 

structure complexity of prior effort records. There is no 

correlation between all prior stages and target stage. 

To ensure that the results obtained are not by chance we 

investigated the statistical significance of the proposed approach 

using Wilcoxon sum rank test for absolute residuals as shown in 

Table 4. In this test if the resulting p-value is small (p<0.05), then 

a statistically significant difference can be accepted between the 

two samples’ median. The residuals obtained using the proposed 

approach were significantly different from those obtained by 

exponential regression. Suggesting that, there is difference if the 

predications generated using the proposed approach or 

exponential regression and based on the accuracy comparison in 

Tables 2 and 3 we can safely conclude that our proposed method 

outperformed exponential regression for stage effort estimation. 

Table 4. Statistical significance  

Stage sum rank Z-value p-Value 

Specification effort 769 -4.31 <0.01 

Design effort 713 -5.03 <0.01 

Building effort 685 -5.4 <0.01 

Testing Effort 595 -6.54 <0.01 

Implementation effort 799 -3.93 <0.01 

 

As in any experiment, there always some of threats affect 

empirical validation. In our case: 

1. the proposed model is validated only over ISBSG data, 

thus we believe is not sufficient. There is need for more 

investigation based on data collected specially for stage 

effort estimation purpose. 

2. the major threat to validity of our study is the 

population model. It is very hard to choose 

representative data; we performed pre-processing stage 

to identify the most representative data by ignoring 

projects that contain missing values in all effort records. 

It is argued that removing those projects could loss 

some valuable information.  

3. length of interval and existing of outliers. The extreme 

values has significant impact of intervals partitioning 

therefore it leads to bad estimation accuracy. Most of 

extreme values in all universe of discourse have been 

removed which resulted in 34 representative projects. 

4. number of rules: when number of prior stages increase, 

the number of extracted rules will be also increased. 

Furthermore, sometimes the number of rules is too few 



because of minimum support and confidence. Thus it 

becomes difficult to predict the target stage effort unless 

we change minimum confidence. 

 

8. CONCLUSIONS 
Some of software projects are failed due to the absence of re-

estimation during software development which results in huge gap 

between initial plan and final outcome. Even with good estimate 

at first stage the project manager must keep update with project 

progress and should be able to re-estimate the project at any 

particular point of project in order to re-allocate the proper 

number of resources. The objective of this paper was to check 

whether the prior effort records can be used to predict stage effort 

with reasonable accuracy or not. The obtained results revealed 

that using association rule and Fuzzy set theory lead to significant 

improvement in stage-effort estimation and give project manager 

an evolving picture about project progress. Comparing our 

approach with exponential regression showed that there is a 

considerable potential in estimation accuracy. As part of future 

plan, we intend to expand this work to involve some interesting 

features in each stage prediction and evaluate it on many datasets. 
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Fig. 7. Boxplot of absolute residuals for 

the specification stage 

 

Fig. 8. Boxplot of absolute residuals for the design stage 

 

  

Fig. 9. Boxplot of absolute residuals for 

the building stage 

 

Fig. 10. Boxplot of absolute residuals for the testing stage 

 

 

Fig. 11. Boxplot of absolute residuals for the implementation stage 

 

 

 

 


