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Abstract—The scalability of a computing system can be
identified by at least three components: (a) size, (b) geograph-
ical distribution, and (c) administrative constraints. Newer
paradigms, such as clouds, grids, and clusters bring in more
parameters to the aforementioned list, namely heterogeneity,
energy consumption, and transparency. To optimize the per-
formance of a computing system, it is manner that exploits
heterogeneity and is scalable. Moreover, newer systems also
demand energy efficiency as an integral part of schedulers. In
this paper, we evaluate the behavior of low complexity energy-
efficient algorithms for scheduling. The set of experimental
results showed that the evaluated heuristics perform as effi-
ciently as related approaches; demonstrating their applicability
and scalability for the considered problem.

Keywords-scalability; heterogenous computing systems; en-
ergy conservation; scheduling; performance of systems;

I. INTRODUCTION

Heterogenous computing systems (HCS) are widely used
as a not expensive way of obtaining powerful distributed
computing systems. One important goal that must met to
make building a distributed system worth the effort is scal-
ability [1]. Scalability refers to the capability of the system
to adapt to an increase in the service load. The scalability
of a system can be measure by at least three different
components. First, numerically or with respect of its size. It
refers about the feasibility to add more users and resources
to the system [1]. The second is geographically scalable
system, which is the distance between the farthest nodes
within the system. The third feature is the administrative
scalability, which refers to manage even if it encompass
many independent administrative organizations [2]. In this
paper, we consider the first feature.

There have been numerous works in the area of power
and energy optimization for such systems [3], [4], [5], [6],
[7], [8], [9], [10], [11]. Another dimension of this work is
energy conservation, there has been a lot of work of a reason
on the afore mentioned topic, which are covered by surveys
such as [8], [9], [20], [21].

In this paper, we evaluate the energy-aware scheduling
heuristics proposed in [12] by one scalability dimension, its
size. This target is achieved by evaluating these scheduling
algorithms increasing the number of tasks and machines. The
main idea of these heuristics is to match each task with the

best resource to execute the task, that is, the resource that
optimizes the completion time of the task and executes the
task fastest with minimum energy. These algorithms take
advantage of the resource capabilities (i.e. heterogeneity)
and task requirements featuring a very low overhead. They
were evaluated by adding numerous simulations featuring
high heterogeneity of resources, and/or high heterogeneity of
applications. Simulations studies are performed to compare
these heuristics with the well-known min-min [14], [8].
We used min-min as a basis of comparison because it
is one of the most practical and applicable heuristic in
the context of HCS [14], [15], [16], [17]. Min-min starts
by considering that all tasks are not mapped. It works in
two phases. In the first phase, the algorithm establishes
the minimum completion time for every unscheduled job.
In the second phase, the task with the overall minimum
expected completion time is selected and assigned to the
corresponding machine. The task is then removed from the
set and the process is repeated until all tasks are mapped.
The run time of min-min is !("2#) [19].

We have considered the minimization of the makespan
(i.e., the maximum completion time) and energy as a basis
of comparison. We also compare these heuristics based on
the flowtime. The flowtime of a task is the length of the
time interval between the release time and completion time
of the task. It is commonly used as a quality of service (QoS)
measure that allows to guarantee good response times [18].

This paper is organized as follows. The system, schedul-
ing and energy models are presented in Section II. We briefly
describe the evaluated heuristics in Section III. Experimental
results are given in Section IV. Section V concludes the
paper.

II. MODELS

A. System, Application and Scheduling Models

We consider a heterogeneous computing system com-
posed of a set of $ = {#1, ...,#!} machines. We consider
that resources in the target system are incorporated with an
effective energy-saving mechanism for idle time slots [22],
[10]. The energy consumption of an idle resource at any
given time is set using a minimum voltage based on the
processor’s architecture. In this paper, we used two different



voltage levels: maximum, when the processor is performing
work or it is in an active state and idle level, when processor
is in an idle state. We consider a set of independent tasks
' = {"1, ..., ""} to be executed onto the system. The tasks
are considered as an indivisible unit of workload. Each task
has to be processed completely on a single machine. The
computational model we consider in this work is the ETC
model [23]. The (') matrix of size " × # it is assumed
to be known. Each position (')["#][#$ ] in the matrix
indicates the expected time to compute task "# on machine
#$ . This model allows to represent the heterogeneity among
tasks and machines. For more details we refer the reader
to [23], [13] and [12].

The considered scheduling problem is formulated as fol-
lows. Given the heterogenous computing systems composed
of the set of # machines, and the set of * tasks. Any
task is scheduled without preemption from time +("#) on
machine ,("#), with an execution time (')["#][#$ ]. The
task "# completes at time )# equals to +("#) + (')["#][#$ ].
The objective is to minimize the maximum completion time
()!%& = #-.()#)) or makespan and the total energy ('

used to execute the tasks. Additionally, in this paper we
also aim to guarantee good response times. In this con-
text, response time is modeled as flowtime. As we already
mentioned, the flowtime of a task is the length of the time
interval between the completion time and release time. We
consider that the release time is zero for all the tasks. Hence,
the flowtime represents the sum of completion time of jobs,
that is,

∑"
#=1 )#, the aim is to minimize

∑"
#=1 )#.

B. Energy Model

The energy model used in this work is derived from the
power consumption model in digital complementary metal-
oxide semiconductor (CMOS) logic circuitry. The power
consumption of a CMOS-based microprocessor is defined to
be the summation of capacitive power, which is dissipated
whenever active computations are carried out, short-circuit
and leakage power (static power dissipation). The capacitive
power (/() (dynamic power dissipation) is the most signif-
icant factor of the power consumption. It is directly related
to frequency and supply voltage, and it is defined as [24]:

/( = 0))**1
22, (1)

where 0 is the number of switches per clock cycle, ))**

denotes the effective charged capacitance, 1 is the supply
voltage, and 2 denotes the operational frequency. The energy
consumption of any machines in this paper is defined as:

(( =
"∑

#=1

0))**1
2
# 2(')[3][$ [3]], (2)

where $ [3] represents a vector containing the machine #$

where task "# is allocated, 1# is the supply voltage of the

machine #$ . On the other hand, the energy consumption
during idle time is defined as:

(# =
!∑

$=1

∑

#+,)!"∈-./01!

0))**1 #3*2
$4$2, (3)

where 456(7$ is the set of idling slots on machine #$ ,
1!#"$ is the lowest supply voltage on #$ , and 4$2 is the
amount of idling time for 389:$2. Therefore, the total energy
consumption is defined as:

(' = (( + (#. (4)

III. LOW COST ALGORITHMS

In the scheduling problem on HCS, near-optimal solutions
would suffice rather than searching for optimality for most
practical applications. Therefore, we used the three low-
cost scheduling algorithms with good quality schedules and
low energy consumption developed in [12]. The algorithms
are based on the list scheduling approaches and they are
considered as batch mode dynamic scheduling heuristics.
The main difference between the algorithms is the priority
used to construct the list. For that, minimum, maximum and
average completion time of the task are used as if it was
the only task to be scheduled on the computing system. The
name of the heuristics is MinMin Min (minimum completion
time of tasks sorted in decreasing order of its minimum
completion time and scheduled based on the minimum com-
pletion time), MinMax Min (maximum completion time of
tasks sorted in decreasing order of its maximum completion
time and scheduled based on the minimum completion time),
MinMean Min (average completion time of tasks, sorted in
decreasing order of the minimum average completion time,
and scheduled based on the minimum completion time).

The principle of the algorithms is to assign the tasks
not only to the machine which minimizes its expected
completion time, but its execution time as well. The authors
proposed a weighted function called the score function
7; ("#,#$) (see Eq. 5), that balances both objectives. The
rational is to minimize the workload of machines and
intrinsically minimize the energy used to carry out the work.
The computational complexity of the heuristics is !("#
9<= "), which is less than one order of magnitude to the
comparative approaches.

The score of each mapping event is calculated as in Eq. 5.
For each machine #$ ,

7; ("#) = >⋅ )#∑!
2=1 )#2

+(1−>)⋅ (')["#][#$ ]∑!
2=1 (')["#][#2]

, (5)

where
∑!

2=1 )#2 is the sum of the completion time of the
task "# over all machines and

∑!
2=1 (')["#][#2] is the sum

of the expected time to complete of task "# over all machines.
The first term of equation 5 aims to minimize the completion
time of the tasks "#, while the second term aims to assign
the task to the fastest machine or the machine on which the
task takes the minimum expected time to complete.



IV. EXPERIMENTAL EVALUATION

We compare the algorithms proposed in [12] and the min-
min algorithm by simulation using randomly built ETCs.
The ETC model can be characterized by three parame-
ters [13], [23]: (a) the first parameter is machine hetero-
geneity, on which we can distinguish among low and high
machine heterogeneities, (b) the second parameter is task
heterogeneity, we can also distinguish among low and high
task heterogeneities, and (c) the third parameter is the
consistency, which tries to reflect the characteristics of real-
istic scenarios. The three different scenarios are: consistent,
inconsistent and semi-consistent. Table I, shows the twelve
combinations of heterogeneity types (task and machines)
and consistency classifications in the ETC model that we
use in this paper. The consistency categories are named
for the correspondent initial letter (c stands for consistent,
i for inconsistent, s for semi-consistent, lo stands for low
heterogeneity and hi for high heterogeneity). Hence, a matrix
named c lolo corresponds to a consistent scenario with low
task heterogeneity and low machine heterogeneity.

Table I: ETC consistency models.

Consistency
Consistent Semi-consistent Inconsistent

c lolo s lolo i lolo
c lohi s lohi i lohi
c hilo s hilo i hilo
c hihi s hihi i hihi

A. Experiments

For the generation of these ETC matrices we have used
the coefficient of variation based method (COV) introduced
in [23]. The COV-based method provides a greater control
over the spread of the execution time values than the
common-based method. To simulate different heterogeneous
computing environments we have changed the parameters
?'%32, 1'%32 and 1!%(ℎ#"), which represent the mean task
execution time, the task heterogeneity, and the machine
heterogeneity, respectively. We have used the following
parameters: 1'%32 and 1!%(ℎ#") equal to 0.1 for low case
respectively and 0.6 for high case, and ?'%32 = 100. The
heterogeneous ranges were chosen to reflect the fact that in
real situations there is more variability across the execution
time for different tasks on a given machine than that across
the execution time for a single task on different machines.

We assume that all of the tasks arrive at the system
before the scheduling event. Furthermore, we consider that
all the machines are idle or available at time zero, this
can be possible by considering advance reservation. The
algorithms were evaluated through a large set of instances.
The instances were generated with different task size and
machines combinations for: 512, 1024, 2048, 4096 and 8192
tasks in size to be scheduled each one on 16, 32, 64, 128

and 256 machines. We have generated 30000 instances, 100
instances for each 12 cases and for each 25 task and machine
combinations. Additionally, we have considered different
voltages for the machines. We randomly assigned these
voltages to machines by choosing among three different set.
The first set considers 1.95 and 0.8 Volts for maximum or
active state and minimum or idle state, respectively. The
second set is 1.75 Volts at maximum state and 0.9 Volts
at idle state. Finally, the last set considers 1.6 Volts at
maximum level and 0.7 Volts at idle level.

B. Results and Discussions

The results for the algorithms are depicted from Figs. 1
to 4. We show normalized values of makespan, flowtime
and energy for each heuristic against min-min for >-values
in the interval [0, 1]. The normalized data were generated by
dividing the results for each heuristic by the maximum result
computed by these heuristics. We only show the plots for
the high task and high machine heterogeneity for the three
different scenarios, in reference to [12] and to investigate the
scalability we show the most significant results. The legends
m-m n mksp, m-m n flow and m-m n rcb in the figures stand
for makespan, flowtime and energy of min-min respectively.

We can observe that the behavior for the three evaluated
algorithms were quite similar, this can be evidenced in
Fig. 1 for the 1024x32 s hihi. This results show the similar
behavior of the evaluated algorithms [12] for this reason,
we only show, in all the next figures, the results for the
minMin min algorithm against min-min. As can be seen in
Fig. 1 and it can be verified in Table IV, the value of >=0.4 is
the best value for the three considered objectives, makespan,
flowtime and energy. We obtained all the representative
values of Tables II, III and IV following the same method.
These tables show that with one value of > the evaluated
heuristics can perform as well as min-min for all the three
considered metrics, even, sometimes better. These >-values
can be verified from Figs. 2 through 4.

Table II: Lambda Values for c hihi

Machines Tasks
512 1024 2048 4096 8192

16 0.8 0.7 0.7 0.7 0.7
32 0.6 0.6 0.6 0.6 0.7
64 0.5 0.6 0.6 0.5 0.6
128 0.4 0.5 0.5 0.4 0.5
256 0.2 0.3 0.4 0.4 0.3

It can be observed from these figures that the evaluated
heuristics follow the same performance behavior accord-
ing to the different scenarios. Relative values range are
biggest for the consistent instances than semi-consistent and
inconsistent. The results clearly demonstrate that energy
efficiency is the best for the consistent instances in most
of the experiments. It may be related to the fact, that the
makespan has worse results. However, for values of > than
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Figure 1: Relative performances of the schedules produced by different heuristics 1024x32 in the s hihi instances.

Table III: Lambda Values for i hihi

Machines Tasks
512 1024 2048 4096 8192

16 0.2 0.3 0.3 0.3 0.3
32 0.2 0.2 0.2 0.2 0.3
64 0.2 0.2 0.2 0.2 0.2
128 0.2 0.2 0.2 0.2 0.2
256 0.3 0.2 0.2 0.2 0.1

Table IV: Lambda Values for s hihi

Machines Tasks
512 1024 2048 4096 8192

16 0.5 0.5 0.5 0.6 0.7
32 0.4 0.4 0.4 0.5 0.6
64 0.3 0.3 0.3 0.4 0.5
128 0.3 0.3 0.3 0.3 0.4
256 0.4 0.3 0.2 0.2 0.3

we showed in Tables II through IV and it can be validated in
Figures 2 through 4, we can also observe that the evaluated
algorithms can improve makespan and flowtime results by
> in all instances. Interestingly, if the instance is more
inconsistent, the evaluated algorithms perform better.

Observing Tables II through IV, we can see the best values
for >, in the c hihi instances. This value is not changing at
all when the number of machines is fixed and the number
of tasks increases, as it is displayed in Fig. 3, by scalability
measures, one of the size components increase. By other
hand, when the number of machines increases and the tasks
is fixed, the > value changes because the makespan and the
flowtime improve with low values and the energy for these
values always are better (i.e. in all the experiments of this
paper, without taking account the other two metrics, energy
has the best values in >=[0.1, 0.3]) as can be observed in
Fig. 2.

The behavior of evaluated algorithms improves, when the
number of machines increases considering the inconsistent
scenario with high task and machine heterogeneity instances.
These results can be observed in from plots in Fig. 4. the

best values of > are showed in Table III. The benefit of ex-
ploiting the heterogeneity of the applications and resources
to maximize the performance of the system and energy is
more apparent. This is mainly because these instances are the
ones presenting the highest inconsistency and heterogeneity.

For the semi-consistent scenario the behavior of the algo-
rithms is like between consistent and inconsistent scenarios
as it can be establish in Table IV. In terms of flowtime,
all the heuristics are as efficient as min-min, however, the
evaluated heuristics have lower complexity.

C. Extended Experimented Evaluations

In the previous experiments (as described in Section IV.B)
we have evaluated the energy consumption of the provided
solutions by the different algorithms. We are also interested
in the energy consumed by the scheduling algorithms it-
self to provide the schedules. For that, as a preliminary
experiment we have measured the energy consumed when
executing the investigated algorithms on different instances’
sizes. We used ”Dominion PX” (outlet metered, outlet
switched iPDU - PX-500) device for measure the power
consumption at any time to the one machine running the
evaluated algorithm [25]. Dominion PX is a power distri-
bution unit (PDU) that offers real-time remote unit-level
and individual outlet-level switching and power monitoring
of current (amps), voltage, power (kVA, kW), power fac-
tor and energy consumption (kWh) with ISO/IEC +/- 1%
billing-grade accuracy. The experiments were performed in
a machine Intel(R) Pentium 4 CPU 1500MHz, 512 MB in
RAM, core voltage of 1.75V. We have only considered the
following instances: 512x16, 1024x32, 2048x64, 4096x128,
8192x256. We have executed the algorithms over these sets
of instances and we have considered the average consumed
energy for each size instance. As mentioned previously, each
set is composed of 100 instances. Each algorithm has been
executed separately and the experiments are independent.
We show the preliminary results of the experiment in Fig. 5.
We have used logarithmic scale to emphasize the results.
As can be observed, the fast algorithms have the same
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Figure 2: Relative performances of the schedules produced by different heuristics in the c hihi instances with 512 tasks and
from top left to bottom right 16, 32, 64, 128 and 256 machines, respectively.

behavior, that is, these algorithms use almost the same
energy to compute a schedule over all the set of instances.
These heuristics outperform min-min for all the sizes of the
instances and the gain in energy-efficiency is more important
when the size of the instances scales. The complexity of min-
min is one of the main factors that makes the algorithm more
energy-inefficient regarding the fast heuristics. Moreover,
min-min uses much more memory when the instances scale
because the algorithm always evaluate the completion time
for the remaining tasks to be scheduled at each step of the
loop, because of that the energy consumption increases. On
the contrary, the fast heuristics have a good scalability and
low overhead than min-min. The usage memory is reduced,
because at each step only consider one task to be scheduled,
the task with the highest priority, hence their are more
energy-efficient than min-min.

V. CONCLUSIONS

This paper investigated three batch mode scheduling algo-
rithms in the context of performance, energy efficiency and
scalability in HCS. The set of experimental results showed
that the investigated heuristics perform as efficiently as the
related approach although featuring lower complexity, lower
running time, showing their applicability for the considered
scheduling problem and their good scalability.

As part of future work, we intend to implement the

Figure 5: Measure of the energy consumed by the different
algorithms.

evaluated heuristics in a packet-level simulator of energy-
aware cloud computing data center, GreenCloud [6] and we
plan to extend these heuristics to include thermal aspects.
Additionally, we consider using dynamic frequency and
voltage scaling techniques.
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Figure 3: Relative performances of the schedules produced by different heuristics in the c hihi instances with 16 machines
and from top left to bottom right 512, 1024, 2048, 4096 and 8192 tasks, respectively.
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Figure 4: Relative performances of the schedules produced by the different heuristics in the i hihi.
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